Trên cơ sở các kết quả nghiên cứu đã đạt được và căn cứ nhu cầu của thực tế, những vấn đề cần tiếp tục nghiên cứu và hoàn thiện là:
- Tích hợp hệ thống điều khiển các thông số khai thác sử dụng ngôn ngữ truy vấn và giao diện đồ họa người dùng (GUI).
- Xây dựng thành công cụ biểu diễn tri thức và khai thác dữ liệu không gian trực quan.
DANH MỤC CÔNG TRÌNH CỦA TÁC GIẢ
[1] Vũ Thanh Nguyên, Nguyễn Minh Nam, Lê Phấn Ninh. Xây dựng bộ công cụ biên tập dữ liệu topology hỗ trợ cho hệ thống HCMGIS. Tạp chí phát triển KH&CN, tập 9, số 11-2006, trang 25-34.
[2] Nguyễn Minh Nam, Nguyễn Vĩnh Nam, Hoàng Kiếm. Thuật toán song song xây dựng lưới tam giác Delaunay. Tạp chí Công nghệ Thông tin & Truyền thông, tập V-1, số 1 (21), 04-2009, trang 76-84.
[3] Nguyen Minh Nam, Hoang Van Kiem, Nguyen Vinh Nam. A fast algorithm for constructing constrained Delaunay triangulation. In Proceedings of IEEE- RIVF 2009, pp 11-14.
[4] Nguyen Minh Nam, Le Hoai Bac, Nguyen Vinh Nam. An Extreme Algorithm for Network-Topology Construction Based on Constrained Delaunay Triangulation. In Proceedings of KSE 2009, pp.179-184.
[5] Nguyễn Minh Nam, Hoàng Văn Kiếm. Một số giải pháp tối ưu cho bài toán truy vấn theo tuyến. Hội thảo Công trình Công nghệ Thông tin và Truyền thông 2010, trang 17-24.
[6] Nam Nguyen Vinh, Nam Nguyen Minh, Bac Le Hoai. “A Simple Algorithm for Finding Fast, Exactly Tiles intersects with Polygons”. Tạp chí Khoa học và Công nghệ, p69-78, Volume 49, Number 5, 2011.
TÀI LIỆU THAM KHẢO TIẾNG ANH
[7] L. Bentley, B. W. Weide, and A. C. Yao, “Optimal expected time algorithms for closest point problems”, ACM Trans. Math. Software, vol.6, pp. 563-580, 1980.
[8] Su P, Drysdale RLS. A comparison of sequential Delaunay triangulation algorithms. Proceedings of SCG'95 (ACM Symposium on Computational Geometry) 1995 p. 61-70.
[9] Guibas L, Stolfi J. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams. ACM Trans Graph 1985 4 (1): 75-123.
[10] Guibas L, Knuth D, Sharir M. Randomised incremental construction of Delaunay and Voronoi diagrams. Algorithmica 1992; (7): 381-413.
[11] Miicke EP, Saias I, Zhu B. Fast randomized point location without preprocessing and two- and three-dimensional Delaunay triangulations. Proceedings of SCG'96 (ACM Symposium on Computational Geometry) 1996 p. 274-83.
[12] Kolingerova I, Zalik B., Improvements to randomized incremental Delaunay insertion. Comput Graph 2001; (26): 477-90.
[13] Zalik B, Kolingerova I., An incremental construction algorithm for Delaunay triangulation using the nearest-point paradigm. Int. J.Geographical information science 2003; (17): 119-38.
[14] Fang T. P., Piegl L., Delaunay triangulation using a uniform grid. IEEE Comput Graph Appl 1986 13 (3): 36-47.
[15] Lee D. T., Schachter B. J., Two algorithms for constructing a Delaunay triangulation. Int. J.Geographical information science 1980; (9): 219-42.
[16] Dwyer R. A., A faster divide-and-conquer algorithm for constructing Delaunay triangulations. Algorithmica 1987; (2): 137-51.
[17] Edelsbrunner H, Seidel R., Voronoi diagrams in linear expected time. Discrete Comput Geom 1986; (1): 25-44.
[18] Fortune S., A sweep-line algorithm for Voronoi diagrams. Algorithmica 1987; (2): 153-74.
[19] Lawson C. L. In: Rice JR, editor. Software for C1 surface interpolation. Mathematical software III. New York: Academic Press; 1977. p. 161-94.
[20] de Berg M, van Kreveld M, Overmars M, Schwarzkopf O., Computational geometry, algorithms and applications. Berlin: Springer; 1997.
[21] Preparata F. P., Shamos MI. Computational geometry: an introduction. Berlin: Springer; 1985.
[22] Aurenhammer F., Voronoi diagrams-a survey of a fundamental geometric data structure. ACM Comput Surveys 1991; (3): 345-405.
[23] Boissonnat J. D., Devillers O, Teillaud M, Yvinec M. Triangulations in CGAL. In: Computational Geometry 2000. Hong Kong: ACM Press; 2000, p. 11-8.
[24] Jonathan Richard Shewchuk, Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates, Discrete & Computational Geometry 18:305-363, 1997. Also Technical Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, May 1996
[25] ShewchukJ. R.,A two-dimensional quality mesh generator, Delaunay triangulator. http://www.cs.berkeley.edu/jrs/index.html; 2004.
[26] Shewchuk J. R.Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. Proceedings of SCG'96 (ACM Symposium on Computational Geometry) 1996 p. 124-133.
[27] Shewchuk J. R., Sweep algorithms for constructing higher-dimensional Constrained Delaunay Triangulations. In Proceedings of the 16th annual symposium on Computational geometry, Kowloon, Hong Kong, pages 350–359. ACM, 2000.
[28] Devillers O. Improved incremental randomized Delaunaytriangulation. Proceedings of SCG'98 (ACM Symposium on Computational Geometry) 1998 p. 106-15.
[29] Chew, L. P., Constrained Delaunay triangulations, Proceedings of the 3rd annual symposium on Computational geometry, ACM Press, pp. 215-222, 1987, Waterloo, Ontario, Canada.
[30] Anglada M. V., An improved incremental algorithm for constructing restricted Delaunay triangulations, Computers & Graphics, vol. 21, p. 215-223, 1997.
[31] Kallmann, M ; Bieri, H ; Thalmann, D. Fully Dynamic Constrained Delaunay Triangulations. In Geometric Modelling for Scientific Visualization, Springer- Verlag, 2003.
[32] Zalik B. An efficient sweep-line Delaunay triangulation algorithm. Computer- Aided Design, 2005, 37:10, pp. 1027-1038.
[33] Domiter V. and B. Žalik. Sweep-line algorithm for constrained Delaunay triangulation. International Journal of Geographical Information Science, 22(4):449–462, 2008.
[34] Cignoni P., Montani C., and Scopigno R. DeWall: A fast devide and conquer Delaunay triangulation algorithm in Ed, Computer-Aided Design, 20(1998), pp. 333-341.
[35] Cignoni P, Montani C, Perego R, Scopigno R. Parallel 3D Delaunay Triangulation. Computer Graphics Forum (Eurographics’93) 1993; 12(3): C129 – C142.
[36] Lee S, Park CI, Park CM. An improved parallel algorithm for Delaunay triangulation on distributed memory parallel computers. Parallel Processing Letters 2001, 11(2-3): 341-352.
[37] Chen MB, Chuang TR, Wu JJ. Efficient parallel implementations of 2D Delaunay triangulation with High Performance Fortran. In: Proceedings of 10th
SIAM Conference on Parallel Processing for Scientific Computing. Portsmouth, Virginia, USA, March 2001. 11 pages. SIAM Press.
[38] Kohout J, Kolingerová I, Žára J. Practically oriented parallel Delaunay triangulation in E2 for computers with shared memory. Computer & Graphics 2003; [39] Chen, M., Chuang, T., and Wu, J. Parallel divide-and-conquer scheme for 2D Delaunay triangulation. In Proceedings of Concurrency and Computation: Practice and Experience. 2006, 1595-1612.
[40] http://164.214.2.59/vpfproto, “Vector Product Format Overview”.
[41] В. Baumgart, Winged-Edge Polyhedron Representation for Computer Vision, National Computer Conference, May 1975
[42] Morehouse, S.TheArchitecture of ARC/INFO. Proc. Auto-Carto 9, Baltimore, 1989.
[43] Schilcher, M., Interactive Graphic Data Processing in Cartography. Computers & Graphics 9 (1985), 57-66.
[44] Stonebraker, M., and L.A. Rowe, The Design of POSTGRES. Proc. of the 1986 SIGMOD Conf. (Washington, DC, May 1986), 340-355.
[45] Stonebraker, M., B. Rubenstein, and A. Guttmann, Application of Abstract Data Types and Abstract Indices to CAD Databases. Proc. ACM Engineering Design Applications Conf., 1983, 107-114.
[46] The ubiquitous B-Tree. ACM Computing Surveys, 11, 2 (June), 1979, 121- 137.
[47] R-Trees: a dynamic index structure for spatial searching. In Proceedings of the SIGMOD Conference, (Boston, June), 1984, pp. 47-57.
[48] The k-d-B-Tree: a search structure for large multidimensional dynamic indexes. In Proceedings of the SIGMOD Conference, (Ann Arbor, MI, Apr.), 1981, pp. 10-18.
[49] Roussopoulos, N., and Faloutsos, C. The R+-tree: a dynamic index for multi- dimensional objects. In Stocker, P. M. and Kent, W., Eds., Proceedings of the Thir- teenth International Conference on Very Large Databases (VLDB), (Brighton, England, Sept.), 1987. pp. 507-518.
[50] David K. Arctur and Michael Zeiler. Designing Geodatabases. ESRI Press, 2004. ISBN: 158948021X.
[51] Euro Beinat, Albert Godfrind, and Ravikanth V. Kothuri. Pro Oracle Spatial. Apress, 2004. ISBN: 978-1590593837.
[52] D. Chamberlin. Using the New DB2: IBM’s Object Relational System. Morgan Kaufmann, 1997. ISBN: 978-1558603738.
[53] M. Stonebraker and D. Moore. Object Relational DBMSs: The Next Great Wave. Morgan Kaufmann, 1997. ISBN: 978-1558603974.
[54] Google Earth, 2006. http://earth.google.com.
[55] Microsoft Virtual Earth, 2006. http://www.microsoft.com/virtualearth.
[56] G. Piatetsky-Shapiro and W.J. Frawley. Knowledge Discovery in Databases, AAAI/MIT Press, 1991.
[57] R. Agrawal and R. Srikant. Fast Algorithms for Mining Association Rules. In Proc. 20th VLDB Conference, Santiago, Chile, 1994, pp. 487-499.
[58] K. Koperski and J. Han. Discovery of Spatial Association Rules in Geographic Information Databases. In Advances in Spatial Databases, Proc. of 4th Symp. SSD'95, Springer-Verlag, Berlin, 1995, pp. 47-66.
[59] R.H. Giiting. An Introduction to Spatial Database Systems. In VLDB Journal, Vol. 3, pp. 357-400, 1994.
[60] M. Egenhofer. Spatial SQL: A Query and Presentation Language. In LEEE Trans. Knowledge and Data Engineering, Vol. 6, pp. 86-95, 1994.
[61] T. Brinkhoff, H.-P. Kriegel, R. Schneider, and B. Seeger. Multistep Processing of Spatial Joins. In Proc. 1994 ACM-SIGMOD Conf. Management of Data, Minneapolis, Minnesota, 1994, pp. 197-208.
[62] S. Brin, R. Motwani, and C. Silverstein. Beyond Market Basket: Generalizing Association Rules to Correlations. In Proc. 1997 ACM-SIGMOD Int. Conf. Management of Data, Tucson, AZ, 1997, pp. 265-276.
[63] J. Han, Y. Cai, and N. Cercone. Data-driven Discovery of Quantitative Rules in Relational Databases. In IEEE Trans. Knowledge and Data Engineering, Vol. 5, pp. 29-40, 1993.
[64] H.K. Ng, H W Leong and Ngai Lam Ho, 2004, “Efficient Algorithm for Path-based Range Query in Spatial Databases”, Proceedings of International Database Engineering and Applications Symposium (IDEAS-2004), IEEE, 7-9 July 2004, Coimbra, Portugal.
[65] A rapid algorithm for topology construction from a set of line segments, Sebastian Krivograd, Mladen Trlep, Borut Zalik, 2000.
[66] Hash sort: alinear time complexity multiple-demensional sort algorithm originall entitled “Making a hash sorts”, William F. Gilreath.
[67] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1:269-271, 1959.
[68] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34(3):596-615, July 1987.
[69] M. Holzer, F. Schulz, and D. Wagner. Engineering multi-level overlay graphs for shortest-path queries. In SIAM, volume 129 of Lecture Notes in Computer Science, pages 156-170. Springer, 2006.
[70] P. Sanders and D. Schultes. Engineering highway hierarchies. In ESA 2006, volume 4168 of Lecture Notes in Computer Science, pages 804-816. Springer, 2006.
[71] P. Sanders and D. Schultes. Dynamic highway-node routing. In Demetrescu [10], pages 66-79.
[72] Jiang J., Han H and Chel J. Modeling turning restrictions in traffic network for verhicle navigation system. IAPRS, Vol. XXXIV, part 4, 2002.
[73] Caldwell T. On finding minimum routes in a network with turn penalties. Communications of the ACM 4(2), p. 107-108, 1961.
[74] Winter S. Modeling Costs in Turns of Routing Planing. GeoInformatica 6(4), p.345-360, 2002.
[75] Kirby R. F and Potts R. B. The minimum route problem for network with turn penalties an prohibitions. Transport Research 3, p. 397-409, 1969.
[76] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry, Springer-Verlag, 1997.
[77] Birn, M., Holtgrewe, M., Sanders, P., Singler, J.: Simple and Fast Nearest Neighbor Search. In: 2010 Proceedings of the Twelfth Workshop on Algorithm Engineering and Experiments, January 16, pp. 43–54 (2010).
[78] Michael Connor, Piyush Kumar. Practical Nearest Neighbor Search in the Plane. 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May 20-22, 2010. Proceedings.
[79] http://www.cs.umd.edu/~mount/ANN/ [80] http://trac.osgeo.org/geos/
[81] http://www.cs.cmu.edu/~quake/triangle.html
TÀI LIỆU THAM KHẢO TIẾNG NGA [83] Б. Н. Дeлohe, А.Д. Александров, Н. Падуровым. Математические основы структурного анализа кристаллов, Москва, Матем. литература, 1934. [84] Скворцов А.В., Костюк Ю.Л. Эффективные алгоритмы построения триангуляции Делоне // Геоинформатика. Теория и практика. Вып. 1. Томск: Изд-во Том. ун-та, 1998. С.22-47. [85] Скворцов А.В. Особенности реализации алгоритмов построения триангуляции Делоне с ограничениями // Вестник Томского гос. ун-та. 2002. Т. 275, С. 90-94.
PHỤLỤC:MỘTSỐỨNGDỤNG