PHẦN RIấNG (3,0 điểm).

Một phần của tài liệu ÔN THI TỐT NGHIỆP ĐẦY ĐỦ (Trang 90 - 93)

Thớ sinh học theo chương trỡnh nào thỡ chỉ được làm phần dành riờng cho chương trỡnh đú (phần 1 hoặc 2)

1 Theo chương trỡnh chuẩn: Cõu IV.a (2,0 điểm) Cõu IV.a (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; -1), B(2; 0; 1) và mặt phẳng (P) cú phương trỡnh 2x -

y + 3z + 1 = 0.

1. Viết phương trỡnh đường thẳng AB.

2. Tỡm tọa độ giao điểm của đường thẳng AB với mặt phẳng (P).

Cõu V.a (1.0 điểm)

Tỡm phần thực, phần ảo của số phức z = (2 - i)3.

2. Theo chương trỡnh nõng cao: Cõu IV.b (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho hai điểm: A(1 ; 2; - 1), B(2; 0; 1) và mặt phẳng (P) cú phương trỡnh 2x - y + 3z + 1 = 0.

Tài liệu tham khảo ụn tập TNPTTH Toỏn 12

2. Viết phương trỡnh mặt phẳng (R) chứa đường thẳng AB và vuụng gúc với mặt phẳng (P).

Cõu V.b (1,0 điểm) Thực hiện phộp tớnh: 4 3 1 1 4 3 i i i i − + + + − . ĐỀ SỐ 2 : I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Cõu I (3,0 điểm)

Cho hàm số 1 3 2

2 3

3

y= xx + x

1 Khảo sỏt sự biến thiờn và vẽ đồ thị (C) của hàm số.

2. Lập phương trỡnh đường thẳng đi qua điềm cực đại của đồ thị (C) và vuụng gúc với tiếp tuyến của đồ thị (C) tại gốc tọa độ.

Cõu II (3, 0 điểm)

1 Giải phương trỡnh: 2 2 1

2

log (x −2x− = −8) 1 log (x+2)

2. Tỡm giỏ trị lớn nhất và giỏ trị nhỏ nhất của hàm số: y= 4x x− 2 trờn đoạn 1 [ ;3]

2 .3. Tớnh: 1 3. Tớnh: 1

0( 2) x .

I =∫ x+ e dx

Cõu III (1,0 điểm)

Cho khối chúp S.ABC cú cạnh bờn SA vuụng gúc với đỏy. Mặt bờn (SBC) tạo với đỏy gúc 600 Biết SB = SC = BC = a. Tớnh thể tớch khối chúp đú theo a.

II PHẦN RIấNG (3,0 điểm).

Thớ sinh học theo chương trỡnh nào thỡ chỉ được làm phần dành riờng cho chương trỡnh đú (phần 1 hoặc 2)

1. Theo chương trỡnh chuẩn: Cõu IV.a (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 4x + 2y + 4z - 7 = 0 và mặt phẳng (α) : x - 2y + 2z + 3 = 0

1. Tớnh khoảng cỏch từ tõm I của mặt cầu (S) tới mặt phẳng (α).

2. Viết phương trinh mặt phẳng (β) song song với mặt phẳng (α) và tiếp xỳc với mặt cầu (S).

Cõu V.a (1,0 điểm)

Giải phương trỡnh sau trờn tập số phức: 3x2 - 4x + 6 = 0.

2. Theo chương trỡnh nõng cao: Cõu IV.b (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho mặt cầu

(S): x2 + y2 + z2 - 4x + 2y + 4z - 7 = 0 , đường thẳng d : 1 2

1 2 1

x= y− = z−− −

1. Viết phương trỡnh mặt phẳng (P) vuụng gúc với đường thẳng d và tiếp xỳc với mặt cầu (S). 2. Viết phương trỡnh đường thẳng đi qua tõm của mặt cầu (S), cắt và vuụng gúc với đường thẳng d.

Cõu V.b (1,0 điểm)

Viết dạng lượng giỏc của số phức z2, biết z = 1 + 3i.

I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Cõu I (3, 0 điểm)

Cho hàm số y = x4 - 2x2 - 3

1 . Khảo sỏt sự biến thiờn và vẽ đồ thị (C) của hàm số.

2. Dựng đồ thị, tỡm tất cả cỏc giỏ trị của tham số m để phương trỡnh sau cú 4 nghiệm phõn biệt: x4 - 2x2 - 3 = m .

Cõu II (3, 0 điểm)

1. Giải bất phương trỡnh : 1 1 1 ( ) 8 12.( ) .

4 2

x+ ≤ x+

2. Tớnh ∫(cos 3x sin 2x. sin x)dx +

3. Trong tất cả cỏc hỡnh chữ nhật cú cựng diện tớch 64 cm2, hĩy xỏc định hỡnh chữ nhật cú chu vi nhỏ nhất.

Cõu III (1,0 điểm)

Cho khối chúp S.ABCD cú cạnh bờn SA vuụng gúc với đỏy; Cạnh bờn SC tạo với đỏy gúc 600. Đỏy ABCD là hỡnh vuụng cú độ dài đường chộo là a. Tớnh thể tớch khối chúp đú theo a.

II PHẦN RIấNG (3,0 điểm).

Thớ sinh học theo chương trỡnh nào thỡ chỉ được làm phần dành riờng cho chương trỡnh đú (phần 1 hoặc 2)

1 Theo chương trỡnh chuẩn: Cõu IV.a (2,0 điểm) Cõu IV.a (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho 3 điểm: M(1; -2; l), N(1; 2; -5), P(0; 0; -3) và mặt cầu (S): x2 + y2 + z2 - 2x + 6y - 7 = 0.

1. Viết phương trỡnh mặt phẳng (MNP) .

2. Viết phương trỡnh mặt phẳng (α) song song với mặt phẳng (MNP) và tiếp xỳc với mặt cầu (S)

Cõu V.a (1,0 điểm)

Tớnh diện tớch hỡnh phẳng giới hạn bởi Parabol y = x2 và đường thẳng y = 2x + 3.

2. Theo chương trỡnh nõng cao: Cõu IV.b (2,0 điểm)

Trong khụng gian với hệ tọa độ Oxyz, cho hai điểm: M(0; 2; -2), N(0; 3; -1) và mặt cầu (S) cú phương trỡnh : x2 + y2 + z2 - 2x + 6y - 7 = 0.

1. Tớnh khoảng cỏch từ tõm I của mặt cầu (S) tới đường thẳng MN.

2. Viết phương trỡnh mặt phẳng (P) chứa đường thẳng MN và tiếp xỳc với mặt cầu (S).

Cõu V.b ( 1,0 điểm)

Tớnh thể,tớch khối trũn xoay tạo thành khi cho hỡnh phẳng giới hạn bởi Parabol y = 2x - x2 và đường thẳng y = x quay quanh trục Ox.

ĐỀ SỐ 4 :I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) I – PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm)

Cõu I (3, 0 điểm) Cho hàm số 2 4 2 x y x + = −

1 . Khảo sỏt sự biến thiờn và vẽ đồ thị (C) của hàm số.

2. Viết phương trỡnh đường thẳng đi qua giao điểm 2 đường tiệm cận của đồ thị (C) và vuụng gúc với tiếp tuyến của đồ thị (C) tại giao điểm của đồ thị (C) với trục Ox.

Cõu II (3, 0 điểm)

1. Giải bất phương trỡnh: 1 1 2

2 2

1log ( 3) log (4 ) log log ( 3) log (4 ) log

6

x+ + − >x .

Tài liệu tham khảo ụn tập TNPTTH Toỏn 12

f(x) = 4 sin3x - 9cos2 x + 6sin x + 9 . 3. Tớnh: 2 3 1 lnx I dx x =∫

Cõu III (1,0 điểm)

Cho khối chúp S.ABC cú SA = SB = SC = BC = a. Đỏy ABC cú ∠BAC = 900, ∠ABC = 600. Tớnh thể tớch khối chúp đú theo a.

Một phần của tài liệu ÔN THI TỐT NGHIỆP ĐẦY ĐỦ (Trang 90 - 93)

Tải bản đầy đủ (DOC)

(97 trang)
w