Một số thuật toán nhằm tìm kiếm lới giải cho bài toán

Một phần của tài liệu 247728 (Trang 42 - 45)

Như đã giới thiệu ở chương 2 rằng việc tìm kiếm là một trong những chiến lược được quan tâm nhất trong khi giải CSP. Chúng ta có phân ra thành các chiến lược tìm kiếm cơ bản sau:

(1) Các chiến lược tìm kiếm tổng quát

Những chiến lược này được phát triển trong những ứng dụng thông thường, và nó không dùng ràng buộc để đạt tính hiệu quả. Có hai chiến lược trong phần này:

42

ƒ Tìm kiếm mở rộng lặp (iterative broadening-IB) (2) Các chiến lược nhìn về phía trước (lookahead)

Chiến lược lookahead sẽ thực hiện việc rút gọn bài toán thông qua việc áp dụng các ràng buộc. Chiến lược này dựa trên thực tế rằng biến và ràng buộc là hữu hạn, và ràng buộc có thể được áp dụng kết hợp với nhau nhiều lần. Có ba chiến lược trong phần này:

ƒ Kiểm tra phía trước (Forward Checking- FC)

ƒ AC-kiểm tra phía trước có định hướng (Directional AC-L) ƒ AC-kiểm tra phía trước (AC-L)

(3) Các chiến lược thu thập thông tin trong khi tìm kiếm

Chiến lược sẽ ghi lại các tình huống dẫn đến lỗi bất cứ khi nào quay lui cần đến trong thời gian tìm kiếm. Điều này giúp chúng ta tránh được những nhánh lỗi đã biết. Chiến lược này khám phá ra rằng nhiều cây con tương tự với những nhánh khác đã xét. Có hai chiến lược trong phần này:

ƒ Quay lui định hướng phụ thuộc (BackJumping - BJ)

ƒ Thuật toán học từ phần không gian đã xét (Learning nogood compound labels- LNCL)

43

PHN III. BÀI TOÁN NGƯỜI CHƠI GÔN

Bài toán “Người chơi gôn” đã và đang được nhiều sự quan tâm từ cộng đồng ràng buộc[2,6,13,14,16,20,21,25,31,34,35,39], nó được dùng rất nhiều để so sánh giữa các kỹ thuật, các phương pháp khác nhau trong CSPs. Trong phần này, phần đóng góp chủ yếu của Luận văn, sẽ cố gắng trình bày hệ thống để phù hợp với các tiêu chí cho việc giải SGPs: các mô hình khác nhau, các kỹ thuật khác nhau, các phương pháp giải khác nhau, đồng thời sẽ cố gắng so sánh giữa chúng khi có thể.

Chính vì vậy, trình bày phần này là công việc khá khó khăn. Đầu tiên,

Chương 1, Luận văn sẽ giới thiệu bài toán cùng với những kiến thức cần thiết cho những phần sau. Chương 2 giới thiệu phương pháp loại bỏ đối xứng tĩnh trong bài toán vì hầu như các phương pháp khác đều sử dụng một phần (hoặc toàn bộ) các kỹ thuật trong phần này, đồng thời cũng đưa ra 2 ràng buộc dư thừa mới để áp dụng cho việc giải SGP. Chương 3, Luận văn bàn luận về các mô hình quan trọng và thường được dùng nhất trong cộng đồng ràng buộc, từ đó cũng đưa ra những ưu-nhược điểm của từng mô hình khi áp dụng giải SGP. Chương 4chương 5 nói về kỹ thuật loại bỏ đối xứng động khi giải SGP, nhưng do tính đặc thù của các phương pháp ta tách ra làm hai chương, ở đây nêu ra hầu như các phương pháp động thường được dùng để giải SGP.

Chương 6 là chương nói về loại bỏ đối xứng tĩnh khi giải SGP. Sở dĩ chương này được sắp xếp sau vì nó gồm phương pháp sẽ được so sánh với những phương pháp đã trình bày phần trước. Chương 7 giới thiệu một trường hợp đặc biệt cho SGP; giải thích sự liên quan thú vị giữa SGP và hình vuông Latin trực giao (MOLS), đồng thời cũng đưa ra một thuật toán để giải cho trường hợp đặc biệt, từ đó rút ra một số kết luận và cũng khẳng định thuật toán có thể

44

CHƯƠNG 1. GIỚI THIỆU BÀI TOÁN

Một phần của tài liệu 247728 (Trang 42 - 45)

Tải bản đầy đủ (PDF)

(120 trang)