Các phương pháp loại bỏ đối xứng

Một phần của tài liệu 247728 (Trang 49 - 50)

Có hai phương pháp chính để loại bỏ đối xứng trong CSPs:

ƒ Phương pháp thứ nhất, còn gọi là phương pháp tĩnh (Symmetry Breaking Statically)[3,30]. Các ràng buộc được thêm vào CSP để tạo ra sự “kiểm định” nhằm ngăn chặn việc tạo ra nghiệm đối xứng, và mỗi một nghiệm được sinh ra bởi một bộ gán tương ứng cho lớp nghiệm đó, do vậy chỉ còn lại nghiệm không đối xứng. Phương pháp này làm một công việc tương tự như việc phát biểu lại CSPs trước khi tìm kiếm nhằm giảm không gian tìm kiếm ban đầu cho CSP. Một ví dụ của phương pháp khi bài toán liên quan đến mô hình ma trận là thêm ràng buộc theo một trật tự từ điển nhằm loại bỏ đối xứng trong hàng và cột [17,23,38]. Điều bất lợi cho phương pháp này là việc đòi hỏi người giải toán cần có nhiều kinh nghiệm, ngay cả khi đó việc loại bỏ hoàn toàn đối xứng cũng hết sức khó khăn. Nhưng cũng cấn nhấn mạnh rằng phương pháp này rất dễ dàng để kết hợp với bất kỳ một phương pháp

nào khác.

ƒ Phương pháp thứ hai là phương pháp loại bỏ đối xứng động (Symmetry Breaking Dynamically)[12,31,32,38]. Nó được thực hiện bằng cách thêm ràng buộc trong thời gian tìm kiếm nhằm cắt bỏ những nhánh cây

49

thừa mà nó phát hiện ra nhờ việc cập nhật những ràng buộc được thêm vào. Trong đó, có hai cách tiếp cận là loại bỏ đối xứng trong thời gian tìm kiếm (Symmetry Breaking During Search - SBDS)[19] và loại bỏ đối xứng nhờ việc nhận ra sự ưu thế (Symmetry Breaking via Dominance Detection - SBDD) [6,14,16,19,20,34]. Trước khi quay lui, SBDS thêm ràng buộc loại bỏ đối xứng vào CSP nhằm loại bỏ mọi trạng thái đối xứng gây ra sự quay lui (sẽ không lặp lại với những trạng thái tương tự trong tương lai). Còn với SBDD, bất cứ khi nào thuật toán tìm kiếm tạo ra một trạng thái mới, nó sẽ kiểm tra xem nó có bị mất “lấn át” bởi một nút nào đó hay không (sẽ không lặp lại với những trạng thái tương tự trong quá khứ).

Như vậy, tất cả các hướng tiếp cận trên đây đều nhằm tránh những phần đối xứng, nhằm tìm ra một nghiệm trong tập nghiệm đối xứng, để từ đó chúng ta có thể phục hồi toàn bộ nghiệm nhờ tính đối xứng. Điều này làm tăng tính hiệu quả trong quá trình tìm kiếm nghiệm vì không gian tìm kiếm là rất lớn.

Một phần của tài liệu 247728 (Trang 49 - 50)

Tải bản đầy đủ (PDF)

(120 trang)