a. Phân tích dữ liệu định lượng
Một khi dữ liệu định lượng đã được thu thập (bằng phương pháp điều tra), quy trình phân tích và xử lý dữ liệu định lượng bắt đầu. Tuy nhiên, trước khi xử lý dữ liệu, nhà nghiên cứu phải diễn giải các dữ liệu ra một dạng thích hợp. Việc phân tích dữ liệu định lượng được bắt đầu bằng việc tất cả các bảng câu hỏi đã được trả lời và chuẩn bị chúng cho công đoạn phân tích. Những công việc mà nhà nghiên cứu phải quan tâm khi phân tích dữ liệu định lượng bao gồm:
- Chuẩn bị, nhập dữ liệu và kiểm tra dữ liệu
- Chọn các phương pháp và kỹ thuật thống kê thích hợp nhất để mô tả dữ liệu - Lựa chọn các thống kê thích hợp nhất để kiểm tra những mối quan hệ giữa các
dữ liệu và khuynh hướng biến động của chúng
Ngày nay, việc ứng dụng tin học để phân tích dữ liệu trong nghiên cứu marketing là hết sức phổ biến. Có một số phần mềm được sử dụng để phân tích dữ liệu trong nghiên cứu marketing như SPSS, STATA, SAS.., mỗi loại đều có những ưu nhược điểm nhất định (sự giống và khác nhau giữa các phần mềm này được trình bày trong phụ lục). Do vậy, cần xác định phần mềm nào được sử dụng trong quá trình phân tích để đạt được hiệu quả cao nhất. Trong số các phần mềm này, SPSS được xem là phần mềm thống kê có độ sử dụng phổ biến nhất. Đây là phần mềm được sử dụng bởi những công ty nghiên cứu thị trường chuyên nghiệp lẫn các nhân viên nghiên cứu thị trường của các doanh nghiệp trên thế giới cũng như ở Việt Nam.
b. Diễn giải dữ liệu
Diễn giải là làm nổi bật ý nghĩa của dữ liệu, hay nói cách khác diễn giải là quá trình chuyển đổi các dữ liệu thuần túy thành thông tin. Người nghiên cứu sẽ đạt đến mục tiêu của quá trình nghiên cứu khi rút ra kết luận từ những dữ liệu để phân tích. Có hai giai đoạn về suy nghĩ lôgíc dùng để rút ra các suy luận từ dữ liệu và cả hai giai đoạn đều được ta thực hiện dù có ý thức hay không: đó là quy nạp và diễn giải.
Để diễn giải tốt, nhà nghiên cứu cần phải lưu ý các vấn đề sau:
- Diễn giải một cách trung thực và tỉnh táo, không nên phóng đại hay bóp méo các dữ liệu để gây sự chú ý.