tính đạo hàm riêng cấp 2

Một số tính chất định tính của nghiệm nhớt cho phương trình vi phân đạo hàm riêng cấp hai

Một số tính chất định tính của nghiệm nhớt cho phương trình vi phân đạo hàm riêng cấp hai

... phơng trình đạo hàm riêng phi tuyến cấp một; khái niệm nghiệm này cũng đ đợc đa ra cho các phơng trình đạo hàm riêng cấp hai trong không gian hữu hạn chiều và cho các phơng trình cấp một, cấp hai ... phơng trình đạo hàm riêng cấp hai phi tuyến hoàn toàn có dạng: G(x, u(x), Du(x), D 2 u(x)) = 0, (PDE) cho phép một hàm u : H R chỉ cần liên tục là nghiệm của phơng trình đạo hàm riêng cấp hai (PDE). ... D 2 u) = 0. Để đa ra khái niệm nghiệm nhớt cho (PDE) thì hàm G phải thoả mn điều 11 Chơng 2 Tính duy nhất nghiệm nhớt của phơng trình đạo hàm riêng phi tuyến cấp 2 trong không gian con của L 2 () 2 với...

Ngày tải lên: 03/04/2014, 21:40

23 1K 2
Báo cáo nghiên cứu khoa học: "VỀ TÍNH DUY NHẤT NGHIỆM NHỚT CỦA PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CẤP HAI LOẠI PARABOLIC" ppt

Báo cáo nghiên cứu khoa học: "VỀ TÍNH DUY NHẤT NGHIỆM NHỚT CỦA PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CẤP HAI LOẠI PARABOLIC" ppt

... xét hàm số F(x, u, Du, 2 D u) = 0 với u là một hàm số giá trị thực xác định trong một tập con  của n R , Du là ký hiệu gradient của u và uD 2 ký hiệu cho ma trận Hessian các đạo hàm cấp ... u(t,x), và xét phương trình đạo hàm riêng cấp hai phi tuyến loại parabolic: t u + F(t, x, u, Du, 2 D u) = 0, (2. 1) trong đó Du và uD 2 có nghĩa là ),( xtuD x và ),( 2 xtuD x và F thỏa mãn điều ... (3 .2) ,   M . Nếu 0t , ta có: 0< );|| 2 )()((sup 2 yxyxM      2. KHÁI NIỆM NGHIỆM NHỚT Bây giờ ta xét u là một hàm của (t, x), tức là u = u(t,x), và xét phương trình đạo...

Ngày tải lên: 22/07/2014, 13:22

5 763 0
Báo cáo nghiên cứu khoa học: "MỘT NGUYÊN LÝ SO SÁNH CỦA NGHIỆM NHỚT CHO PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CẤP HAI LOẠI ELLIPTIC TRÊN MIỀN KHÔNG BỊ CHẶN" doc

Báo cáo nghiên cứu khoa học: "MỘT NGUYÊN LÝ SO SÁNH CỦA NGHIỆM NHỚT CHO PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG CẤP HAI LOẠI ELLIPTIC TRÊN MIỀN KHÔNG BỊ CHẶN" doc

... , 4 | ˆˆ | 4 | ˆˆ | 2 ) ˆ () ˆ ()| ˆ || ˆ (|| ˆˆ | 2 2 2 222 2 C K yxCyx K yvxuyxyx       (2. 5) với một hằng số C nào đó. Hơn nữa, tồn tại S(n),  YX sao cho  )2, ˆ 2) ˆˆ (( IXxyx   ,2 J ... yxzz zD K p   |))||1( 2 ( 2/ 12  , yxzz zD K Z   |))||1( 2 ( 2/ 122  . Theo định nghĩa nghiệm nhớt, ta có : )())(),(),(( 2 xfxDZxDpxuF rr   )())(),(),(( 2 yfyDZyDpyvF rr   . ... . (2. 6) Như trên, ta thu được  (  )) ˆ () ˆ ( yvxu )2, ˆ 2) ˆˆ (), ˆ (( IXxyxxuF   - )2, ˆ 2) ˆ ˆ (), ˆ (( IXxyxyvF       = )2, ˆ 2) ˆˆ (), ˆ (( IXxyxxuF   - )2, ˆ 2) ˆˆ (), ˆ ((...

Ngày tải lên: 22/07/2014, 13:20

5 497 0
PHÂN LOẠI CÁC PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG TUYẾN TÍNH CẤP 2 VỚI CÁC BIẾN ĐỘC LẬP

PHÂN LOẠI CÁC PHƯƠNG TRÌNH ĐẠO HÀM RIÊNG TUYẾN TÍNH CẤP 2 VỚI CÁC BIẾN ĐỘC LẬP

... 153 [] [] [] [] ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ −+ ≤−++ = ⎪ ⎪ ⎩ ⎪ ⎪ ⎨ ⎧ >> ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ θθ−θθ+−−+ ≤θθ+−++ = θθ+−++= ∫∫ ∫ ∫ + − + − + − ∗∗∗ at2cosx2sinx2 a4 1 axt2 a x tat2sinx2cos a4 1 2 t tax 0 a x td)(sind)(sin a2 1 )atx()atx( 2 1 a x td)(sin a2 1 )atx()atx( 2 1 d)(u a2 1 )atx(u)atx(u 2 1 )t,x(u 22 2 atx 0 0 atx 22 22 atx atx 22 2 atx atx 1oo ... phương trình đạo hàm riêng tuyến tính cấp 2 với hai biến độc lập dạng: hgu y u e x u d y u c yx u b2 x u a 2 22 2 2 =+ ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂∂ ∂ + ∂ ∂ (2) Trong đó a, b, c, d, g, h là các hàm hai ... ⎪ ⎩ ⎪ ⎨ ⎧ = = − − )t,x(i ~ t L R )t,x(u ~ t L R e)t,x(i e)t,x(u Lấy đạo hàm hệ thức trên hai lần theo x và theo t rồi thay vào phương trình ta có: 2 2 2 2 2 2 2 2 2 2 x i ~ a t i ~ ; x u ~ a ξ u ~ ∂ ∂ = ∂ ∂ ∂ ∂ = ∂ ∂ ...

Ngày tải lên: 06/11/2013, 00:15

10 4,4K 81
Chương V - Bài 2: Quy tắc tính đạo hàm

Chương V - Bài 2: Quy tắc tính đạo hàm

... HỎI x y x ∆ ∆ →∆ 0 lim = ? c) Hãy tính 2) Đạo hàm của hàm số y = f(x) = : 2) Đạo hàm của hàm số y = f(x) = : (x > 0) (x > 0) x 2) Đạo hàm của hàm số y = f(x) = : 2) Đạo hàm của hàm số y = f(x) ... x x x 1 x2 1 Kiểm tra bài cũ 1) Nêu các bước tính đạo hàm bằng định nghĩa. 2) Cho hàm số y = f(x) = x 2 . Dùng đ/n tính đạo hàm của hàm số tại điểm x 0 = x tùy ý. b) Hãy tính CÂU ... HỎI x y ∆ ∆ x y ∆ ∆ 2) Đạo hàm của hàm số y = f(x) = : 2) Đạo hàm của hàm số y = f(x) = : (x > 0) (x > 0) x Câu 1 Một chất điểm M chuyển động trên trục nằm ngang có phương trình s = t 2 . Vận...

Ngày tải lên: 29/05/2013, 23:18

29 3,2K 21
Chương V - Bài 2: Quy tắc tính đạo hàm

Chương V - Bài 2: Quy tắc tính đạo hàm

... nếu yêu cầu tính đạo hàm của hàm số tại x = -3; x = 4? ( )f x x= 06 /25 /13 Gv: Phùng Danh Tú 9 2. QUY TẮC TÍNH ĐẠO HÀM (Tiết 1) I. Đạo hàm của một số hàm số thường gặp. Định lí 1: Hàm số y = ... dụ 3: Tính đạo hàm của các hàm số sau: 7 ) 3a y x= ) 3 x b y = 2 1 )c y x x = − 4 1 ) 3 d y x = + 06 /25 /13 Gv: Phùng Danh Tú 11 2. QUY TẮC TÍNH ĐẠO HÀM (Tiết 1) I. Đạo hàm của một số hàm số ... x > 0. Câu 2: (Dưới lớp thực hiện) a) Nêu các bước tính đạo hàm của h/s bằng đ/n tại x 0 . b) Tính đạo hàm của hàm số y = x 3 tại x c) Áp dụng tính đạo hàm của hàm số y = x 2 +x tại điểm...

Ngày tải lên: 25/06/2013, 01:25

21 1,6K 9
Bài 2: Các qui tắc tính đạo hàm

Bài 2: Các qui tắc tính đạo hàm

... trang 20 4 ,20 5 SGK; 4/. Xem đạo hàm của hàm số hợp. 1) Đạo hàm của tổng hay hiệu hai hàm số Định lý 1 Nếu u=u(x), v=v(x) có đạo hàm trên J thì các hàm số y= u(x) +v(x) và y = u(x)-v(x) có đạo ... )34( )13(4)34(3 22 + == + +−+ = xx xx Gi¶i . ) 52( )22 ( ) 52( )' 52( ') 22 22 2 +− −− = +− +−− = xx x xx xx yb . '1 : , '' 2 ' 2 ' v v v HQ v uvvu v u −=       − =       AD §L3 2. C¸c quy t¾c tÝnh ®¹o hµm 3) Đạo hàm của ... 1: Tính đạo hàm Bài giải a)Ta có: b) Đáp số: 6 4 1 ' 7 5 2 y x x x = + 7 5 ) 3b y x x x= + y = (x 3 +x) = (x 3 )+(x) = 3x 2 + 1. a) y = x 3 + x; 2. Các quy tắc tính đạo hàm . 2 1 )'( ;2, ,.)'(;1)'(;0)'.(/4 . 11 , '1 , '' ./3 '.'')'(,'')'.( /2 ...

Ngày tải lên: 04/08/2013, 01:26

11 678 0
Bai 2. Cac quy tac tinh dao ham-Thi GVG Tinh Bac Ninh

Bai 2. Cac quy tac tinh dao ham-Thi GVG Tinh Bac Ninh

... Học thuộc các quy tắc; 2/ . Chứng minh ĐL2, ĐL3 và hệ quả; 3/. Làm các bài tập: 16,17,18 ,21 ,22 trang 20 4 ,20 5 SGK; 4/. Xem đạo hàm của hàm số hợp. 3) Đạo hàm của thương hai hàm số Định lý 3. Nếu ... sau: . 52 1 ), 34 13 ) 2 +− = + + = xx yb x x ya 2 )34( )'34)(13()34)'.(13( ') + ++−++ = x xxxx ya . )34( 5 )34( )13(4)34(3 22 + == + +−+ = xx xx Gi¶i . ) 52( )22 ( ) 52( )' 52( ') 22 22 2 +− −− = +− +−− = xx x xx xx yb . '1 : , '' 2 ' 2 ' v v v HQ v uvvu v u −=       − =       AD ... 1) Đạo hàm của tổng hay hiệu hai hàm số Định lý 1 Nếu u=u(x), v=v(x) có đạo hàm trên J thì các hàm số y= u(x) +v(x) và y = u(x)-v(x) có đạo hàm trên J và ( ) ( ) ( )...

Ngày tải lên: 04/08/2013, 01:27

11 1,6K 19
Quy tac tinh dao ham(tiet 2)

Quy tac tinh dao ham(tiet 2)

... u u − = ( ) # #  u u u = 2.       Đ nh lí 4: Nếu hàm số u ( ) có đạo hàm tại là và hàm số ( ) có đạo hàm tại là thì hàm hợp ( ( )) có đạo hàm tại là . x u x u x g x ... là . x u x u x g x x u y f u u y y f g x x y y u ′ = ′ = = ′ ′ ′ =   I. Đạo hàm của một số hàm số thường gặp: II. Đạo hàm của tổng, hiệu, tích, thương:       ... !"#$ , 2 3$4    !"  !     ( ) #  #y x x x x= + ( ) ( ) # #  $ x x= + Hàm h p có đ o hàm không? ( 6 Và n u có thì tính 7 nh th...

Ngày tải lên: 14/07/2014, 12:02

14 1,7K 26
Các qui tắc tính đạo hàm (tiết 2)

Các qui tắc tính đạo hàm (tiết 2)

... ( ) 3 7 2 y = x - 5x l hm hp ca hm 3 y = u v 7 2 u = x - 5x Hm s 1x+ + 2 y = x l hm hp ca hm y = u v 2 u = x + x +1 KIEÅM TRA BAØI Câu 1 Câu 2 Hãy nhắc lại cách tính đạo hàm của hàm số ... 2 u u v - uv = v v ữ 2 1 v = - v v ' ' ' x u x y = y .u * Bi tp cng c: Tớnh o hm ca cỏc hm s sau: ( ) 3 y = 1- 2x 2 3x - 6x + 7 y = 4x ( ) ( ) ( ) 2 2 y =3 1- 2x 1- 2x ... điểm ( ) ( ) 0 0 y f x x f x∆ = ∆ + − . Tính 0 x  Bước 2: Lập tỉ số: /y x∆ ∆  Bước 3: Tính ( ) 0 lim / x y x ∆ → ∆ ∆ Đáp án Tính đạo hàm của các hàm số sau: ( ) 7 .a f x x= ( ) .b g x...

Ngày tải lên: 14/07/2014, 21:00

10 1,1K 12
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10 ppt

Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p10 ppt

... u grad v 3. grad f(u) = f(u) grad u (6 .2. 2) Chứng minh Suy ra từ công thức (6 .2. 1) và tính chất của đạo hàm riêng. Liên hệ với đạo hàm theo hớng Cho u là trờng vô hớng và e vectơ ... gọi là liên tục (có đạo hàm riêng, ) nếu nh hàm u là liên tục (có đạo hàm riêng, ) trên miền D. Sau này nếu không nói gì thêm chúng ta xem rằng các trờng vô hớng là có đạo hàm liên tục từng khúc ... tục (có đạo hàm riêng, ) nếu các thành phần toạ độ của nó là liên tục (có đạo hàm riêng, ) trên miền D. Sau này nếu không nói gì thêm chúng ta xem rằng các trờng vectơ là có đạo hàm riêng liên...

Ngày tải lên: 25/07/2014, 03:21

5 761 0
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9 ppt

Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p9 ppt

... Trang 97 n 22 )z( 1 + = 1n 222 )z( 1 )1n (2 3n2 + + + 1n 222 )z( z )1n (2 1 2 )1n (2 3n2 f(t) - 2 )1n (2 1 tg(t) = (t) (5.9.4) Biến đổi n2 )qpz2z( NMz ++ + = n 22 ))pz(( )pz(M ++ + ... các tính chất tuyến tính để tìm hàm gốc f(t). Ví dụ Tìm gốc của phân thức 1. F(z) = )8z4z)(2z( 2z2z3 2 2 ++ ++ = 2z 1 + 2 4)2z( 2z 2 ++ + - 4)2z( 1 2 ++ e 2t + 2e -2t cos2t - 2 1 e -2t sin2t ... 2 1 e -2t sin2t = f(t) 2. F(z) = 22 )2z2z( 4z3 + = 22 )1)1z(( 1)1z(3 + f(t) = e t g(t) G(z) = 3 22 )1z( z + - 22 )1z( 1 + = - 3 2 + 1z 1 2 - 2 1 +1z z 2 - 2 1 1 z 1 2 + ...

Ngày tải lên: 25/07/2014, 03:21

5 453 0
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8 ppt

Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p8 ppt

... du Hàm F(z) = )8z4z)(2z( 2z3z3 2 2 ++ ++ có các cực điểm đơn a = 2 và b = -2 2i Ta có ,1 )2( B )2( A = )i 22( B )i 22( A + + = 1 + 4 1 i M = 1, N = 4 1 Suy ra f(t) = e 2t + 2e -2t (cos2t ... Đ8. Tính chất của Biến đổi Laplace ã Giả sử các hàm mà chúng ta nói đến là hàm gốc hoặc là hàm ảnh và do đó luôn có ảnh và nghịch ảnh Laplace. Kí hiệu f F với f(t) là hàm gốc và F(z) là hàm ... f(t) là hàm gốc và F(z) là hàm ảnh tơng ứng. 1. Tuyến tính Nếu hàm f và hàm g là các hàm gốc thì với mọi số phức hàm f + g cũng là hàm gốc. , f(t) + g(t) F(z) + G(z) (5.8.1) Chứng...

Ngày tải lên: 25/07/2014, 03:21

5 443 1
w