TÀI LIỆU THAM KHẢO Tiếng Việt

Một phần của tài liệu Phân lập và tuyển chọn vi khuẩn cố định đạm, hòa tan lân trong đất vùng rễ cây ngô (Zea mays L.) trồng trên đất xám tỉnh Tây Ninh (Trang 73 - 83)

Tiếng Việt

[1] Cao Ngọc Điệp (2011), Vi khuẩn nội sinh thực vật (Endophytic bacteria). Nxb. Đại học Cần Thơ, Cần Thơ.

[2] Cao Ngọc Điệp và Đào Thị Đẹp (2011), Hiệu quả của phân DASVILA trên cây lúa cao sản (OM 2514) trồng trên đất phù sa nông trường sông Hậu, thành phố Cần Thơ. Tạp chí Khoa học Đất. 36:47-51.

[3] Cao Ngọc Điệp và Nguyễn Thị Mộng Tuyền (2011), Hiệu quả của phân DASVILA trên lúa cao sản trồng trên đất phù sa huyện Tân Hiệp, tỉnh Kiên Giang và huyện Vĩnh Thạnh, thành phố Cần Thơ. Tạp chí Khoa học Đất. 38:91-94.

[4] Công Doãn Sắt và Đỗ Trung Bình (1997), Thành phần khoáng sét của một số loại đất chính ở miền Nam Việt Nam. Nông nghiệp - Tài nguyên đất và sử dụng phân bón tại Việt Nam. Nxb Trẻ, Tp. Hồ Chí Minh, tr. 49-51.

[5] Dương Minh (1999), Giáo trình môn Hoa màu, Khoa Nông nghiệp, Đại học Cần Thơ.

[6] Đặng Thị Ngọc Thanh và Cao Ngọc Điệp (2012), Phân lập và nhận diện vi khuẩn có ích (cố định đạm, hòa tan lân, phân giải kali) trong đất vùng rễ ngô trồng ở huyện Trảng Bom, tỉnh Đồng Nai. Tạp chí Nông nghiệp và Phát triển Nông thôn, Bộ Nông nghiệp và Phát triển Nông thôn, 14: 49 – 56.

[7] Lê Huy Bá (2009), Môi trường tài nguyên đất Việt Nam. Nxb. Giáo dục Việt Nam, Hà Nội, tr. 883-911, 982-1024.

[8] Ngô Thanh Phong, Nguyễn Thị Phương Thảo và Cao Ngọc Điệp (2011), Phân lập và nhận diện vi khuẩn cố định đạm trong đất vùng rễ lúa trồng trên đất phù sa tỉnh Vĩnh Long. Tạp chí Công nghệ sinh học. 9(4):521-528. [9] Nguyễn Đức Cường (2010), Kỹ thuật trồng Ngô. Nxb. Khoa học Tự nhiên và

Công nghệ, Hà Nội.

[10] Nguyễn Đức Lượng, Phan Thị Huyền và Nguyễn Ánh Tuyết (2003), Thí

nghiệm công nghệ sinh học (tập 2): Thí nghiệm vi sinh vật học. Nxb. Đại học Quốc gia, Tp. Hồ Chí Minh.

[11] Nguyễn Thị Ngọc Trúc (2011), Phân lập, tuyển chọn các dòng vi khuẩn cố định đạm, phân giải lân, tổng hợp IAA để làm phân bón cho rau ở Tiền Giang. Luận án Tiến sĩ Vi sinh vật học, Đại học Cần Thơ.

[12] Trần Linh Thước, Nguyễn Đức Hoàng, Phan Thị Phương Trang và Phạm Thị Hồng Tươi (2001), Thực tập vi sinh vật học. Nxb. Ðại học Quốc gia, Tp. Hồ Chí Minh.

[13] Trần Nhân Dũng, Nguyễn Thị Pha và Đỗ Tấn Khang (2012), Giáo trình Công nghệ Di truyền. Nxb Đại học Cần Thơ.

[14] Viện thổ nhưỡng nông hóa (1998), Sổ tay phân tích đất, nước, phân bón, cây trồng. Nxb. Nông nghiệp, Hà Nội.

Tiếng Anh

[1] Ahmad, F., I. Ahmad, M. S. Khan (2005), Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turkish Journal of Biology. 29: 29 - 34. [2] Alikhani, H. A., N. Saleh-Rastin and H. Antoun. 2006. Phosphate solubilization

activity of rhizobia native to Iranian soils. Plant and soil. 287(1-2):35-41. [3] Alizadeh, O (2011), Effect of Plant Growth Promoting Bacteria on Crop

Growth. American-Eurasian Journal of Sustainable Agriculture. 5(3):344-349. [4] Ando, Y (2003), Development of an experimental model for the evaluation of in planta colonization of nitrogen-fixing endophytes in rice plants. JIRCAS Research Highlights 2003.

[5] Bandara W. M. M. S., G. Seneviratne and S. A. Kulasooriya (2006), Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci. 31:645 – 650.

[6] Bashan, Y., G. Holguin (1997), Azospirillum-plant relationships: environmental and physiological advances (1990-1996). Can J Microbiol. 43: 103 - 121.

[7] Bashan, Y. and G. Holguin (1998), Proposal for the division of plant growth- promoting Rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol. Biochem. 30:1225-1228. [8] Bashan, Y. and H. Levanony (1991), Alterations in membrane potential and in

proton efflux in plant roots induced by Azospirillum. Plant Soil. 137: 99 – 103. [9] Bashan, Y (1986), Significance of timing and level of inocula on wheat plants.

Soil Biol. Biochem. 18: 297 - 301.

[10] Benizri, E., E. Baudoin and A. Guckert (2001), Root Colonization by Inoculated Plant Growth-Promoting Rhizobacteria. Biocontrol Sci. Technol.

11(5): 557 - 574.

[11] Bertrand, H., C. Plassard, X. Pinochet, B. Toraine, P. Normand and J. C. Cleyet-Marel (2000), Stimulation of the ionic transport system in Brassica napus by a plant growth-promoting rhizobacterium (Achromobacter sp.).

Can. J. Microbiol. 46: 229 – 236.

[12] Bhattacharyya, P. N. and D. K. Jha. 2012. Plant Growth-Promoting Rhizobacteria (PGPR): Emergence in Agriculture. World J Microbiol Biotechnol. 28:1327–1350.

[13] Bloemberg, G. V., A. H. M. Wijfjes, G. E. M. Lamers, N. Stuurman and B. J. J. Lugtenberg (2000), Simultaneous imaging of Pseudomonas fluorescens (adsbygoogle = window.adsbygoogle || []).push({});

WCS365 populations expressing three different autofluorescent proteins in the rhizosphere: New perspectives for studying microbial communities. Mol. Plant- Microbe Interact. 13: 1170 – 1176.

[14] Carlone, GM et al. 1983. Methods for Distinguishing Gram-Positive from Gram-Negative Bacteria. J Clin Microbiol. 16(6):1157-1159.

promoting rhizobacterium. J Bact Res. 1(4):46-50.

[16] Compant, S., C. Clément and A. Sessistch (2010), Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involves and prospects for utilization. Soil Biology and Biochemistry. 42:669-678.

[17] Dalmastri, C., L. Chiarini, C. Cantale, A. Bevivino and S. Tabaccioni (1999), Soil type and maize cultivar affect the genetic diversity of maize root- associated Burkholderia cepacia population. Microb. Ecol. 38:273-284. [18] de Zamaroczy M (1995), Genetic control of nitrogen assimilation and

nitrogen fixation in free living Azospirillum brasilense: A review. In: Azospirillum VI and Related Microorganisms: Genetics, Physiology, Ecology. I. Fenrik, M. del Gallo, J. Vanderleyden and M. de Zamaroczy, eds. Springer-Verlag, Berlin, Germany, p:77-96.

[19] Di Cello, F., A. Bevivino, L. Chiarini, R. Fani, D. Paffetti, S. Tabacchioni and C. Damalstri (1997), Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different stages. Appl. Environ. Microbiol. 63:4485-4493.

[20] Frommel, M.I., J. Nowak, and G. Lazarovits (1993), Treatment of potato tubers with a growth promoting Pseudomonas sp.: Plant growth responses and bacterium distribution in the rhizosphere. Plant and Soil. 150: 51 – 60. [21] Fuentes-Ramèrez, L. E., J. Caballero-Mellado, J. Sepuèlveda, E. Martènez-

Romero. 1999. Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiology Ecology. 29: 117–128. [22] Glick, B. R (1995), The enhancement of plant growth by free-living bacteria.

Can. J. Microbiol. 41:109 – 117.

[23] Gillis, M., T. V. Van, R. Bardin, M. Mart, P. Hebbar and A. Willems (1995), Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp.

nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45:274-289.

[24] Goldstein, A. H and S. T. Liu (1987), Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola.

Bio/Technology. 5:72-74.

[25] Gregory PJ (2006) Roots, rhizosphere, and soil: the route to a better understanding of soil science? Eur J Soil Sci 57:2–12.

[26] Gronemeyer, J. L., C. S. Burbano, T. Hurek and B. Reinhold-Hurek (2012), Isolation and characterization of root-associated bacteria from agricultural crops in the Kavango region of Namibia. Plant Soil. 356:67-82.

[27] Halder, A..K., A. K. Mishra, P. Bhattacharyya and P. K. Chakrabartty. 1990. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J. Gen. Appl. Microbiol. 36:81-92.

[28] Hallmann, J. (2001), Plant Interactions with Endophytic Bacteria. In: Jeger, M.J. and N.J. Spence (Eds.) Biotic Interactions in Plant-Pathogen Associations. CAB International, USA., pp: 87 - 119.

[29] Hartmann, A., M. Rothballer and M. Schmid. 2008. Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil. 312:7-14.

[30] Heulin, T., M. Barakat, R. Christen, M. Lesourd, L. Sutra, G. de Luca and W. Achouak (2003), Ramlibacter tataouiensis gen. nov., sp. nov., and

Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. Int. J. Syst. Evol. Microb. 53:589-594.

[31] Hinsinger, P., A. G. Bengough, D. Vetterlein and I. M. Young (2009), Rhizosphere: biophysics, biogeochemistry and ecological relevance. Plant Soil. 321:117-152.

[32] Hinsinger, P., G. R. Gobran, P. J. Gregory and W. W. Wenzel. 2005. Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytol. 168:293-303.

[33] Hoben, H. J. and P. Somasegaran (1982), Comparison of pour, spread and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat,” Appl. Environ. Microbiol. 44:1246-1247.

[34] Houssam, M. A., A. A. Elshanawany, U. M. Abdoul-raouf, M. M. Afifi and A. M. El-Adly (2012), Production of Hygromycin-B antibiotic from

Streptomyces crystallinus, AZ-A151:I. Isolation, Classification and phylogenetic analysis of 16S rRNA gene sequences. Researcher, 4(3): 65-76. [35] Jha, P. N., G. Gupta, P. Jha and R. Mehrotra (2013), Association of

rhizospheric/endophytic bacteria with plants: A potential gateway to sustainable agriculture. Greener Journal of Agricultural Sciences. 3(2):73-84. [36] Kaymak, H. C., F. Yarali, I. Guvenc and M. F. Donmez. 2008. The effect of

inoculation with plant growth rhizobacteria (PGPR) on root formation of mint (Mentha piperita L.) cuttings. African Journal of Biotechnology. 7(24):4479-4483.

[37] Kloepper, J. W. and M. N. Schroth (1978), Plant growth promoting rhizobacteria on radishes. In: Station de Pathologic Vegetal et Phytobacteriologic (eds.) Proceedings of the 4th International Conference on Plant Pathogenic Bacteria. Angers, France. Vol. 2, pp. 879 - 882.

[38] Kloepper, J. W (1993), Plant growth-promoting rhizobacteria as biological control agents. In: Soil Microbial Ecology: Applications in Agricultural and Environmental Management, Marcel Dekker Inc., New York, USA, pp. 255 – 274. (adsbygoogle = window.adsbygoogle || []).push({});

[39] Kumar, V. and D. V. Pathak (2000), Use of PSM for enhancement of crop productivity- a review. Agric Rev. 21(4):266-274.

[40] Kumar, A., A. Prakash and B.N. Johri (2011), Bacillus as PGPR in Crop Ecosystem. In: D.K. Maheshwari (ed.), Bacteria in Agrobiology: Crop Ecosystems. Springer-Verlag, Berlin, Heidelberg. pp. 37-59.

[41] Kuzyakov, Y. 2002. Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci. 165:382-396.

[42] Ludwig, W., and K. H. Schleifer (1999), Phylogeny of bacteria beyond the 16S rRNA standard. ASM News. 65(11):752-757.

[43] Lugtenberg, B. J. J., L. Dekkers and G. V. Bloemberg (2001), Molecular determinants of rhizosphere colonization by Pseudomonas. Ann. Rev. Phytopathol. 38: 461 – 490.

[44] Martínez-Romero, E., J. Caballero-Mellado, B. Gándara, M. A. Rogel, A. Lopez Merino, E. T. Wang, L. E. Fuentes-Ramirez, I. Toledo, L. Martinez, I. Hernandez-Lucas et al. 2000. Ecological, phylogenetic and taxonomic remarks on diazotrophs and related genera. In: Pedrosa, F. O., M. Hungria, G. Yates and W. E. Newton (ed.), Nitrogen Fixation: From Molecules to Crop Productivity. Springer, Netherlands, pp: 155–160.

[45] Mehnaz, S., M. S. Mirza, J. Haurat, R. Bally, P. Normand, A. Bano and K. A. Malik (2001), Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Can. J. Microbiol. 47(2): 110-117. [46] Mikanova, O., J. Kubat, T. Simon, K. Vorisek and D. Randova (1997),

Influence of soluble phosphate on P-solubilizing activity of bacteria.

Rostlinna-Vyroba-UZPI. 43:421-424.

[47] Miller, R.H. (1990), Sustainable Agricultural Systems, In Soil and Water ConservationSociety, eds C. A. Edwards, R. Lal, P. Madden, R. H. Miller and G. House. Ankeny, Iowa, pp. 614-623.

[48] Muthukumarasamy R. , I. Cleenwerck, G. Revathi, M. Vadivelu, D. Janssens, B. Hoste, K. U. Gum, K. Park, C. Y. Son, T. Sa and J. Caballero-Mellado (2005), Natural association of Gluconoacetobacter diazotrophicus and diazotrophic Acetobacter peroxydans with wetland rice. Syst Appl Microbiol. 28: 277 - 286.

[49] Nautiyal, C. S. (1999), An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170: 256 – 270.

[50] Neumann, B., A. Pospiech and H. U. Schairrer (1992), Rapid isolation of genomic DNA from Gram - negative bacteria. Trends Genet. 8: 332-333. [51] Normand, P (1999), Molecular phylogeny of nitrogen-fixing bacteria in

symbiosis with plant roots. In Taxonomy, phylogeny and gnotobiotical studies of entomopathogenic nematode bacterium complexes. Edited by N. Boemare, P. Richardson and F. Coudert. Brussels, Belgium. pp. 29-35. [52] Ohtake, H., H. Wu , K. Imazu, Y. Anbe, J. Kato and A. Kuroda (1996),

Bacterial phosphonate degradation, phosphite oxidation and polyphosphate accumulation. Resour Conserv Recycl. 18: 125 – 134.

[53] Okon, Y. and C. Labandera-González (1994), Agronomic applications of

Azospirillum: an evaluation of 20 years of worldwide field inoculation. Soil Biol Biochem . 26: 1591 – 1601.

[54] Park, M., C. Kim, J. Yang, H. Lee, W. Shin, S. Kim and T. Sa (2005), Isolation and characterization of diazotrophic growth promoting bacteria from Gram rhizosphere of agricultural crops of Korea. Microbiologycal Research. 160: 127 – 133.

[55] Patten, C. L. and B. R. Glick (2002), Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary- phase sigma factor RpoS. Can J Microbiol. 48: 635 – 642.

[56] Persello-Cartieaux, F., L. Nussaume and C. Robaglia (2003), Tales from the underground: molecular plant–rhizobia interactions. Plant, Cell and Environment. 26: 189–199.

[57] Picard, C., F. Di Cello, M. Ventura, R. Fami and A. Guckert (2000), Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66:948-955.

[58] Powers, EM. 1995. Efficacy of the Ryu Nonstaining KOH Technique for Rapidly Determining Gram Reactions of Food-Borne and Waterborne Bacteria and Yeasts. Appl Environ Microbiol. 61(10):3756-3758.

[59] Qi-mei L., R. Zheng-Hung, S. Yan-Xing, Y. Jun and X. Li-Jun (2002), Identification and practical application of silicate-dissolving bacteria. Agric. Sci. China, 1: 81 – 85.

[60] Ramachandran, K., V. Srinivasan, S. Hamza and M. Anandaraj. 2007. Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion on black pepper (Piper nigrum L.) cuttings. Developments in Plant and Soil Sciences. 102:324-331.

[61] Reinhold, B., T. Hurek, N. Ernst-Georg and F. Istvan (1986), Close association of Azospirillum and diazotrophic rods with different root zones of Kallar grass. Appl Environ Microbiol. 52(3): 520 – 526.

[62] Richardson, A. E., J. M. Barea, A. M. McNeill and C. Prigent-Combaret. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 321:305-339.

[63] Rivas, R., A. Peix, P. F. Mateos, M. E. Trujillo, E. Martinez-Molina and E. Velazqueze. 2006. Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant Soil. 287:23-33.

[64] Rodríguez, H. and R. Fraga (1999), Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339.

[65] Rodríguez, H., R. Fraga, T. Gonzalez and T. Bashan (2006) Genetics of phosphate solubilization and itspotential applications forimproving plant growth-promoting bacteria. Plant Soil. 287:15- 21.

[66] Rousk, J., E. Bååth, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight and N. Fierer (2010), Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal. 1-12. [67] Saharan, B. S. and V. Nehra (2011) Plant Growth Promoting Rhizobacteria: A (adsbygoogle = window.adsbygoogle || []).push({});

critical review. Life Sciences and Medicine Research. 21:1-30. http://astonjournals.com/lsmr

Impact of agricultural practices on the Zea mays L. endophytic community.

Appl. Environ. Microbiol. 70(3):1475-1428.

[69] Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei and S. Kumar (2011), MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739.

[70] Tang, W. and H. Yang (1997), Research and application of biocontrol of plant diseases and PGPR in China. In: A. Ogoshi, K. Kobayashi, Y. Homma, F. Kodama, N. Kondo and S. AkinoPlant (Eds) Growth Promoting Rhizobacteria: Present Status and Future Prospects. Faculty of Agriculture, Hokkaido University, Sapporo, pp. 2 - 9.

[71] Turner, S., K. M. Pryer, V. P. W. Miao and J. D. Palmer (1999), Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. of Eukaryotic Microbiology. 46:327-338. [72] von Gravenitz, A and C Bucher. 1983. Accuracy of the KOH and Vancomycin

Tests in Determining the Gram Reaction of Non-Enterobacterial Rods. J Clin Microbiol. 16(4):983-985.

[73] Watt, M., M. E. McCully and C. E. Jeffree. 1993. Plant and bacterial mucilages of the maize rhizosphere - comparison of their soil-binding properties and histochemistry in a model system. Plant Soil. 151:151-165. [74] Woo, P.C.; P.K. Leung and K.W. Leung, 2000. Identification by 16S

ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Mol Pathol; 53: 211-215.

[75] Weisburg, W. G., S. M. Barns, D. A. Pelletier and D. J. Lane (1991), 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology. 173(2): 697-703.

[76] Woo, P.C.; P.K. Leung and K.W. Leung (2000), Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Mol Pathol; 53: 211-215.

[77] Zhang, H., X. Xie, M. Kim, D. A. Kornyeyev, S. Holaday and W. Pare. 2008. Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in plant. Plant J. 56:264–273.

[78] Zhao, F., X. Sheng, Z. Huang and L. He (2008), Isolation of mineral potassium - solublizing bacteria strains from agricultural soils in Shandong Province. Biodeversity Science. 16(6): 593 – 600.

[79] Zinniel, K. D., P. Lambercht, N. B. Harris, Z. Feng, D. Kuczmarshki, P. Higley, C. A. Ishimaru, A. Arunakumari, R. G. Barletta and A. K. Vidaver (2002), Isolation and charcaterization of endophytic bacteria from agronomic crops and prairie plants. Appl. Environ. Microbiol. 68: 2198-2208.

Internet http://images.1233.tw/cfu-count, 20/7/2014 http://lib.hunre.edu.vn/Xem-Ban-do-tinh-Tay-Ninh--6185-5028, 20/7/2014 http://www.gso.gov.vn, 20/7/2014 http://www.microbiol.org/resources/monographswhite-papers/the-gram-stain/, 20/7/2014 http://www.tayninh.gov.vn/gioithieu/Pages/gioi-thieu-chung.aspx, 20/7/2014 http://www.vaas.vn/kienthuc/cayngo, 20/7/2014

Một phần của tài liệu Phân lập và tuyển chọn vi khuẩn cố định đạm, hòa tan lân trong đất vùng rễ cây ngô (Zea mays L.) trồng trên đất xám tỉnh Tây Ninh (Trang 73 - 83)