Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p6 potx

5 435 0
Giáo trình phân tích các tính chất của hàm điều hòa có đạo hàm riêng trong tập số phức p6 potx

Đang tải... (xem toàn văn)

Thông tin tài liệu

Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Trang 80 Giáo Trình Toán Chuyên Đề (t) = < 0 t 0 0t 1 gọi là hàm nhảy đơn vị (t, h) = h 1 [ (t) - (t - h)] = > < ht ,0t 0 ht 0 h 1 gọi là hàm xung (t) = 0h lim (t, h) = =+ 0t 0 0 t gọi là hàm xung Dirac (5.1.2) Định lý Hàm xung Dirac có các tính chất sau đây. 1. + dt)t( = 1 2. Với mọi hàm f liên tục tại 0 + dt)t()t(f = f(0) 3. t 3, (t) = t d)( = + 0 d)t( và (t) = (t) Chứng minh 1. + dt)t( = + dt)h,t(lim 0h = 0h lim h 0 dt)h,t( = 1 2. + dt)t()t(f = + dt)h,t(lim)t(f 0h = 0h lim h 0 dt)t(f h 1 = f(0) 3. Xét tích phân (t, h) = t d)h,( = << ht 1 ht0 h t 0t 0 Chuyển qua giới hạn (t) = 0h lim (t, h) Từ đó suy ra các hệ thức khác. Cho các hàm f, g F(3, ). Tích phân t 3, (fg)(t) = + d)t(g)(f (5.1.3) gọi là tích chập của hàm f và hàm g. Định lý Tích chập có các tính chất sau đây. 1. f, g L 1 f g L 1 và || f g || 1 || f || 1 || g || 1 2. f, g L 1 f g = g f 3. f L 1 C(3, ) f = f = f 4. f, g, h L 1 , (f + g) h = f h + g h Chứng minh Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 81 1. Do hàm g khả tích tuyệt đối nên bị chặn trên 3 (t, ) 3 2 , | f()g(t - ) | || g || | f() | Do f khả tích tuyệt đối nên tích phân suy rộng (fg)(t) hội tụ tuyệt đối và bị chặn đều || f g || 1 = + + dtd)t(g)(f + + ddt|)t(g||)(f| = || f || 1 || g || 1 2. t 3, (fg)(t) = + d)t(g)(f = + d)(g)t(f = (gf)(t) 3. t 3, (f)(t) = + d)h,(lim)t(f 0h = h 0 0h d)t(f h 1 lim = f(t) 4. Suy ra từ tính tuyến tính của tích phân Đ2. Các bổ đề Fourier Bổ đề 1 Cho hàm f L 1 . Với mỗi f 3 cố định kí hiệu f x (t) = f(t - x) với mọi t 3 Khi đó ánh xạ : 3 L 1 , f f x là liên tục theo chuẩn. Chứng minh Ta chứng minh rằng > 0, > 0 : x, y 3, | x - y | < || (x) - (y) || 1 < Thật vậy Do hàm f khả tích tuyệt đối nên > 0, N > 0 : N|t| dt|)t(f| < 4 1 Trong khoảng [-N, N] hàm f có hữu hạn điểm gián đoạn loại một a 1 = - N < a 2 < < a m = N với = Max{ | a k - a k-1 | : k = 1 m} và trên mỗi khoảng con [a k-1 , a k ] hàm có thể thác triển thành hàm liên tục đều > 0, > 0 : | x - y | < | f(x) - f(y) | < m 2 Từ đó suy ra ớc lợng || (x) - (y) || 1 = + dt)yt(f)xt(f N|t| dt)yt(f)xt(f + = m 1k a a k 1k dt)yt(f)xt(f < Với mọi (, t, x) 3 * + ì 3 ì 3 kí hiệu Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Trang 82 Giáo Trình Toán Chuyên Đề H(t) = e -|t| và h (x) = + dte)t(H 2 1 ixt (5.2.1) Bổ đề 2 Các hàm H(t) và h (x) có các tính chất sau đây 1. t 3, 0 < H(t) 1 0 lim H( t) = 1 + lim H( t) = 0 2. ( , x) 3 * + ì 3 h (x) = 22 x 1 + + dx)x(h = 1 3. f L 1 (f h )(x) = + + dte)t(Hdse)s(f 2 1 ixtist 4. g L liên tục tại x 3 0 lim (g h )(f) = g(x) 5. f L 1 0 lim || f h - f || 1 = 0 Chứng minh 1. Suy ra từ định nghĩa hàm H(t) 2. Tính trực tiếp tích phân (5.2.1) h (x) = + + + + 0 t)ix( 0 t)ix( dtedte 2 1 = + + ix 1 ix 1 2 1 = 22 x 1 + 3. Theo định nghĩa tích chập và hàm h (f h )(x) = + dy)y(h)yx(f = + + dte)t(Hdye)yx(f 2 1 ixtt)yx(i Đổi biến s = x - y ở tích phân bên trong nhận đợc kết quả. 4. Theo định nghĩa tích chập và hàm h (g h )(x) = + dy)y(h)yx(g = + ds)s(h)sx(g 1 với y = s Ước lợng trực tiếp (x, s) 3 2 , | g(x - s)h 1 (s) | || g || | h 1 (s) | Suy ra tích phân trên bị chặn đều. Do hàm g liên tục nên có thể chuyển giới hạn qua dấu tích phân. (g h )(x) 0 + ds)s(h)x(g 1 = g(x) 5. Kí hiệu y 3, g(y) = || f y - f || 1 = + dx|)x(f)yx(f| 2|| f || 1 Theo bổ đề 1. hàm g liên tục tại y = 0 với g(0) = 0 và bị chặn trên toàn 3 Từ định nghĩa chuẩn, tích chập và hàm h Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Giáo Trình Toán Chuyên Đề Trang 83 || fh - f || 1 = + dx|)x(f)x)(hf(| = + + dxdy)y(h))x(f)yx(f( + + dy)y(hdx|)x(f)yx(f| = (gh )(0) 0 g(0) = 0 Suy ra từ tính chất 4. của bổ đề 2. Đ3. Biến đổi Fourier Cho các hàm f, F L 1 kí hiệu 3, f ) ( ) = + dte)t(f ti (5.3.1) t 3, F ( (t) = + de)(F 2 1 it (5.3.2) Ngoài ra hàm f và hàm g gọi là bằng nhau hầu khắp nơi trên 3 nếu R dx|)x(g)x(f| = 0 Định lý Với các kí hiệu nh trên 1. f L 1 f ) C 0 L 1 và || f ) || || f || 1 2. F L 1 F ( C 0 L 1 và || F ( || || f || 1 3. Nếu f ) = F thì F ( n.k.h = f Chứng minh 1. Theo giả thiết hàm f khả tích tuyệt đối và ta có (, t) 3 2 , | f(t)e -i t | = | f(t) | Suy ra tích phân (5.3.1) bị chặn đều. Do hàm f(t)e -i t liên tục nên hàm f ) () liên tục. Biến đổi tích phân f ) () = + + dte)t(f )t(i = - + dte)t(f ti Cộng hai vế với công thức (5.3.1) suy ra 2| f ) () | + dt|e||)t(f)t(f| ti = || f - f || 1 + 0 Do ánh xạ liên tục theo chuẩn theo bổ đề 1. Ngoài ra, ta có Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Chơng 5. Biến Đổi Fourier Và Biến Đổi Laplace Trang 84 Giáo Trình Toán Chuyên Đề || f ) || = sup R | f ) () | sup R + dt|e||)t(f| ti = || f || 1 2. Kí hiệu F - (t) = F(- t) với t 3. Biến đổi công thức (5.3.2) )t(F ( = + de)-(F 2 1 it = )t(F 2 1 - ) với = - Do hàm F L 1 nên hàm F - L 1 và kết quả đợc suy ra từ tính chất 1. của định lý. 3. Theo tính chất 3. của bổ đề 2 và tính chất của tích phân bị chặn đều (f h )(t) = + de)(H)(f 2 1 it ) = + de)(H)(F 2 1 it 0 )t(F ( Mặt khác theo tính chất 5. của theo bổ đề 2 || fh - f || 1 0 0 Do tính chất của sự hội tụ theo chuẩn t 3, (fh )(t) n.k.h 0 f(t) Do tính duy nhất của giới hạn suy ra F ( n.k.h = f Cặp ánh xạ F : L 1 C 0 , f f ) và F -1 : L 1 C 0 , F F ( (5.3.3) xác định theo cặp công thức (5.3.1) và (5.3.2) gọi là cặp biến đổi Fourier thuận nghịch. Do tính chất 3. của định lý sau này chúng ta lấy F = f ) và đồng nhất f F ( . Hàm f gọi là hàm gốc , hàm F gọi là hàm ảnh và kí hiệu là f F. Ví dụ 1. f(t) = e -at (t) f ) () = + + dte)t( t)ia( = + ia 1 với Re a > 0 f(t) = e - |t| ( > 0) f ) () = 0 t)i( dte + + + 0 t)i( dte = i 1 + + i 1 = 22 2 + 2. (t) u() = + dte)t( ti = 1 và u(t) = + de)( it = 1 F() = 2() 3. f(t) = > T |t|0 T |t|1 f ) () = T T ti dte = 2 Tsin F() = 2 Tsin F ( (t) = + de Tsin 2 2 1 ti f(t) ngoại trừ các điểm t = T F() = > T ||0 T ||1 F ( (t) = T T it de 2 1 = t Ttsin 2 1 f ) (t) Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m Click to buy NOW! P D F - X C h a n g e V i e w e r w w w . d o c u - t r a c k . c o m . )t(F 2 1 - ) với = - Do hàm F L 1 nên hàm F - L 1 và kết quả đợc suy ra từ tính chất 1. của định lý. 3. Theo tính chất 3. của bổ đề 2 và tính chất của tích phân bị chặn đều (f h )(t). thiết hàm f khả tích tuyệt đối và ta có (, t) 3 2 , | f(t)e -i t | = | f(t) | Suy ra tích phân (5.3.1) bị chặn đều. Do hàm f(t)e -i t liên tục nên hàm f ) () liên tục. Biến đổi tích phân. F(3, ). Tích phân t 3, (fg)(t) = + d)t(g)(f (5.1.3) gọi là tích chập của hàm f và hàm g. Định lý Tích chập có các tính chất sau đây. 1. f, g L 1 f g L 1 và || f g || 1 || f || 1

Ngày đăng: 25/07/2014, 03:21

Từ khóa liên quan

Tài liệu cùng người dùng

Tài liệu liên quan