Các thí nghiệm được tiến hành thực hiện ở các thời gian: Thí nghiệm t1: 0 giờ;
Thí nghiệm t2: 4 giờ; Thí nghiệm t3: 8 giờ; Thí nghiệm t4: 16 giờ.
Thực hiện các phản ứng ở 30oC, các thông số khác (nồng độ, tốc độ cấp axit, tốc độ khuấy) được duy trì như mục 3.2.1. Sản phẩm được đánh giá bằng các phương pháp: XRD, FTIR. 2.3.6. Khảo sát ảnh hưởng của tốc độ khuấy trộn Tiến hành khảo sát tốc độ khuấy trộn ở ba mức độ như sau: Thí nghiệm V1: 100 - 150 vòng/phút; Thí nghiệm V2: 300 - 350 vòng/phút; Thí nghiệm V3: 450 - 500 vòng/phút. Thực hiện các phản ứng ở 30oC, các thông số khác (nồng độ, tốc độ cấp axit, dung môi) được duy trì như mục 3.2.1.
Sản phẩm được đánh giá bằng các phương pháp: XRD, FTIR.
2.3.7. Khảo sát ảnh hưởng của điều kiện làm khô sản phẩm
Tiến hành khảo sát ảnh hưởng của làm khô sản phẩm ở hai điều kiện như sau:
Phương pháp sấy nhiệt: Sản phẩm được làm khô ở 45oC trong tủ sấy, ký hiệu HA-10, HA-50;
36
Phương pháp đông khô: Sản phẩm được làm khô trong máy đông khô, ký hiệu HA-Đ10, HA-Đ50.
Thực hiện các phản ứng ở 30oC, các thông số khác (nồng độ, tốc độ khuấy, tốc độ cấp axit) được duy trì như mục 3.2.1.
Sản phẩm được đánh giá bằng các phương pháp: XRD, FTIR, SEM.
2.3.8. Khảo sát sơ bộảnh hưởng của sóng siêu âm
Bình phản ứng điều chế compozit HA/Alg được đặt trong bể siêu âm với tần số 46 kHz, công suất 200 W. Hỗn hợp phản ứng được khuấy bằng máy khuấy cơ.
Nhiệt độ phản ứng được duy trì ở 30oC, các thông số khác (nồng độ, tốc độ cấp axit, tốc độ khuấy) được giữ nguyên như mục 3.2.1.
Thí nghiệm P1: Không có sóng siêu âm; Thí nghiệm P2: Có sóng siêu âm.
Sản phẩm được đánh giá bằng các phương pháp: XRD, FTIR, SEM.
2.4. Chuẩn bị mẫu phân tích
Các sản phẩm sau khi được làm khô hoàn toàn, sau đó nghiền mịn bằng cối mã não. Các mẫu được đo bằng phương pháp sau:
2.4.1. Nhiễu xạ tia X (XRD)
Các mẫu được đo XRD trên máy SIEMENS D5005 Bruker (Đức), tại Viện Khoa học Vật liệu - Viện Hàn lâm Khoa học Công nghệ Việt Nam ở các điều kiện như sau: Bức xạ Cu - Kα có bước sóng λ = 1,5406 Å, cường độ dòng điện 30 mA, điện áp 40 kV, góc quét 2θ = 10 ÷ 70, tốc độ quét 0,030o/giây.
2.4.2. Phổ hồng ngoại (FTIR)
Phổ FTIR của các mẫu được ghi trên máy IMPAC 410 - Nicolet (Mỹ), tại Viện Hóa học - Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Các mẫu được nén thành viên với KBr theo tỉ lệ (1:100), được đo trong khoảng từ 400 đến 4000 cm-1.
37
2.4.3. Hiển vi điện tử quét (SEM)
Ảnh SEM của các mẫu được đo trên thiết bị hiển vi điện tử quét Hitachi S4800 (Nhật Bản) tại Viện Khoa học Vật liệu - Viện Hàn lâm Khoa học và Công nghệ Việt Nam. Do HA có độ dẫn điện kém nên trước khi đo các mẫu được phủ platin trong chân không để tăng độ nét của ảnh SEM.
2.4.4. Hiển vi điện tử truyền qua (TEM)
Ảnh TEM của mẫu được đo trên thiết bị hiển vi điện tử truyền qua JEM - 1010 (Nhật Bản) tại Phòng Hiển vi điện tử (Viện Vệ sinh Dịch tễ Trung ương).
2.4.5. Phân tích nhiệt (DTA-TGA)
Đặc trưng nhiệt (DTA-TGA) được thực hiện trên thiết bị phân tích nhiệt Labsys Evo, Setaram (Pháp) tại Viện Hóa học - Viện Hàn lâm Khoa học và Công nghệ Việt Nam.
38
CHƯƠNG III.
KẾT QUẢ VÀ THẢO LUẬN 3.1. Quy trình tổng hợp compozit HA/Alg
Trong luận văn này, chúng tôi lựa chọn phương pháp tổng hợp compozit HA/alginat bằng phương pháp kết tủa trực tiếp từ Ca(OH)2 và H3PO4 trong dung dịch nước chứa alginat. Quá trình tạo thành HA xảy ra theo phản ứng sau:
10Ca(OH)2 + 6H3PO4 → Ca10(PO4)6(OH)2 + 18H2O
HA kết tủa tốt trong môi trường trung tính và kiềm nhẹ. Phản ứng kết tủa giữa ion Ca2+, PO43- và OH- tạo thành Ca10(PO4)6(OH)2 được ưu tiên cao và xảy ra rất nhanh do HA có tích số tan rất nhỏ (THA= 10-128) và ΔG của phản ứng ở 30oC có giá trị rất âm (≈ -813 kJ/mol). Do alginat được cung cấp riêng rẽ và đồng thời với H3PO4 vào hỗn hợp huyền phù chứa Ca(OH)2 nên các chất tham gia và sản phẩm phản ứng không ảnh hưởng nhiều đến alginat.
Tổng hợp compozit HA/Alg theo phương pháp kết tủa trực tiếp như trên tạo điều kiện thuận lợi cho sự hình thành tương tác hóa học giữa HA và alginat. Trong đó, nhóm ion photphat và hydroxyl của HA có thể tạo liên kết với các nhóm chức của alginat. Alginat được sử dụng làm chất nền, đồng thời hạn chế sự phát triển kích thước và hiện tượng kết tập của HA.
Ngoài ra, ưu điểm của phương pháp là có thể khống chế các thông số phản ứng để thu được sản phẩm compozit chứa HA có chất lượng như mong muốn. Sự có mặt của alginat trong sản phẩm sẽ làm cho các hạt HA phân bố đồng đều hơn. Bản chất của phương pháp là đi từ các tiểu phân rất nhỏ, dạng ion trong dung dịch để tạo thành sản phẩm kết tủa. Do vậy, thay đổi các điều kiện như hàm lượng alginat, nhiệt độ, thời gian già hóa,… có thể kiểm soát được sự phát triển, hình dạng và độ tinh thể của sản phẩm. Phương pháp sử dụng các hóa chất cơ bản, dễ tìm, thiết bị và quy trình thực hiện tương đối đơn giản.
39
Để so sánh, HA đơn pha được tổng hợp theo sơ đồ và quy trình thí nghiệm như trên trong dung môi nước không chứa alginat.
3.2. Kết quả khảo sát một số yếu tố ảnh hưởng đến đặc trưng của compozit HA/Alg
3.2.1. Ảnh hưởng của hàm lượng alginat
a. Kết quả XRD
Hình 3.1: Giản đồ XRD của HA và các compozit với hàm lượng alginat khác nhau
Trên các giản đồ đều chỉ xuất hiện các vạch nhiễu xạ đặc trưng cho HA (JCPDS 24 - 0033), không thấy sự có mặt của các pha lạ. Vạch có cường độ mạnh nhất ở vị trí 2θ = 31,8o tương ứng với mặt phẳng (211) và hai vạch có cường độ gần như nhau ở 32,2o và 32,9o tương ứng với các mặt (112) và (300). Ngoài ra, còn có các vạch với cường độ tương đối mạnh ở các vị trí 25,9; 39,8; 46,7 và 49,45o. Sự có mặt của alginat trong compozit không cản trở sự hình thành HA đơn pha và không làm thay đổi đáng kể vị trí các vạch nhiễu xạ đặc trưng của HA. Điều này chứng tỏ sản phẩm chỉ chứa HA đơn pha.
40
Từ giản đồ XRD và áp dụng các công thức tính (1.11) và (1.12) ta có thể xác định kích thước trung bình của tinh thể, độ tinh thể của HA. Kết quảđược trình bày trong bảng 3.1.
Bảng 3.1: Ảnh hưởng của hàm lượng alginat đến kích thước của HA trong compozit
Kí hiệu mẫu D (nm) theo Scherrer Độ tinh thể (%) HA đơn pha 29,03 52 HA-70 21,74 32,8 HA-50 18,48 29,73 HA-30 15,09 16,8
HA-10 Không xác định được Không xác định được
Từ kết quả ở bảng 3.1 cho thấy, hạt HA trong compozit có kích thước khá nhỏ từ 15 đến 22 nm. Khi hàm lượng HA giảm xuống (hàm lượng alginat tăng lên), các vạch đặc trưng trở nên không tách biệt rõ rệt và có cường độ giảm xuống, đồng thời độ rộng của chúng tăng lên, tương ứng với kích thước và độ tinh thể của HA giảm. Đối với mẫu HA-10, không xác định được kích thước hạt và độ tinh thể do cường độ vạch khá thấp và độ rộng vạch lớn, các vạch nhiễu xạ không tách thành các vạch riêng biệt. Điều này chứng tỏ HA trong mẫu HA-10 thu được có độ tinh thể kém. Chính mạng lưới cấu trúc của alginat đã hạn chế sự phát triển về kích thước và độ tinh thể của hạt HA. Điều này cũng phù hợp với quy luật chung là sự có mặt của polyme đã ảnh hưởng đến sự phát triển của tinh thể HA.
b. Ảnh SEM và ảnh TEM
Ảnh SEM của mẫu HA đơn pha, alginat, các compozit HA/Alg được trình bày trên hình 3.2.
41
Hình 3.2: Ảnh SEM của (a) HA đơn pha, (b) HA-70, (c) HA-50, (d) HA-30, (e) HA- 10 và (f) alginat
Quan sát các ảnh SEM trên hình 3.2 cho thấy, sự có mặt của alginat không chỉ ảnh hưởng đến kích thước hạt trung bình mà còn ảnh hưởng đến hình dạng của hạt HA. Khi hàm lượng alginat tăng, kích thước và sự phân bố của các hạt HA có sự thay đổi. Vật liệu compozit HA/Alg tồn tại ở dạng hạt và các hạt có thể kết tập thành khối.
Mẫu HA đơn pha (hình 3.2a): Tinh thể HA tồn tại ở dạng hình que, với biên hạt rõ nét. Kích thước hạt khá đồng đều, đường kính dưới 40 nm, dài khoảng 70 - 120 nm.
42
Mẫu HA-70 (hình 3.2b): Tinh thể HA vẫn ở dạng hình que. Biên hạt compozit không rõ nét do có lớp vỏ alginat, các hạt kết dính thành từng đám có kích thước không đồng đều. Đường kính của hạt khoảng 15 - 20 nm, dài 60 - 90 nm.
Mẫu HA-50 (hình 3.2c): Các tinh thể HA chủ yếu tồn tại dạng hình que và phân bố đều trên chất nền alginat. Các hạt compozit có đường kính khoảng 25 - 30 nm, chiều dài 100 - 140 nm, lớn hơn so với mẫu HA-70, có thể do hiện tượng kết dính của các lớp vỏ alginat.
Mẫu HA-30 (hình 3.2d): Các tinh thể HA chuyển sang dạng gần cầu và phân bố lẫn trong lớp vỏ alginat. Biên hạt compozit không rõ nét, chúng kết dính với nhau và có kích thước khoảng 30 - 100 nm.
Mẫu HA-10 (hình 3.2e): Với hàm lượng alginat rất lớn, các hạt HA có kích thước nhỏ nằm lẫn trong khối alginat. Chúng được bao phủ hoàn toàn bởi bề mặt lớp vỏ alginat. Compozit này tồn tại ở dạng khối.
Mẫu alginat (hình 3.2f): Tồn tại dạng khối vô định hình có nhiều nếp gấp, không tồn tại các biên trong khối.
Kết quảảnh TEM của mẫu HA đơn pha và mẫu compozit HA/Alg (mẫu HA - 50) thể hiện trong hình 3.3.
Hình 3.3: Ảnh TEM của (a) mẫu HA đơn pha và (b) mẫu HA-50
Quan sát ảnh TEM trên hình 3.3 cho thấy, trong mẫu compozit HA/Alg (hình 3.3b), các hạt HA kích thước nanomet phân bố đều trong chất nền alginat. Bề mặt các hạt HA được phủ một lớp mỏng alginat và sự có mặt của alginat đã hạn chế hiện tượng kết tập giữa các hạt hơn so với mẫu HA đơn pha.
43
Như vậy, sự có mặt của alginat đã làm thay đổi kích thước và sự phân bố của các hạt HA trong compozit. Alginat như một chất nền để các hạt HA kết tủa và phân tán đồng đều. Tùy thuộc vào hàm lượng, alginat làm thay đổi hình dạng của tinh thể, kìm hãm sự phát triển kích thước và làm giảm độ tinh thể của HA.
c. Kết quả FTIR
Phổ FTIR của HA đơn pha, alginat và các compozit HA/Alg được trình bày trên hình 3.4.
Hình 3.4: Phổ FTIR của (a) HA đơn pha, (b) HA-70, (c) HA-50, (d) HA-30, (e) HA- 10, và (f) alginat
44
Như đã biết, HA có 2 nhóm chức là OH- và PO43-, alginat có nhóm OH-, COO-, -C-O-C-. Trên phổ của HA đơn pha (hình 3.4a), các dải hấp thụở vị trí 1064 đến 959 cm-1 và 599 cm-1 đặc trưng cho các dao động nhóm PO43-. Trên phổ của alginat (hình 3.4f), các dải hấp thụ ở vị trí 1633 đến 1601 cm-1 và 1414 cm-1 đặc trưng cho các dao động không đối xứng và đối xứng tương ứng của nhóm COO-, còn dải hấp thụ ở vị trí 1092 cm-1 được gán cho nhóm -C-O-C- (ete vòng). Đối với compozit đều xuất hiện các dải đặc trưng cho HA và alginat. Vùng từ 3410 đến 3355 cm-1được gán cho dao động của nhóm OH- trong cấu trúc của HA, alginat và compozit. Dải hấp thụ ở vùng 2916 cm-1 đặc trưng cho dao động của nhóm -CH2- trong alginat và compozit. Ngoài ra, các dải ở 1422 và 828 cm-1 xuất hiện trong phổ của HA đơn pha và compozit được quy cho các ion cacbonat như CO32-, HCO3-. Các ion này có mặt trong HA và compozit có thể là do sự hấp thụ khí CO2 trong không khí trong quá trình điều chế sản phẩm. Dải phổ ở 1636 cm-1 đặc trưng cho dao động của H2O tự do trong HA. Dải này xuất hiện sắc nét hơn từ 1601 - 1609 cm-1 với hàm lượng alginat khác nhau trong compozit, có thể quy cho sự chồng chéo nhóm H2O của HA và COO- của alginat. Ngoài ra, sự chuyển dịch từ 1422 cm- 1 về số sóng thấp hơn 1416 - 1414 cm-1 trong compozit cho thấy tồn tại tương tác hóa học nhất định giữa Ca2+ và nhóm COO- của alginat. Như vậy, sự thay đổi nhẹ về vị trí và cường độ các dải hấp thụ của HA và alginat trong compozit chứng tỏđã có sự tương tác giữa tinh thể HA và alginat [36].
d. Phân tích nhiệt (DTA-TGA)
Kết quả phân tích nhiệt (DTA-TGA) với tốc độ nâng nhiệt 10oC/phút trong N2 của các mẫu compozit là tương tự nhau. Hình 3.5 là giản đồ phân tích nhiệt của mẫu compozit HA-50.
45
Hình 3.5: Giản đồ DTA-TGA của mẫu compozit HA-50
Đường DTA có đỉnh thu nhiệt yếu tại 103oC do hiện tượng mất nước ẩm và đỉnh tỏa nhiệt tại 319oC được quy cho sự phân hủy nhiệt của compozit. Quá trình giảm khối lượng của mẫu được thể hiện trên đường TGA, gồm 3 giai đoạn. Giai đoạn thứ nhất từ nhiệt độ phòng đến 165oC ứng với đỉnh thu nhiệt đầu tiên trên DTA, khối lượng mẫu giảm 13,493% do hiện tượng mất nước ẩm. Giai đoạn thứ 2 từ 165 đến 355oC tương ứng với đỉnh tỏa nhiệt trên DTA, khối lượng mẫu giảm 21,198% do các quá trình cháy và phân hủy nhiệt alginat. Trong giai đoạn thứ 3, từ 335 đến 800oC, khối lượng mẫu giảm nhẹ và từ từ (7,084%) được gán cho sự phân hủy nhiệt tiếp tục của alginat đến cacbon và của các gốc cacbonat có trong mẫu. Nguyên nhân có thể do mẫu HA-50 được đo trong môi trường N2 nên khối lượng mẫu chỉ giảm khoảng 42%. Sản phẩm còn lại là HA và alginat không phân hủy hoàn toàn ở dạng cacbon.
46
Các kết quả khảo sát bẳng XRD, SEM, TEM và FTIR cho thấy, tinh thể HA trong compozit tồn tại dạng đơn pha, có kích thước cỡ nanomet. Giữa HA và alginat có tương tác hóa học giữa các nhóm chức của HA và nhóm chức của alginat.
Hàm lượng alginat 50% được lựa trọn trong các thí nghiệm tiếp theo để khảo sát các yếu tốảnh hưởng đến chất lượng sản phẩm compozit HA/Alg.
3.2.2. Ảnh hưởng của nhiệt độ phản ứng
a. Kết quả phân tích XRD
Giản đồ XRD được chỉ ra ở hình 3.6
Hình 3.6:Giản đồ XRD của compozit HA/Alg ở các nhiệt độ phản ứng khác nhau
Trên các giản đồ chỉ xuất hiện các vạch nhiễu xạ đặc trưng của không thấy sự có mặt của pha lạ, chứng tỏ sản phẩm HA đơn pha. Các vạch đặc trưng dần tách biệt khỏi nhau và có cường độ tăng lên, đồng thời độ rộng của các vạch đặc trưng giảm. Điều đó chứng tỏ, nhiệt độảnh hưởng mạnh đến việc hình thành cấu trúc tinh thể của HA.
Từ giản đồ XRD, áp dụng các công thức (1.11) và (1.12), xác định được kích thước hạt trung bình và độ tinh thể của HA. Kết quảđược trình bày trong bảng 3.2.
47
Bảng 3.2: Ảnh hưởng của nhiệt độ đến kích thước hạt trung bình và độ tinh thể
của HA trong compozit HA/Alg
Ký hiệu mẫu Nhiệt độ (oC) D (nm) theo Scherrer Độ tinh thể (%) T1 10oC 9,48 18,71 T2 30oC 18,48 29,73 T3 50oC 22,58 31,57
Kết quả ở bảng 3.2 cho thấy, khi tăng nhiệt độ phản ứng, kích thước và độ tinh thể của HA tăng lên. Ở 10oC, sản phẩm thu được có kích thước khá nhỏ (9,48 nm), độ tinh thể thấp (18,71%) theo tính toán. Ở nhiệt độ từ 30oC đến 50oC, kích thước tinh thể và độ tinh thể tăng nhẹ. Khi nhiệt độ tăng làm tốc độ phản ứng và tốc độ tạo mầm tăng dẫn đến số mầm tinh thể cũng tăng lên. Mặt khác, nhiệt độ tăng làm cho tốc độ phát triển tinh thể tăng. Do ở cùng tốc độ khuấy trộn, nhiệt độ càng