- Trudng hop canh cd sai hiru ban, mdng va gdc v^nh v|y thi :•
3.5. He phirong trinh xac dinh ciromg do ciia cac xoaỵ
K^ hieu lj^;^^_, sai cua xoay xien hinh mdng ngua tfnh theo true OZ.
Cudng đ cua xoay cd dang:
1 nKf-l+^^-^ÔKKf-l^ K^f-l ( 3 . 3 0 )
Cudng do khdng thii nguyen r|^^^,,duoc thi hien qua cac he sd dao ham bang bilu thiic:
rX-.=rX-.a+rxHO), + rX-,co,+r:^r;-,«^^ (3.3i)
Ky hieu "^^r^lCC^ ' "^iXX-^ ^^ ^^" ^^^ ^^^ »^8 \±6ng thii nguyen tai diem tfnh toan cd toa đ (^\-i '^v\-i A\-}) b^fi xoay xiSn hinh mdng ngua cd toa do diim giua xoay (^^-^ ,^X-, ^^X-^) •
Tuong tu ky hieu SW;;"^^-*'/^:',, dV^l^l>l\'_\ la van tdc cam ling khdng thii nguyen
tai diim tfnh toan neu tren bdi xoay xi6n hinh mdng ngUa nim ben nua trai canh
cd toa do diim giira la (^X-^ '^X-- ^<X-^ )•
Khi canh cd dang tren binh đ đi xiing qua mat phing OXY chuyen dong vdi gdc tán a va chuyin dong quay quanh true OZ, tai tren canh va cudng do xoay d hai ben nijfa canh trai va phai đi xiing vdi nhau va bang nhaụ Cdn đi vdi trudng hop canh chuyen dong quay quanh true OX, tai va cudng do xoay khdng đi xutig, bang nhau nhung ngugc dáu nhaụ
Thoa man dieu kien bien d tat ca cac diim tfnh toan, nhan duoc he cac phuong trinh dai sd trong đ cac he sd ciia phuong trinh la cac thanh phan van tdc cam ling, an la cac he sd dao ham cudng do xoay xien hinh mdng nguạ De dam bao thoa man dieu kien Trapligin- Giukovsky cudng do xoay d mep sau canh phai bang khdng.
He phuong trinh xac dinh cudng do xoay khi canh chuyin dong vdi gdc
45
^ 1 1 , 1 ^ - ^ - ^ • ' ^ ^ - ^ V . )cosv,,- (W,^^-;-. +
^"^IXX-^ )sinvj/„,] r^^-_, =- cosv^ (3.32)
I
r:^C.=0 ;v=l,2...nh; Ph=l,2...Nh; h=l,2...a;
He phirong trinh xac dinh circmg do xoay trong tnrcmg hop canh chuyen dong quay quanh true OZ (bai toan coj.
] a N, „,
-' +
^ i z z [(wr.á.+8w-jX')cosv,/n.-(w^::f-:
+ 5W^^^-,^:', )sinv,/J r^^7., =- 4:\_,COSM;«, (3.33) r,%_.=0; v=l,2...n,,; P,=1,2...N^; h=l,2...a
He phuong trinh xac dinh cudng do xoay khi canh chuyin đng quay quanh true OX (bai toan cô).
^ i Z Z [(wr:,v^^:',-^^^tCC)cosv,/,-(w,^^.-,;:•,.
^ 1 1 f=i K:f=in=i
-5W,^^-^-J,)sinv|/,J^;^-:, =-(V.,cosxifn.-^^. s i n v J (3.34)
rX_,=0; v=l,2...n,; P,=1,2...N,; h=l,2...a
He phuong trinh xac dinh cudng do xoay khi canh chuyin dong quay quanh true OY (bai toan (Oy).
T ^ Z Z Z [OV^^.V^^:' +5W^^:;;--J, )cosv,y,-(W,^^f--J, +
t i l ( = \ Kf=ln=l
+ SWí ^iX^, )sinv|/,J r;^r;, =- ^ ^v^., sinvi/,, (3.35)
r X - , = 0 ; v=l,2...n,; P, = 1,2...N,; h=l,2...a
He phuong trinh xac dinh cudng do xoay khi canh chuyin dong dudi gdc truot p (bai toan p ).
46
T^TZ Z Z [(y^:xc +5^^.^-. )COSM/^-(W^^^--J,+
' • l l f=i Kf=I[i=I *
+ 8W^ XX-\ )sinv|/ft.] r^X-i =- sinv|/^ ' (3.36)
r X - . = 0 ; v=l,2...nh; Ph=l,2...Nh; h=l,2...a
Cac thanh phSn van tdc cam ling trong cac he phuong trinh (3. 32, (3.33)
va (3.34), (3.35), (3.36) xac dinh theo cac cong thiic tuong ling trong chuong IỊ