Ng 3.1: D báo ct lõi ca ph ng pháp ti nt xác đ n ht giá hi đoái

Một phần của tài liệu Phương pháp tiền tệ xác định tỷ giá hối đoái VND USD giai đoạn 1999 - 2013 Luận văn thạc sĩ (Trang 29)

% t ng M M* Y Y* i i*

K t qu

delta E + - - + + -

3.3. Ph ng pháp ti n t xác đnh t giá h i đoáiậmô hình c l ng:

Q = E( ) (2.10)

T ng tr ng t giá h i đoái th c trong th c t đ c th hi n qua công th c:

q = e + (2.11)

V i gi đ nh PPP đ c duy trì (q = 0) – đây là gi đnh quan tr ng c a mô hình này:

e = (2.12)

Ph ng trình cu i cùng này cho th y r ng t giá h i đoái danh ngh a thay đ i tùy theo chênh l ch l m phát gi a n n kinh t trong n c và n c ngoài.

Tr ng thái cân b ng th tr ng ti n t trong và ngoài n c:

(2.13)

(2.14)

Ph ng trình (2.13) và (2.14) có th th hi n t l t ng tr ng c a giá c trong

n c và n c ngoài, trong đó miêu t c t lõi c a c ch truy n d n trong ph ng

pháp: s m t cân b ng cung - c u ti n tr c ti p d n đ n s khác bi t v giá, theo đó

l n l t nh h ng đ n m c đ và s dao đ ng c a e. Cu i cùng, c ch truy n d n

nh v y giúp duy trì s cân b ng trên th tr ng ti n t :

p = m l và (2.15)

(2.16)

(2.17) (Các bi n đ c ký hi u b ng ch nh th hi n logarit c a các bi n ban đ u:

trong đó e, m, m*, y, y*, i, i* t ng ng là lograrit c a t giá h i đoái danh ngh a,

Ph ng trình (2.17) đ c g i là bi n th c a ph ng trình mô hình ti n t c

b n c a Bilson, trong đó th ng đ c ki m tra b ng cách s d ng m t lo t các k thu t kinh t l ng đa d ng mà chúng ta s th o lu n trong ph n ti p theo.

D a trên ph ng trình (2.15) – (2.17) chúng ta có th mô t c ch truy n d n duy trì tr ng thái cân b ng th tr ng ti n t thông qua nh ng thay đ i trong t giá h i đoái danh ngh a nh sau: m t s gia t ng trong chênh l ch cung ti n (m2) ho c lãi su t s d n đ n s gi m giá trong t giá h i đoái, và ng c l i s gia t ng trong

chênh l ch thu nh p th c t trong n c và n c ngoài s t o ra s gia t ng trong t

CH NG 4: CÁC V N V KINH T L NG

4.1. Ph ng pháp SVAR ng d ng trong tài chính:

Ph n này mô t ph ng pháp SVAR (The Sims, 1986; Amisano và Giannini

1997) s đ c s d ng đ cung c p các b ng ch ng kinh t l ng đáng tin c y cho

ph ng pháp MAER đ i v i t giá danh ngh a VND/USD.

Cho đ n cu i th p k 1960, gi i nghiên c u và ho ch đ nh chính sách v mô

s d ng nh ng mô hình kinh t th c nghi m đ c xây d ng trên c s lý thuy t

Keynes đ ph c v cho công tác phân tích và d báo kinh t . M t s mô hình n i ti ng nh Multimod, Fair, Wharton, Nigem, Murphy bao g m hàng ch c, th m chí

hàng tr m ph ng trình bi u di n các quan h kinh t v mô quan tr ng. M i

ph ng trình bi u di n quan h c a m t bi n s v mô v i các bi n khác trong mô hình ho c các bi n ngo i sinh (bi n ngoài mô hình). Ví d t ng đ u t c a n n kinh t s là m t ph ng trình ph thu c vào lãi su t và xu h ng v n đ u t tr c ti p, hay l m phát s ph thu c vào cung ti n và giá nguyên li u thô trên th gi i. Vào cu i giai đo n này các nhà kinh t đư nh n th y hai khi m khuy t quan tr ng c a nhóm mô hình này. Th nh t r t nhi u lý thuy t cho r ng các bi n s kinh t không ch ph thu c vào quan h hi n th i mà còn ph thu c vào k v ng trong t ng lai, ví d đi n hình nh t là lãi su t danh ngh a ph thu c vào k v ng l m phát. H u h t

các mô hình lúc đó đ u ch s d ng bi n ngo i sinh, ngh a là y u t này ph i đ c

xác đ nh bên ngoài mô hình. Rõ ràng đây là m t khi m khuy t c c l n vì nh v y nh ng phân tích/ d báo s d ng các mô hình này ph i ph thu c vào gi đnh c a bi n ng ai sinh – hay nói cách khác nh ng mô hình lo i này ch ng d báo đ c gì vì c n đ u vào là m t th d báo khác. Th hai, các bi n s n i sinh trong các mô

hình đó không th t ng tác qua l i v i nhau ngoài m t s gi đnh r t đ n gi n.

i u này d n đ n v n đ sau khi c l ng VAR các ph n d không có ý ngh a

Hai nhà kinh t ng i M Thomas Sargent và Christopher Sims trong quá trình tìm l i gi i cho hai thách th c này đư m ra m t k nguyên m i trong l nh v c mô hình hóa kinh t v mô ( ây c ng là hai tác gi đo t gi i Nobel Kinh t 2011). Sims v i m t lo t nghiên c u c a mình đư đ a ra m t ph ng pháp m i c l ng toàn b các ph ng trình v mô b ng VAR do đó cho phép các bi n s có nh

h ng qua l i l n nhau. i m đ c bi t trong ph ng pháp c a Sims là kh n ng

phân tách t ng cú s c ng u nhiên trong mô hình đ ch ra nguyên nhân nào d n đ n l m phát hay suy thoái kinh t . Không nh ng th ph ng pháp c a Sims còn giúp các nhà kinh t c l ng đ c m c đ và th i gian ph n ng c a m t n n kinh t c th v i t ng lo i s c khác nhau thông qua phân tích “impulse response functions” t m d ch là hàm ph n ng đ y (IRF), do đó v a giúp cho công tác d báo d dàng h n v a có th đ ra nh ng chính sách đ i phó thích h p.

Song song v i Sims, Sargent đư thành công đ a y u t k v ng vào các mô hình kinh t th c nghi m. i m đ t phá quan tr ng c a Sargent là bi n đ i nh ng y u t k v ng thành m t s ph ng trình gi i h n đ ng th i lên m t vài bi n s v

mô trong m t h VAR. th c hi n đi u này Sargent đư đ a ng c các c u trúc kinh t tr l i VAR (do đó g i là Structural VAR hay SVAR đ phân bi t v i VAR c a Sims). Nh sáng ki n này mà m t mô hình ph thu c vào các y u t k v ng

trong t ng lai có th rút g n v m t h VAR mà Sims đư tìm ra l i gi i tr c đó

không lâu. Trong khi Sims nh n m nh vào s li u th c t và đ n gi n hóa t i đa c u trúc lý thuy t (ngay c vi c đ a ra các ph ng trình c ng c n r t ít lý thuy t),

Sargent đư khéo léo đ a các quan h lý thuy t quay tr l i mô hình mà không phá v ph ng pháp c l ng c a Sims. Chính nh cách bi n đ i c a Sargent cho phép mô hình hóa nh ng quan h kinh t c b n nh t mà nh ng mô hình xây d ng

theo ph ng pháp này có th áp d ng ngay c khi các chính sách hay c ch kinh t

thay đ i (mi n là các hành vi mô không đ i).

Ph ng pháp VAR tiêu chu n gi đ nh r ng các bi n là d ng và ch bao g m

đ tr c a t t c các bi n. Mô hình VAR đ c rút g n v i m t đ tr có th đ c bi u di n nh sau:

(4.1)

Trong đó yt là m t vector c a các bi n n i sinh, dt là m t vector c a các thành ph n xác đ nh nh h ng s , các xu h ng, và các bi n gi theo mùa v ho c can thi p, và vt là m t vector c a các xáo tr n thông th ng đa bi n đ c l p.

u tiên, có v nh ph ng trình (4.1) không cung c p b t k l i gi i thích nào v m i quan h ng n h n ( nh h ng t c th i) gi a các bi n có liên quan.

Trong ph ng trình này, đ c đi m k thu t ch bao g m các bi n n i sinh tr . Tuy nhiên, các hi u ng t c th i nh v y đ c n trong c u trúc t ng quan c a ma tr n hi p ph ng sai đ n t vt. Th c t này ng ý r ng nh ng sáng ki n (innovations) n ch a trong vt s có t ng quan t c th i.

M t th nghi m sâu h n v mô hình VAR nguyên th y giúp đ a ra nh ng hi u bi t t t h n v khó kh n này (Enders, 1995):

(4.2)

Trong ph ng trình (4.2), các ph n d trong t là không t ng quan chéo, vì ma tr n B hàm ch a s t ng tác t c th i gi a các bi n. Ma tr n A tóm g n t t c nh ng t ng tác có đ tr gi a các bi n.

K t qu là, mô hình VAR rút g n (4.1) có th đ c xem nh là m t s th hi n c a các mô t t ng quát h n đ c đ a ra b i mô hình VAR nguyên th y (4.2). Trong th c t , r t d dàng đ th y r ng C = B-1*A và vt = B-1*t. Có ngh a là, nh ng ph n d vt trong mô hình VAR rút g n là k t h p tuy n tính c a các cú s c không

t ng quan.

Sau đó, chúng ta có th ph c h i s t ng tác t c th i c a lãi su t, hàm ch a trong ma tr n B, thông qua vi c áp đ t m t s h n ch , khác so v i c u trúc tam

giác đ c đ a ra b i tiêu chu n phân rã Cholesky. S phân rư đ c s d ng đ tính toán ch c n ng ph n ng đ y trong phân tích VAR truy n th ng, cho phép th c hi n các đi u ki n c n thi t đ nh n d ng. i u này kh ng đnh r ng s l ng các y u t khác không trong ma tr n B ph i b ng ho c ít h n (n2 - n/2). Tuy nhiên, chúng ta có th áp đ t m t cách phân rã khác, m t ma tr n hàm ch a nh ng h n ch

mà cho phép chúng ta xác đ nh các t ng tác t c th i t nh ng xáo tr n c a mô hình VAR rút g n. Quy trình này đ c bi t đ n r ng rưi nh phân tích SVAR.

M t mô hình SVAR t ng quát h n đ c đ xu t b i Amisano và Giannini

(1997), trong đó có th th a nh n m t đ i di n c a VAR v i d li u không d ng

nh là đi m kh i đ u cho các đ c đi m k thu t c a m t mô hình SVAR. C u trúc cu i cùng c a các ph ng trình t c th i đ c th c hi n b ng công th c c a hai ma tr n (A và B) nh sau:

(4.3) (4.4)

Trong đó t là vector bao g m các xáo tr n c a mô hình VAR rút g n và ut là vector bao g m các xáo tr n c a mô hình VAR nguyên th y. Ngoài ra, chúng ta bi t r ng E(ut) = 0 và E (utu’t) = It. Vi c xác đ nh các m i quan h t c th i gi a các bi n

trong ph ng trình (4.4) yêu c u t p h p các h n ch d a trên các gi đnh v lý thuy t.

C u trúc cu i cùng đ t đ c b t đ u t m t mô hình xác đ nh chính xác (ph i

xác đ nh trong ma tr n A) và chuy n đ n m t tình hu ng v t quá s xác đnh (over-identification) b ng vi c áp đ t các h n ch lý thuy t h p lý v m t th ng kê. Tính h p l c a các h n ch đ c áp đ t xác đ nh b ng cách s d ng ki m đ nh likelihood ratio tests.

4.2. Mô hình c l ng cho Vi t Nam:

Ph n này mô t toàn b quy trình th c nghi m đ ki m tra tính h p l mô hình ti n t trong c ng n h n và dài h n cho t giá h i đoái danh ngh a VND/USD s d ng mô hình SVAR đ ng liên k t. Nhìn chung, quy trình th nghi m ng ý r ng không ch c l ng ph ng trình t giá đ ng tích h p dài h n, liên quan đ n MAER, mà còn áp đ t các h n ch trong ma tr n hi p ph ng sai c a mô hình VAR rút g n đ tính toán s t ng quan t c th i đ ngh b ng phiên b n ng n h n c a mô hình ti n t .

Trong s hi n di n c a ki m đnh nghi m đ n v, c u trúc hóa mô hình SVAR

đ ng liên k t có th đ c th c hi n nh sau:  B c 1: ki m đnh tính d ng

 B c 2: l a ch n đ tr phù h p

 B c 3: ki m đ nh đ ng liên k t và c tính m i quan h dài h n

 B c 4: c l ng mô hình SVAR và xác đ nh m i t ng quan t c th i trong ng n h n.

4.2.1. Ki m đnh tính d ng:

M t d li u chu i th i gian đ c xem là d ng n u nh trung bình và ph ng

sai c a nó không thay đ i theo th i gian và giá tr c a hi p ph ng sai ch ph thu c vào kho ng cách hay đ tr v th i gian gi a hai th i đo n ch không ph thu c vào th i đi m th c t mà hi p ph ng sai đ c tính, ngh a là d li u c a nó s có xu h ng tr v m c trung bình và nh ng giao đ ng xung quanh m c trung

bình là nh nhau.

Tính d ng c a d li u chu i th i gian là m t khái ni m vô cùng quan tr ng, vì m t chu i s li u theo th i gian có tính ch t d ng thì m i cho ra đ c k t qu c

l ng tin c y nên th c t h u h t t t c nh ng mô hình th ng kê đ u đ c th c hi n

d i gi đnh là d li u chu i th i gian ph i d ng. Do đó, v n đ đ u tiên trong vi c

c l ng và đnh d ng mô hình VAR đó là ki m đ nh xem chu i d li u chúng ta

đang quan sát là chu i d ng hay không. N u là chu i d li u là d ng thì ta ti n

hành c l ng trên chu i d li u này, n u chu i d li u không d ng thì ta ti n hành l y sai phân và xem xét tính d ng c a chu i sai phân. Vi c l y sai phân s d ng l i khi k t qu ki m đnh c a chu i sai phân là d ng, n u m t chu i sai phân d ng b c d, v i d là s l n l y sai phân, đ c ký hi u là I(d), theo kinh nghi m các tác gi thì d th ng b ng 1 ho c 2.

Vì d li u là các chu i th i gian, chu i s l y theo th i gian c a nh ng đ i

l ng kinh t còn nhi u bi n đ ng nên th ng có nghi m đ n v (t c chu i không

d ng), do đó chúng tôi ti n hành ki m đ nh tính d ng c a các bi n (Unit Root Test) b ng ki m đnh ADF (Augmented Dickey – Fuller), n u các bi n là không d ng,

ti p t c l y sai phân cho đ n khi chu i d ng tr c khi đ a vào mô hình th c nghi m.

4.2.2. L a ch n đ tr phù h p:

V i mô hình VAR, vi c l a ch n đ tr là đi u quan tr ng. tr = 0 là vô lý vì giá tr k tr c th ng có nh h ng nh t đ nh đ n giá tr k sau, k v ng t ng lai th ng d a trên giá tr hi n t i ho c quá kh . Tuy nhiên, mô hình VAR r t nh y c m đ i v i đ tr và chúng ta r t khó kh n trong vi c xác đ nh m t đ tr t i u

cho mô hình này. N u chúng ta l a ch n đ tr quá ít s d n đ n sai s đ c tr ng. Ví

d nh đ i v i th tr ng lãi su t là m t th tr ng đ c bi t b i vì có x y ra kinh doanh chênh l ch lãi su t (Arbitrage). Vì th n u ch xem xét v i đ dài tr quá ng n thì r t có th chúng ta đư b qua tác đ ng đáng k c a hi n t ng Arbitrage này. N u l a ch n đ tr quá dài s làm m t các b c t do trong mô hình, đó là còn ch a đ c p đ n đa c ng tuy n.

Nh v y có cách nào đ l a ch n đ tr t i u? Câu tr l i là không có cách

Một phần của tài liệu Phương pháp tiền tệ xác định tỷ giá hối đoái VND USD giai đoạn 1999 - 2013 Luận văn thạc sĩ (Trang 29)

Tải bản đầy đủ (PDF)

(92 trang)