... M 2 ( -4, 2),ta có : 0.2 0 .4. 40 .2 0)2. 24( 2)1 04( 4 )42 4)( 24( ()('' 4 882 4 4 44 2 <−= <−=−=−⇒ −= =−= −=+−++−−+−== − −− − − −− eA eeACB eC eB eeMzA xx Vậy hàm số đạt cực đại tại M 2 ( -4, 2) ... dạng: )21( 4 8 ) )41 (44 ( 4 '' )41 ( 4 ' 44 . x x Ae x x Ae R y x x Ae R y x AxeA x ex R y += ++= +=⇒ == Thay vào ta có : [ ] 5 1 15 .5 41 23168. .4) 41(3)21( 84& apos;3'' 44 4 44 4 =⇔=⇔ == −−−+= −+−+ =−− AA eeA xxxeA eA ... xx eCeCy − += 2 4 1 -Xét Pt vi phân cấp 2 ko thuần nhất đã cho: 1 4 )( 4 )( 4 4'3'' k xo p x e x e x f x eyyy ==⇒= =⇒=−− α α ⇒Ta tìm no riêng của Pt dạng: )21( 4 8 ) )41 (44 ( 4 '' )41 ( 4 ' 44 . x x Ae x x Ae R y x x Ae R y x AxeA x ex R y += ++= +=⇒ == Thay...
Ngày tải lên: 15/08/2012, 09:02
MỘT SỐ DẠNG TOÁN CƠ BẢN LỚP 4
... Ba lớp 4a;4b;4c. đi trồng cây cả 3 lớp trồng được 120 .Số cây lớp 4a và 4 b trồng được là 70 cây ;số cây lớp 4b và 4c là 90 cây ;số cây lớp 4c và 4a là 80 cây . Tính số cây mỗi lớp . 11.CÁC ... cây cả 2 lớp trồng được 70 cây . Tính số cây mỗi lớp biết 1 /4 số cây lớp 4a bằng 1/5 số cây lớp 4b. Bài 2: Hai lớp 4a và 4 b đi tròng cây cả 2 lớp trồng được 110 cây . Tính số cây mỗi lớp biết ... thời gian chạy đúng và chạy chậm-nên ta đưa bài toán về dạng toán tìm 2 số khi biết hiệu và tỉ) 18 Dạng Toán cơ bản luyện thi Học sinh Giỏi Lớp 4 4 Bài 6:Hai bác thợ mộc nhận bàn ghế về đống .Bác...
Ngày tải lên: 28/08/2013, 14:12
Cac dang bai tap boi duong HSG lop 9
... dùng chất oxi hoá (O 2 , KMnO 4 ,) Ví dụ: 10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 5Fe 2 (SO 4 ) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O 4Fe(NO 3 ) 2 + O 2 + 4HNO 3 4Fe(NO 3 ) 3 + 2H 2 O - Chuyển ... .5H O 30,7( )m g= DạNG 4: BàI TậP Về CÔNG THứC HOá HọC BàI TậP Câu 1: Khi hoà tan 21g một kim loại hoá trị II trong dung dịch H 2 SO 4 loÃng d, ngời ta thu đợc 8 ,4 lít hiđro (đktc) và dung ... hoá chất tự chọn: a) 4 dung dịch: MgCl 2 , FeCl 2 , FeCl 3 , AlCl 3 . b) 4 dung dịch: H 2 SO 4 , Na 2 SO 4 , Na 2 CO 3 , MgSO 4 . c) 4 axit: HCl, HNO 3 , H 2 SO 4 , H 3 PO 4 . Câu 3: Chỉ đợc dùng...
Ngày tải lên: 04/09/2013, 21:10
Các Dạng Bai Tap Vo Co- 01
... là: a.19,59 và 80 ,41 b.19,95 và 80,05 c.15,95 và 84, 05 d.17 ,49 và 82,51 Bài 4: Nung 15. 04 gam muối Cu(NO 3 ) 2 thấy còn lại 8,56 gam chất rắn. % Cu(NO 3 ) 2 bị phân hủy? a. 45 b.65 c.75 d.85 Bài 5:Nhiệt ... d.13,63g Phương pháp5: CHUYỂN BÀI TOÁN HỖN HỢP THÀNH BÀI TOÁN CHẤT TƯƠNG ĐƯƠNG. A. NỘI DUNG PHƯƠNG PHÁP: - Nguyên tắc : Khi trong bài toán xảy ra nhiều phản ứng nhưng các phản ứng cùng loaih và ... của Oxit? C: BÀI TẬP VỀ NHÀ Bài 1:Dẫn Vlit CO 2 (đktc) vào dung dịch chứa 3,7 gam Ca(OH) 2 . Sau phản ứng thu được 4 gam kết tủa . Giá trị của V? a. 0,896 lit b. 1, 344 lit c. 2, 24 lit d.cả a,...
Ngày tải lên: 10/10/2013, 18:11
Tài liệu Các dạng bài tập C# :Căn bản mảng 1 chiều docx
... ThucDon() { Các dạng bài tập C# :Căn bản mảng 1 chiều Saturday, 18. April 2009, 13:00 :46 Bài tập C# Đa phần các thao tác trên C# đều thực hiện dựa trên hàm, thụât toán về mảng 1 chiều, nếu nắm vững các ... toán về mảng 1 chiều, nếu nắm vững các thụât toán, thao tác về mảng 1 chiều thì C# đối với bạn chỉ khó về mặt kỹ thuật cài đặt thôi. Bài tập căn bản đầu tiên sẽ là về mảng 1 chiều: - Xóa phần...
Ngày tải lên: 25/01/2014, 10:20
các dạng bài tập sóng cơ sóng âm (Tải: https://link1s.com/yHqvN)
... tiểu. Các phương pháp giải nhanh bài tập cơ bản: Dạng 1: tìm số điểm dao động cực đại ,cực tiểu trên đoạn AB. Cách 1: áp dụng d 2 -d 1 = ? Và d 2 +d 1 =AB Áp dụng 0<d 2 <AB Dạng 4: ... src="data:image/png;base 64, iVBORw0KGgoAAAANSUhEUgAABMgAAAYwCAIAAAAI8uQFAAAACXBIWXMAABYlAAAWJQFJUiTwAAAgAElEQVR42uzdTWyb54Hoe4qhJJqkJNqWREe1JEeWnZ7Yam/SfEBoJh7B58Jpisx0roFiivRkEVygyKYoBrebWVwMzmI2c1AU3QQHGGTRpphBAd9+BO04mAauMy0MJ2kzjRVPEjuOJbmKKck29UGaEmnqLjTjptYXxQ+JlH6/VUy+osmHb1H9/bzv8zQsLi4GAAAAoFRBQwAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUA1Kd8Pm8QDCkAdzUsLi4aBQDY2P99Nvg/UEMKwB+ZsQQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAABArQsZAgAoWUNDg0Eo0+LiokEAEJYAIIoAYEdzKSwAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAal3D4uKiUQAAAKBkZiwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAADKFDIEwEY1NDRU/DUXFxcNLABAvf5+6Jc5AAAAyuFSWAAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAALan0cxkOp81DiAsAQCgxKp8efT13OIdQwHCEgAASqxK4wDCEgAAVCUISwAA2NKqHLs9ZUxAWAIAQIlVCQhLAABQlSAsAQBAVYKwBAAAVQkISwAAdmhV3r4zb4hAWAIAQIlVGQgExm7fMEogLAEAoMSqBIQlAACoShCWAACgKkFYAgBATVko5FQlCEsAAChdU7BxoLXXOICwBACA0j2779Eij7wwM2K4QFgCAMC9moKNQ+1HjQMISwAAKN3gngcNAghLAAAonUlLEJYAAFAuk5YgLAEAoCwmLUFYAgBAuYqZtFwo5AwUCEsAAFhZMZOWmTsLBgqEJQAArMqdliAsAQCgLO60BGEJAADlMmkJwhIAAMpi0hKEJQAAlGuNScv5O1aFBWEJAADrWWPScmJh2viAsAQAgPW50xKEJQAAlMWdliAsAQCgXCYtQVgCAEBZTFqCsAQAgHItn7S8uTBrWEBYAgBAsZZPWk4JSxCWAACwIeXcaVlYLHx/9Myp8XMXZkZSubTBhDKFDAEAAPVoadLyzNRwCVX5ytjZK5lkIBC4MDMSCARiofCRlu7+6P1d4T3RUNjYgrAEAGCnGNzz4EbD8tNVeddcPnv+1qXzty6JTChNw+LiolEAAKBOnZ0aXmrLZxKPPL77cAlVuQaRCcISAIDtb6GQ+/sPTw21Hz223gYkG63K5ZH5QCRxONbVvas93hg18iAsAQDYPpLZVCIcr2pVLjfQ2isyQVgCALBTVLwqRSYISwAAVGW1DLT2fq611z2ZCEsAAFCV5SpmMSHYNoKGAAAAVVlZQ+1HVSU7in0sAQBQlRXQF0lEQ+HDsa5wsPFQrMtXgLAEAABVWVRDdjS3Re5rago2GnaEJQAAbCuVqspEc1tnc1xDgrAEAGBnCTYE+yKJjbblUkN279q7677m7l3tjQ33WdkVhCUAADvXw/G+tcMyFgo/tfchDQnCEgAAVta9q33tAx6L91u4FSrFdiMAAGxD8cbo2gfsaWoxSiAsAQBgLQOtvQYBhCUAAJTusM0kQVgCAEA51r3NEhCWAACwlrVvs+xsajNEUClWhQUAYNsaaO29MDOy4lPN9zVu+dtbKOQydxbuebA1tCvYYPoHYQkAALXhcKxrtbDckoy8nk1dn781dvvGx5nkXD67xsF9kUQ0FD4c6+psatvdFG0KNvo2EZYAALAFauE2y3Q++97s6Puzf7iSSRb/U0sH363iRHPbQy3dn43tT4TjvlaEJQAAbJ41brOM3NdU7b99NDP58+Tbyfnp8l8qOT+dnJ8+MzUcC4Ufi/d/vu2BdTfqBGEJAACVsdptltW7uLSwWHhvduzXNy5WJCnvMZfPnpkaPjM13BdJ/Hn70Z5Ih68YYQkAANW1ybdZJrOp/++Tc9VIyntcySSvjCYTzW1fTjwqLxGWAABQRZt2m+VCIffq9bc3ea2g5Pz0y6OvJ5rbvrb/KRfHsoUsZAwAwHa2Ym4lmiu8ieVoZvJ7V36+VSvQJuenv/vRq2/e+rCwWPCNIywBAKDyBlp773mks7lia6sWFgtnp4ZfHn197e1DNsEvkr/7zkc/S+XSvnGEJQAAVNjhWFeVXnmhkHtl7OyZqeEa+aRz+ex3P3r10ty4Lx1hCQAAlVSl2yzT+ez3rvx8Q7tTbo4fXnvj7NSwy2IRlgAAUDHLb7MsfxPLdD770tXTW37562rOTA2/MnZWWyIsAQCgYu65zXJ/eXOYqVy6+KocaO0daO3tiyQ2+SNfySS1JZvGdiMAAGx/FdzNMp3P/uPIv65RlYnmtif3PtTZ1BYLhaOh8IpdOjk/fSs399vUR1Xd8XKpLb/efSzYYD4JYQkAAOWp1G2WC4XcGnOVA629T+75b4nwOkvOxhujS1fnPr778EIhN5KZvJz+5PytS1Vqyx9/cv5k16BzAGEJAABlWXE3y40qLBb++dqvV6zKvkjiL+5/vIS/pSnYeCjWdSjWdbzjcx/Mjf/6xsWKz2FemBlpb2o51n7UaYCwBACAsgy09t69Gra0Ccwff3J+xTVgh9qPlp9tTcHGpbsxU7n065PvVurC3SVnpob3NLUs388TKsXF1gAA7Ahl7mZ5aW58xdh7oed4ZScD 443 Rk12D3zr4bGU78NT4uVQu7TRAWAIAQOnKuc1yoZD76fU373kwFgp/u/8rPZGOarzbpbx88cDTiea2Sr3mP117wyKxCEsAACgr1WIrrdFajFevv7381sqvdn0xWuoLFikRjn/jwIlKLb2TnJ9+beIdZwLCEgAASnekpXvpPxob7iv+p0Yzk8svgn0m8UiV5irv/X29ITjQ2vu3h09WZCfM87cuJbMpZwLCEgAAStQfvT8QCAy09m5opvHnybfveaQvknh89+HNfOdNwcbne4aeSTxS/kv94NqvXBCLsAQAgBJ1hff0RRJ/df8Txf/IaGZy+f4ff73/yS15 /4/ vPvytg8/Gyrv+di6ffW92zMmAsAQAgFJEQ+Hne4aCDRv4HXj5dOUTuw81BRu36iPEG6N/c/Avyrws9rWJd0xaIiwBAGAzXJobXz5d+UjbwS3+Db4h+HzP0FAZe5zM5bNvpy77fhGWAABQdb+c/P09jySa2xLheC28t2PtR5/b/1TJP/6L5O8WCjlfMcISAACqKJ3PLp+ufHLvQ7XzDg/Ful7oOV7yj5+7+YFvGWEJAABV9N7s6PIHK7LnRwX1RDq+3f+V0pbzOTM17E5LhCUAAFTRb1MfLX8wWt6KrNUQDYVfPPB0aW1peViEJQAAVMuK18EOtPbW5rstuS1/feOi7xphCQBAredZnV5seSWTrK83XFpbJuenk9mUExVhCQBA7VblS1dPvzJ2th7b8trtqbp7z6W15ftz15yrCEsAAGq3Kufy2SuZZD225eT8TD0O+1JbbuhH3rKhJcISAIDadGNhdi6fXfrvemzLFS+FnZivg6tGo6HwhvYgmctnXQ2LsAQAoBb1RDoSzW2f7rQ6astULr3i48n56br4CD2Rjuf2P1X88a6GRVgCAFCjvpx49NN/rNNrYu8xk79dF+/zUKxrqP1okQdftOkIwhIAgNrUE+m4ZyGZemnLmVxmtac+nPtDvYz/n+19qC+SKObI5Pz0QiHnjEVYAgBQi460dN/zSF205XR+1bD8beqjuvlFvyF4smuwyEViby2kna4ISwAAatHeppblD9b1NbHJ+en0fy1KVPuiofD/2P/nxRw5sTDtdEVYAgBQcwqLhTduXFzxqbpuy7fran+ORDj+xO5D6x52c2HWGYuwBACg5rw3Oza3+uRe/bblW6nL9fW2T3Q+vO4FsVPCEmEJAECtKSwWXpt4Z+1jarYtw8HGNZ6dy2ffq6tlVIMNwROdD699TF1s0YmwBABgB0nns6+MnZ0r4l7E2mzLjk/twLmi1ybeqa9Jy4HW3sSaHyo57x5LhCUAADXj0tz4P1z+yZVMssjj6/Ga2Ll89t9WuX20Zt2zrSgISwAAak5hsXBhZuR/Xf7JD6+9sdGfrbW2bA3tWveYM1PDqVw9bdHRE+lIrDcTC8ISAICtkc5nz04N/88PfnRq/NxcqVtx1FRbBhuK+iX5n669UV8TrU/ufcjpirAEAKC2jGYmT42f+4fLPzkzNVz+q9VUW/ZFEusek5yfrq+tR4r5UCAsAQDYvKR86eN/eXn09QszIxV82dppy8+2fKaYw36R/N1oZrJevrVoKLzuviMgLAEAqLpULr2UlFVaR7RG2nJf8+4ij/zR+G/SpV4AvPmOtHQ7hxGWANtcPp9vqIJKvb0t/KuBWrBQyJ0aP/fdj16t9tYUtdCW+8LxIo+cy2dPjZ+rl5st+6P3r/j4QGuvMxxhCbBNhEKhxSqo1Nvbwr8a2FqFxcKbtz78+w9PVfbC11puy6ZgY/F3JNbRjimrbdHZ3tTiPEdYAgBQLel89pWxs79I/q60H4+FwqXNhm15rT0c79vQu627nS0/bY+wpDwhQwAAwGouzY1vaF/KWCh8pKW7P3p/R3NbY8N90f9aKuZk1+DdY1K59OT89K3c3G9TH619Ve1SW369+1iR+39U1oOxrg0dv7Q07rH2o/X4RXfvane2IywBAKiwwmLhx5+cL/La10Rz23/v+HxXeE+0iEVH 443 ReGM0EAg8vvtwOp+9kkm+k7pyJZOstbZcuhp2tTe2zdqyNbTLOY+wBACgwlX5ytjZdZsqFgo/Fu9/NN4fLXUTi2goPNDaO9Dam8qlX598d8WO3cK2HNzz4IbCsk7bMtHctiVzwghLAAC2rXQ++9LV03NrbqERC4VPdD58pKW7UkESb4ye7Bp8dt+j525+sNRmtdCWB6P7SvipWm7LsdtTyx/8Qvyg054y3fd3f/d3RgEAgOKr8pnEIye7BveFd1d8V6H7Gu47EOl8LN4/m7898ae3X97KpcduTw209m7mVkZL+yZdzUxs9AevZiZu35k/GN1Xaxsv/frGf0wsu6/1K/c/0RQ04URZTHkDAFBsVSaa277d/5XHdx+u6sxhNBQ+2TX44oGnE3+6N8aWrBP7+bYHSvvB87cu1eAeJB8vu7I30dxW8pXMICwBANhYVT6TeOQbB05sWoQkwvFvHDjx6eVkt6Qt 443 RoVIvar2SSX7no5+l15z+3UypXHr59+s6WIQlAACVUVgsrFGVsVD4hZ7j1Z6oXOFX1YbgQGvvt/u/0hdJfLrWJudnNvNtDO55sOSfnctnX7p6ejQzWQvf8uuT7y5/8P8odUoWhCUAAH/ilbGza1Tliwee7ol0bNV7i4bCX+8+9kzikaU/vtBzPBGOb+YbaAo2DpWxEs9cPvvy6Otnp4a39rLYVC69fNHdofajTcFG5z/lc5MuAMBOd3ZqeLVNNZaqcsvvwQs2BB/ffbh3V2cgENjkqlwyuOfB5WvVbsiZqeGRzOTJrsGtGswVpyvLmYyFP/kfqSEAANjJRjOTqyVTjVTlXYlwfEuqMhAINAUb706ZluxKJvkPl39yYWZk86cuRzOTpisRlgAAVMVCIfej8d+s9uz/3ft/Wi/0rkfj/fesUluaU+Pn/vfV11K59Ka981Qu/fLo68sfN12JsAQAoAJevf72ardWvtBzPN4YNUR//L25Ifi1/U9V5KWS89Pf/ejVf0n+dqGQ24R/O/jHkX9d/vjJrkHTlQhLAADKteLlkUuG2o9u4Wo9NSveGC3/gti7zt+69Pcfnjo7NVy9vEzns/987dfL/+2gL5IYaO31hSIsAQAo18+Tb6/4eCwU/rO9DxmfFT0a7//03iflOzM1XKW8XNqYdMVlme7ZHRTK17C4uGgUAAB2mktz4z+89saKTz23/6lDsS5DtHawrXYJcTme2H3okbaDFVmg6MLMyKnxcys+dbJr0HQlwhIAgAr4X5d/smIa9UUSz/cMGZ+tastAIJBobvtC/OCRlp4SVk4qLBau3b7xq9X3j3li96EvJb7gG0RYAgBQrtHM5IrLhAYCgRd6jru7sswxrGxh9u7q7GhuDTascwtbMpt6f+7aW6nLa+RuXyTx9e5j674UCEsAANb3/dEzq81o/b8PflV41E5bfjoyD0Q69+9qDwcbO/5r15OZXGY6n7m5MHtxdiw5P732K6hKhCUAABWTzmf/4fJPVnxqqP3osfajhqg227IcsVD4xQNP25WU6vEvFgAAO8t7s6OrPfXZ2H7jsyE9kY4Xeo6rShCWAAA7y/uzf1jtqd1NUeNTQlt+6+CzsVrNtkRzm6pEWAIAUEkLhdxqd1cGAoGmYKMhKkG8MfrNvi9Xdn/LiuiLJL5x4ISqRFgCAFBJtxbSa0SI8SlZU7Dx+Z6hZxKP1M5bGmjttVoPmyZkCAAAdo6JhVXXDjWvVb7Hdx8+HPvMP117Y901Wqvtuf1PHYp1+UYQlgAAVN6Hc+MGoarijdEXH/jShZmR1ybeWWNLyepJNLc93z3knwkQlgAAVMvEfMogbIKB1t4jLd3/duPimanhTftLY6Hwic6Hj7R0u/wVYQkAQBVt+SWamy+VW/m20sh9TVVdrCjYEDzWfnRwz4P/Pv3xGzcuVnv2cqj96OCeBy2/hLAEAGArXZgZOdk1WO+fYqGQu7WQnliY/nBu/ONMct2cSzS3HYh09kfv7wrvqcblo03Bxsd3H 340 3n/t9o1fTQ2vsSRvaWKh8GPx/kfj/a59RVgCAFAT0vlsPfbJQiF3PZv6OJO8ODu20SnZ5Px0cn76/K1LS5H55N6HHox1VXzeL9gQ7Il0PN8ztFDIjWQm350ZuTAzUuZr9kUSg3sePBjd58JXakHD4uKiUQAA2CH+7v1/XuPZOlpKtLBYmJyfGbk98dvURxW/vnegtfd4x+fijdGqfoRULj12e+ra7amrmYkiP8LS/OqRlp594birXqkpZiwBAPhP49mbNR6WFZzxW8OFmZELMyNP7D50vONz1eu3eGM03hgdaO2925mBQGD+Tm75ljCdTW2xUNjFrtQyM5YAADvI2jOWgUDgbw+frMGpsFQu/eHcH6oxObmuk12Dd9sPWI0ZSwAA/ujfpz9+fPfhWngnhcXCtds3Ps4k30pd3pINIZecGj/3TurKX+9/0qWnICwBACjKGzcuPhrv38L1YJYudr2c/mRpQZ1acCWT/N6Vn7 944 GkXo8JqXAoLALCDfH/0zLo7Xgy09m7+viPpfHY8e/PczQ8qviFHpcRC4f+x/88T4bizCJYzYwkAsIMUM+d2YWake9fezbkgNplNVWll14qby2dfunr6hZ7jPZEOJxLcw4wlAMAOcmFm5NT4uWKOrN6iNTV4sWvxYqGwa2JBWAIA7GjJbOqlq6eLPLgvkjjZNViRiLq7Es/F2bHan5xcty2/2fdla/mAsAQA2KEKi4X/+cGPNvQjz+1/qrTNLRcKuevZ1PX5W+/P/qFm75wsTV8k8XzPkNMJhCUAwA51avzchZmRjXbU4J4HeyMda0/TLRRytxbSEwvT125PXc1M1PvM5NqeSTxSI/uygLAEAGCzXZob/+G1N0r72Vgo/EAk0d7UsqepZemRmwuzUwuz6Xx2m81JFuPb/V9xsyUssSosAMDOcjC6r+SfnctnNzrbuY2dnnhn8/dlgdoUNAQAADvr97+G4FD7UeNQvgszI8lsyjiAsAQA2IkejfcbhIr49c3/MAggLAEAdqJoKGzSsiIuzIyk81njAMISAGAnGtzzYMzCM5XwduqyQQCrwgIA7FDlLA9bFxLNbQcinft3tbeFIq2NkaUH 443 RdD6bW7wzdnvq9p35sds3Ps4k58qYdYyFwv9P/1ecTuxwVoUFANihDsW6Blp7t9kqr32RxGdbPtO7q7OjuTXYsPLVeUt7hMQbo4FA4PHdgUAgMJqZ/NXUcGk7pszls6lceunVYMcyYwkAsHMVFgvf+ehnc3V+l2AsFH4s3v9AJLEvHG8KNpb8Oul89u3U5TNTwxv9wWcSjzy++7DTCWEJAMAOlc5nX7p6uh7bsi+SeDje1xdJRCt6s2gym/rBtV9taEAGWnttaImwFJYAANqyPtry7uTk/l17V7vStXwLhdw/X/t18VfGus0ShCUAALXellWanFzbqfFzxd+A+reHT5ZzFS7UO4v3AAAQiIbCLx 54+ tT4udIWsKmGzZmcXMNf3f/ExHwqOT9dzMGZOwvCkp3MjCUAAP+psFh4beKd87cubeF7WFrW9XDsM7WwzmrxE7nfOvishWERlgAA8J9KWL2mTJVa1rUaRjOTL4++vu5hJ7sGB1p7nTzsWC6FBQDgTyTC8b85+BfvzY69NvFOVfNyoLX3cKxrk++c3KieSEcsFK73HVlAWAIAsNmCDcGB1t4jLd0Vz8ulmOze1V5HF46e6Hz41Pg5ZwUISwAASszLgdbeZDb1/ty1t1KXSyjMvkiio7m1P3p/R3Nbnd6FeKSl+1RAWIKwBACgDIlwPBGOH2s/ulDIXc+mpvOZmwuzUwuzKx58ONYVCAQ6m9pioXAtX+O60cAufusREJYAALCqpmBjT6RjB37ww7EuYQlrCBoCAABYW2dT29oHdO9qN0oISwAAYFW7m+xRCcISAADKsO7umpH7mowSwhIAAChRLBRetzxBWAIAAKt6IJIwCAhLAABgLYXFwhrPLu2wAsISAABY1Uz+9hrPrrtmLAhLAADY6cZuT632VCwUToTjhghhCQAArOXmwuxqTz0W7zc+ICwBAGAdF2fHVnvKyj0gLAEAYB2pXDo5P73iU4nmtp5IhyECYQkAAGv5/fTHqz315N6HjA8ISwAAWEthsXBmanjFp2Kh8JGWbkMEwhIAANby3up3V57ofDjY4NdpEJYAALC6hULutYl3VnzKdCUISz0r6xMAACAASURBVAAAWN+r19+ey2dXfOov9z1uuhKEJQAArCWZTV2YGVnxqb5I4lCsyxCBsAQAgFUVFgs/uPar1Z492TVoiEBYAgDAWlX5ytjZ1S6CPdk1GA2FjRIISwAAWNVrE+9cySRXfGqgtXegtdcQgbAEAIBVnZ0aPn/r0opPJZrb/ur+JwwRCEsAAFjVpbnxM1PDqz37fPeQlWBhRSFDAAAAgUDg7NTwGlX5Qs9xt1bCavyLCwAAWyOVS9dRVfZEOnxlsBozlgAAbIHRzOTLo6/3RRJbvshqYbHw40/Or7ZlZSAQeG7/U6oS1tawuLhoFAAA2PyqvPvHk12DR1q6t+T2xXQ++/2xM8n56dUOeCbxyOO7D/vKQFgCAFBbll93mmhu+9r+p+KN0c18GxdmRk6Nn1vjAFfAgrAEAKCe2jIQCAy09j6779GmYGO1//Z0Pnt64p01Ln9VlSAsAQCo17YMBAJD7UcH9zxYpbxcKOTO3fxgjXV6AoFALBT+atcXVSUISwAA6rgtY6Hwic6HH4x1VTAvFwq5f5/++BfJ3619WKK57fnuITuLgLAEAKDu23LJUPvRz7c9UOa9l6OZybdSl9e+8HXJE7sPneh8eEuWEQJhCQAA1WrLQCDQF0kM7nmwN9JR/ATmQiF3PZv6OJN8K3V5Lp8t5kdOdg0OtPb6OkBYAgCwPdtySaK57Qvxg7sbYx3Nba2hXZ+eWkzns7nFO2O3p24uzF6cHVtjB5EVX3bz16QFYQkAAFvTlpW1dDOniUooU8gQAABQC461Hw0EApvZllVdfhaEJQAAbOe23LQNM0FYAgDAdmvLgdbe4x2fczslCEsAALSlpARhCQAAm9WWiea2/+v+wUQ4bmBBWAIAoC03JhYKf7Xriz2RDuMJwhIAAG25YSe7Bo+0dH96r0tAWAIAoC2LMtDa+3Tnw9FQ2ACCsAQAgA235XP7nzoU6zJuICwBAKCUtvzWwWet+wqbzxXnAADUR1sOtR9d+5gndh9SlSAsAQCg9LYc3PNZowTCEgAASmzLgdZe05UgLAEAoPS2TOezBgeEJQAAlN6WVzLJwmLB4ICwBACA0tvyvdkxIwPCEgAASm/LU+PnFgo5IwPCEgAASm/LV6+/bVhg84UMAQDAVknl0pPz05fTn1zNTCTnp+95ti+SiIbC3bv2HmnpiYbChmu1tgwEAmemhpf+2N7UYkxg8zUsLi4aBQCATe7JczffP3/rUvE/kmhu++8dnz8Y3RdscMXZCs5ODZ+ZGh5qP3pszY0uAWEJAFDfCouFj9LXfzn5++WTk0XqiyROdg2avVzRaGayJ9JhHEBYAgBsW5fmxn96/c25Suy1+ELPcQUFCEsAgB1koZB79frbF2ZGKvia3+7/inlLQFgCAOwIF2ZGTo2fq/jL9kUSz/cMGV6gRlgVFgCgKgqLhVfGzl7JJKvx4lcyyWQ2lQjHjTMgLAEAtqd0PvvS1dMVuaNyNRML08ISqBGWqwYAqL+qDAQCH86NG2qgRpixBACopNHM5I/Gf1PtqgwEApH7mow2ICwBALabdD778ujrm/N3HWnpMeBAjXApLABAxarypaunN+2v2+cGS6BmmLEEAKhYVa52BWyiue0L8YOHY5+JN0YDgUAql56/kxu5PfGL5O9K++ue2H2oKdho2IEaYR9LAIByrbGzSKK57Wv7n1rqyeUWCrnXJ989f+vShv66RHPbNw6cCDa49AwQlgAA28XZqeEzU8PLHx9qP/pnex9atwBTufTPPnmz+B0vv93/lWgobNgBYQkAsE2MZiZXXLDnuf1PHYp1Ff86b976cN0rY/siiZNdg6oSEJYAANtHYbHwnY9+tvzWyhd6jvdEOjb6aqlc+h9H/nW1GzWfSTzyaLzfFbCAsAQA2FZWvAh2qP3osfajJZfqR+nrv5z8fXJ+eumRvkgiGgof7/jcajdqAghLAIB6lcqlv/vRq/c8ONDae7JrsPwXT+ezgUDAVa9AXbDdCABAiV6ffPeeRxLNbX91/xMVeXFJCdQR1+gDAJQilUtfmBm558EvJx51DyQgLAEAKMqK05UlLNgDICwBAHaidD674nSlkQGEJQAARXlvdvSeR2KhsOlKQFgCAFCs36Y+uueRIy3ddfcp0qtsmAmwUVaFBQDYmFQufXeTyU+FZU8dfYRLc+Pnbn5wJZN8bv9Th2JdvlOgTGYsAQA25sO5Pyx/cF84Xkcf4d2ZkSuZZCAQ+On1NxcKOd8pICwBADbV2O0byx9sCjbW0Ud4LN6/9B9z+ezy5W0BhCUAQHUtXw+27uzftffuf5+/dSmVS/taAWEJALBJtkeDBRuCT+w+dPePJi0BYQkAsHkmly3bU6c+vdrQhZkRk5aAsAQA2CTZVZa6KSwW6uuDfPpq2IBJS0BYAgBsmmu3p1Z8fCZ/u85+C2wI9kUSd/94YWbEtpaAsAQA2AyZOwsrPj62SnDWss+2fObTf3w7ddn3CwhLAIAtc3Nhtu7ec++uzk//8czUcN1d0AsISwCA7WMkM1l377mjufWeR66ttEUngLAEAKikifnUio9fySTrbrov2HDvr4LvzY76igFhCQBQXcnVtxupx+m+gdbeT//x/K1LroYFhCUAQHV9eiXVe7xVh4vfRO5r2gZ5DAhLAIB6Eg2FV3vqwszIwiq7XNas/bva73nk40zStwwISwCALXPu5gf1/hEuzo75HgFhCQCwZc5MDdfdpOU9kvPTbrMEhCUAQBUdjnWtfcA2mLScyd/2RQPCEgCgWtpCkbUPODM1nMql6+XjfDg3vkJY5jK+aEBYAgBUS2tjZN1jfvbJm/XycVbclnM6LywBYQkAUDXxxui6x1zJJC/MjNTFx1lxW87bd+Z90YCwBACoojW2srzr1Pi5dD5b4x9ktUt2x2xlCQhLAICq+mzLZ4o57KWrp2t8edXJlaYrAYQlAEDV9e7qLOawuXz2lbGztfxBfjn5e98mICwBALZAIhyPhcLFHHklkzw7NVybnyKdzybNWALCEgBgqzwW7y/yyDNTw7XZlu/NjvoeAWEJALBlPt/2QPEH12BbLhRyb9y4uNqzkfuafMWAsAQAqK54YzTR3Fa/bXnu5gdzqy9au39Xu68YEJYAAFX35N6HNnR87bRlKpc+U6t3fgLCEgBgBznS0l3kEj6fbstT4+e2fA+Sn33y5toHdDa1+X4BYQkAUP3fohqCJzof3uhPXZgZ+d9XX0uvfhlqtZ2dGr6SSa59zO6mqO8XEJYAAJuhhEnLQCCQnJ9+6erpS3Pjm/+GL8yMrHsRbCwUbgo2+nIBYQkAsCm/SDUEv9r1xRJ+cC6f/eG1N/4l+dvNvCx2NDN5avxcMbXsmwWEJQDA5umJdAy09pb2s+dvXfrORz/bnKnL0czky6OvF3Nkf/R+XysgLAEANtWz+x4t4YLYJUtTl98fPZPKpav3Di/NjRdZlYFAoDfS4TsFNqphcXHRKAAAlFluP7z2RpkvMtDae7zjc/HGSi6cU1gs/PiT8xdmRoo8PtHc9uIDX/KFAsISAGAL/Evyt+dvXSr/dfoiiT9vP7p/195gQ7lXlo1mJn80/pu5jaxA+9z+pw7FunybwEaFDAEAsM3cvax0/k5uYmG6LRRpbYwsPRK5r6lKS56e6Hx4cn5m3Z081nUlk7wymoyFwo/F+z8b258Ixzf6CoXFwnuzY69NvDO38U1NDkb3OX+AEpixBADqXjqfvZJJXrs9VWTa9UUSHc2t/dH7O5rbKnjpaTqffenq6blK71H5xO5D+3e1d+9qX/etpnLp309/vO6GIqs52TVY8kJEgLAUlgBAXUpmU+/PXbs4O5acny6z3Pqj9/dGOsqfzExmUy9dPV29j5xobutsjh/+06tVby7MTi3MFn8j5YpiofDfHPyL8q+/BYQlAEAdKCwWPkpf/+Xk78vsyeWW7m/sKW9Z1OI39qgp7q4EhCUAsFOSsuS7B4sXC4Wf2vvQo/H+kqfv6q4tLQYLCEsAYEcoYY3TMvPyROfDR1q6S8vL+mrLFw88XcIqQQDCEgCoG+l89vTEO2XeQ1hyXv7lvsdLu0a0XtrymcQjj+8+7DQDhCUAsG1t8kTligZae5/d92gJS/vUfls+sfvQlxJfcJoBwhIA2J4Ki4XXJt45f+tSjbyfF3qOl7CuTzKb+sG1X21tGK+mL5L4evcxK8ECwhIA2J7S+eyp8XPFbEq5mYbaj/7Z3oc2WmK1+VliofA3+75c/g4rAMISAKjRqnzp6untNMtXa7OvsVD4xQNPR0NhJxsgLAEAVbkFEs1tz3cPlVBll+bGf3r9zS3/aCW/fwBhCQDUgVQu/Y8j/1pMeiWa2zqb/2SHjI8zyc3cjKS0Gb+FQu7V629vyQq3S9xXCQhLAGA7W3eucqC193Csq3tXe2to14pptFDIZe4sjN2eunZ7qtrXnZZzNelWTV2e7BocaO11pgHCEgDYnhYKue9d+flqrTXQ2nu 843 PxxuiGXjOZTY3cnnjjxsUqJVw5s3+FxcLbqcu/SP5uc4Y30dz2tf1PbXQAAYQlAFA3CouFV8bOrrhu6kBr79OdD5d5Q+BoZvKt1OVqXIBa5pWlC4XcuZsfnJkart7YxkLhv9z3+KFYl9MMEJYAwHZ2avzcitU31H70WPvRSv0tVaq48t9kYbHw3uzYr29cTM5PV/CNJZrbntz70JGWbndUAsISANjmLs2N//DaG8sff6HneE+ko+J/XTXy8rn9T1VkSjCZTb0/d+3i7Fg5hRkLhY+0dB9p6anG6AEISwCg5qx4a+Um7LKYzmdPT7xTqYtjY6HwN/u+3BRsrODbG8/eHM/eLDIyY6HwA5HE4VhXZ1NbIhx3XgHCEgDYQVa8CLZKc5XLjWYmfzT+m4os7dMXSTzfM1S9DM4t3pm/k5tY+GNkhoONHc1tgUAgcl9TBZsWQFgCAPVkNDP58ujr9zz4TOKRx3cf3rT3UFgsvDbxTkX2JrGZB7BjuZMbANgyP0++fc8jfZHEZlZlIBAINgS/lPjCCz3HY2VfeXtq/NxCIedrBYQlALB9jGYm09XZv7FSb2/53YN/vf/JLXkzPZGOb/Z9uS+SKPN1zt38wIkHCEsAYPtU5cujr7909XTNtuXy6cqB1t4tvFewKdj4fM/QUHkbh5yZGq7lmAcQlgDAxqoyEAjM5bMvXT1dg9dnrjhd+Vi8f8vf2LH2o8/tf6qcVzg98Y4zEBCWAMA2qcq7tVaDS4b+atk2konmthrZd/FQrOtbB58t+ZbLCzMjqVzaeQgISwBgm1TlUPvRY+Vd21kNC4XclUzyngef3PtQ7bzDeGP0xQNPl9yWr0++61QEhCUAoCqraCQzufzB7l3tNfUmo6HwiweeTjS3lfCzF2ZG3GkJCEsAoO6r8ondh2qzKgOrLJ0ab4zW2vuMhsLfOHCitKVi305ddk4CwhIAqOOq7IskTnQ+XJtvNZ3PLr8OtrSJwc34Vakh+PXuYyW05Zmp4cJiwZkJCEsAoC6rMhYKn+waDDbU6P/L31iYXf5gZ3O8dn9bKrUtr92+4eQEhCUAUH9VGQgEvtr1xWipq85sguvzt+rvF6aS2nL5yrcAwhIAqIOqjIXC+3ftreX3PLbSPF7tL3UTbAie7Brc0DqxVzLJGtxBFEBYAgBrVWUgEDjR+XDNXgS75MLMyIoNVvsDvrRO7IbacsX1bwGEJQBQu1UZCASOtHTX8tteY2ayLvbniIbCX+36YvHHv7tSRQMISwCgdqtyoLW3xqcrc4t3VntqxUV9alBPpOO5/U8VefAFYQkISwCgjqoyEAh01/bdlWv7uB6uhl1yKNb1xO5DRR6cyqWdtICwBADqoyoDgcCu+5rr96O9lbpcR+/2ROfDRe69OXZ7ynkLCEsAoD6qMhAI3L4zX+MfYf7OqqukzuWzyWyqbn6Fagg+3z1UzJG1/6UACEsAUJV/9P7sH2r8U0wsTK/x7K9v/kcdfSPRUPhk1+C6h624vQqAsAQAarEqA/WwcWI42LjGsxdmRurrjsSB1t51L4iti9VuAYQlAKjKP3p98t1a/iwd62XYuZvv19e387X1Voi9Uj+LEgEISwBQlYFAIHD+1qXRzGT9ft7zty7V1xRfvDE60Nq79jE1Po0MICwBQFXe60fjv6nZNos3Rtc95vTEO/X1NR3v+NzaB2TuLDiZAWEJANRNVQYCgbl89tT4ucJioU4/+IWZkUtz43X0htedtIzc1+R8BoQlAFA3VbnkSib5ytjZ2mzLYrZ//On1N+vr8tHH4v1rPNu05pJFAMISAKi5qrzblv9 242 INfroDkc51j5nLZ1+9/nYdfWX7d+113gLCEgDYVlW55MzU8Nmp4dprsPZiDrswM/LmrQ/r5jeqhmBfJOHsBYQlALCtqrJm27K7uLAMBAK/SP4umU3Vy3f32ZbPOIEBYQkAbLeqrM22jDdGY6FwkQf/4Nqv6mX3kd5dK1/iW8w9pQDCEgCo3aqszbY80tJd5JFz+ez3x87UxQq3zfetvEJPZ3Pc6Q0ISwCgvquyBtvySEtP8Qcn56drdoXbYhyOdTnDAWEJANR9VdZaW250DdVa3j1lXW2hiJMcEJYAwNZUZSwUHmjtLf52xDpqy2BD8Indh3ZIW+5tanGeA9teyBAAQE1V5UBr75N7/ltHc2uw4T///bewWHhvduzU+LlKtWUgEDjWfnRrP/sjbQfP37pUQlt+vfvY3ZGpfYnmtmhF/2kAQFgCAGtV5VD70Ufj/cs7JNgQHGjt7YskTo2fu5JJbo+2TITjiea25Pz0tmnLyZU+yxfiB53qwE7gUlgA2PqqTDS3fbv/K8faj64xuxUNhb/efWyoQjVYC9fEPrn3oRJ+aqktFwq5WvtOx7M3lz +42 h4kAMISAKhkVQ609n7jwIliLpgMNgSPtR892TW4PdrySEt3aXeQXskkv3fl57W2v+XF2bF7HomFwomwvUYAYQkAVLkqh9qPnuwa3NCFnQOtvS/0HN8GbRlsCJ7ofLi0n53LZ1+6eno0M1kjX2s6n11+We9j8X4nPCAsAYDK+9WnQm6o/WhpNzr2RDq2R1uWPGm51JYvj77+5q0Pa+FrfTt1efmDg3sedMIDwhIAqLyvdx/riyTKqcq7bfnigacrshnJFrZlOZOWS36R/N33R89s7S2XC4XcmWUDONR+tCnY6IQHdoiGxcVFowAAm6mwWPgoff1QrKv8l0rnsy9dPT33/7N3Z7FxnQeC74t0kSwVS1wskmWzuciUqGQsMnekKBaETqQImkCyjKTTIyBIw 24/ GAEaemkEweRlHi4u7kO/5CIw+kUI0NCD20E3Aqg7iWFbQo+gyHZD8BJ7Ei2TaDMXDaMSKam4VKm4qOo+MMNmSIkia2NV8feDH8RiLadOHVH+8zvn+/JxtWGOoZvL3vjxjV/m+BYiwdBfd3x9vS5ofDf26+VLp3x/2zebauod7cAGYcQSAIr+r29VdV6qMhAI1AdD5T5uWV1V/RfPvJDjk8xfcvlu7NfFH7ocSo4ur8r+hm5VCQhLAKBsVEBb9kba+xu6c3+eD+9f+/ubb1+bGinalifmUksWI513qPVLjkxAWAIA2rKovvnMnrxs/9Rc6qe33jvx+bvx2USht3kmPXti4PTy 249 GdxuuBDYa11gCQIUo9+str02N/PTWe3l8wv6G7kOtXypQ4yXmUm8Mn1u+xEhPOPpq10FHIyAsAQBtuT5teWrkwsWJwfw+ZyHycoX9/MPt367Px9ArgLAEALRlNtKZ9JvD528mY3l/5mhd439p/b+21T9TXVWd4xZ+Er/+TuzTR373WPu+vFwsCiAsAQBtmb2Z9Ozf33w7Lxv/uHf0XDjasWnLWgtzfpGY/zH6m+Wnv87b29z7YvTLDj9AWAIA2nL92zKPG7+Cvc292+ufbQ89/cQzV4eSo5cnh5avKbJYTzj6SueBHIdDAYQlAKAt8yaWij9ywtUC6W/oDj9V27GpZfGNDx5ODz +4+ 3ky9sR9qCoBhCUAaMtSbMvijFvmLhIMHd96xIQ9wAbnV2sAULHKen3LPG68qgQoNCOWAFDhyn3c8tTIhULME5u7aF3jq50HVSWAsASAXA0lR7fUbi7xuij3NUjev3vlXHHHS59oNddVpjPpibkHww/Gbj0YSz6c6dy0pbkm0lrXmN9FNQGEJQCUfVWeHDpbFudDlnVbBgKBa1Mjv7j9UYlccrm3ufdw266Vq3KFDe4JR4+17zPUCQhLAOCPVTn/50gw9Lc9L9VW12jLwplJz751+5OLE4Pruxtf7tjfG2nPfTuPte/rb+j29wgQlgCgKtcztDZgW87v+bdjn8Smx4v/0qsZaZxJz/79zbdXuYe1JSAsAUBVlllVVkxbBop+ZmwkGDrctms1EXhq5MKaxlR/uP3bzokFhCUAqMpyqspKast0Jn3rwd0ijF4ebOn72pbnV76iciF3f3rrvTU9+WomAQIQlgBQyVW5t7n3xeiXy/GNVEZbzovPJn4z/vnH8ev5HcCMBEP7tzz/nxufW+WlszPp2b+7eiqLFzq+9Ug01OQvFyAsAWAjVmW5jzVVUlvOi6Xiv5u6dWVyOMcxzP6G7q80be/YtGVNH24sFT8xcDqLl3OlJSAsAWCDVmVZLDGyAdty3kx69nYqfnv6/vCDu58nY6t5g/0N3Z2btnRvamuta8julwUXJwZPjVzI4oHlO+4NsCBoFwDAWqsyEAh8p/3PK2DOlfpg6PjWI3lpy3NjlwKBQIm0ZW11TVe4tSvc+kLzH2+Jzybm/zD8YCwQCISqa1rrGudvaQhuysuw89WpkeweOJC 846 8YICwBYMNVZSQY6gq3Vsa7q9S2XKKppn7JH0roI3jKrLBA2TMFGQCsrSoDgcDhtl32zOPa8vzYpY353sNP1Wb3wC9u/jNHDiAsAWBjVWUkGNq5ubNi3mMeL7Pc4G3Zsakluwc+U9fs7xogLAFgA1VlIBB4LhytmFUH816VG7kt22obswxLa40AwhIANlRVBgKBHZF2Vaktl2uta4isfT6no9Hdq1wnE0BYAkCFVGXFWLkqI/mY8HajtWV1VfVfd3x9TQ/pCUf3NG33Nw4QlgCgKiutKl/rOnR86xFtmYVoqGlvc+/q73+sfV/FnFYNCEsAYA1VmfVyheVSlV3h1vk1SLRlFg637VpNW0brGn +4/ dsVsBQqwLyqTCZjLwBAYC1jlf/3F75TpgNNq6nKVd55TQ629JXm+pYFEkvF//HWrx63 645 Gd+9p2m6sEhCWALBxq7J8M2lNVaktc5TOpG89uDs+l7w6NXJnOl7/VKg73Noeero99LSBSkBYAsBGr8p539/2zaaa+squSm0JwCo5BwMAVZnNbD3/MPhv6Uy64qsyEAi43hIAYQkA+a/KQCAwNZd6c/h8WbRlLlWpLQEQlgBQkKqcdzMZO3Pns4qvSm0JgLAEgIJU5bwP718r5UbKV1VqSwCEJQAUpCpLvJHyW5XaEgBhCQAFqcqSbaRCVKW2BEBYAkBBqrIEG6lwVaktARCWAKjKglRlSTVSoauylNsyMZdK5GO9TQCEJQCsQ1WWSFsWpypLsy3n3/uJgdPaEkBYAkC5VuW6t2Uxq7LU2nLhvU/NpU4MnJ5JzzrmAYQlABSpKiPBUH9DdwW0ZfGrshBt+W7s1+lMeq0PjKXii997W21jsOophz1AMVVlMhl7AYCNVpX9Dd1fffo/RUNNC7fMpGcv3Pv9ufwF4cGWvgMtfZVdlavcgDXpCUdf6TxQXbXa331fnBg8NXIh64cDICwBYM1VebClb9/TX6itrnlcIL0xfC42PV5GbbnuVZn3tozWNb7aebD+SaOg6Uz6X//w4cWJQVUJICwBoEhVufpcOXPnsw/vXyuLtiyRqsx7W6688elM+vLk8Ad3ryz+FYCqBBCWAFDYquxv6P7LZ/euvjrOj13K12mxhWvLkqrKQrRlf0P3odYvNdXUL37+T+LXl380qhJAWAJAYasyu7TL40SyhWjLEqzKQrTlQjcmHqYed4qyqgRYd34EA1CBfrVoRCvrqOsKt77WdSgv25P3eWJLtioDeZ0ndsHNZExVAghLACiqVzoP9ISjgZyHCkuzLUu5KgvXlqoSoJQ5FRaAypTOpG8kbvdG2nN/qpI6J7b0q3KVm6oqAYQlAGwsJdKWZVSVhW5LVQlQUvw4BoAnK4VzYsuuKgOBQH0w9L3ub6hKAGEJAKx/W5ZjVc5rqqnP135TlQDCEgC0ZZZtWb5Vmff9pioBhCUAaMs1t2W5V+XCfnu5Y7+qBBCWAECx27IyqnJeb6T9YA4z4qpKAGEJANpyzW1ZSVU572tbnp9fX1RVAghLAKDgbVl5VRkIBKqrqr/b8VVVCSAsAYCCt2VFVuW82uqaY+37VCWAsAQACtiWFVyV8/obuqN1jaoSoJJUZTIZewEAcjGUHD05dDYvT7W3uffy5HAFV+W8j+5ffSf2qaoEqBh+WANArvI4bvnh/WsVX5WBQGBH5M9UJYCwBAAK1ZYVX5VPpCoBhCUAaEtVqSoBhCUAUDJtWZFVOf1wVlUCCEsAoBht2d/QXZFjlb+buqUqAYQlAFCMtrw4Mbh4fcuK8XH8uqoEEJYAQJHacmF9y4pxbWpkycy3qhJAWAIA2nK10pn0L25/pCoBhCUAoC2z9P7dK4uHK1UlgLAEALTlGlybGjm36C2oSgBhCQBoyzUYSo7+9NZ7qhJAWAIA2jIbibnUz0b+XVUCCEsAQFtmWZUnBk4vXFqpKgGEJQCgLVUlAMISALRlsZy+85mqBBCWAIC2zN5fPru3JxxVlQCVrSqTydgLAFBkQ8nRk0Nn8/JUB1v6DrT0lfKbTWfS79+98rUtz6tKAGEJAGhLAHgEvzgEgPVhDRIAhCUAoC0BQFgCgLYEAGEJANpSWwIgLAFAW2pLozRGUAAAIABJREFUAIQlAKAtARCWAIC2BABhCQDaUlsCICwBQFtqSwCEJQCgLQEQlgCAtgQAYQkA2jLfbZmYSyXmUj4dAIQlAGjLLKvyxMDpEwOntSUAwhIAtGWWVTk1l5qaS50YOD2TnvXpACAsAUBbrlYsFZ+vyvkv22obg1VP+WgAmFeVyWTsBQAofUPJ0ZNDZ/PyVP0N3X/57N7qqtX+fvnixOCpkQsLX/aEo690Hlj9wwEQlgBABbZlTzj63Y6v1lbXrHy3dCZ95s5nH96/pioBEJYAoC2XigRDf93x9Wio6XFJeXly+IO7V2LT46oSAGEJANrysfobuo+07aoPhhZuScylPolfP7fsUkxVCYCwBABt+YTCvDMdXzw+qSoBEJYAoC3zQ1UCsDL/QgBAWcrjGiSqEgBhCQDaUlUCICwBgNJrS1UJgLAEAG2pKgEQlgDAerSlqgRAWAKAtlSVAAhLAGDtbXk0ultVAiAsAYDsvdC8Y29zr6oEQFgCANk73LarJxxVlQAISwAg23/aq6qPte9TlQAISwAge/XB0JraUlUCICwBgKV2bu6M1jWqSgCEJQCQ7T/wVdVfbtqmKgEQlgBA9nZE/kxVAlAcQbsAgHI0lBx9O/ZJIBD4q479TTX1dshaqUoA8sg/JwCUZVWeHDobmx6PTY+/fuOtj+5ftU9UJQDCEgDWVpWLb3kn9um1qRF7Zonph7OqEgBhCQBLnR+7tKQq5/301nvx2YT9s9jvpm6pSgCEJQAsrcpzY5ce992zo7+1ixb7OH5dVQIgLAFgtVUZCAS+1NBtLy24NjUyNZdSlQAISwBYbVX2hKO9kXY7al46k/7F7Y9UJQDCEgDWUJWvdB6woxa8f/fK4uFKVQmAsARAVT65KlXTgmtTI4v3mP0DgLAEQFWqyjUYSo7+9NZ79g8AwhIAVGU2EnOpn438u/0DgLAEAFWZZVWeGDi9cGml/QOAsARgQ/vo/lVVqSoBEJYAkKWh5Og7sU9V5ZqcvvOZqgRAWALAH6vy5NBZVblWf/ns3p5w1P4BYL1UZTIZewGAdZeYS12eHDJWmbV0Jv3+3Stf2/K8/QOAsARgY7XQ6PTE76ZufRy/vnAm5wr6G7p3RNo7N7U0BDfJJwAQlgBs9KS8PDl8ZtGVgWu1t7l3d+O2aKjJzgQAYQnAxjKTnr1w7/erHKJ8omhd41e3PN/f0G3HAoCwBGBDuDgxeGrkQt6fNlrX+Fcd+5tq6u1hABCWAFSsxFzq1MiFm8lY4V7iYEufqWsAQFgCUJkKNFC5XE84eqx9X30wZJ8DgLAEoEKkM+k3h88XdKByiUgwdHzrEW0JAMISgEqQmEu9MXwuNj1e5NeNBEPfaf/zrnCrjwAAhCUA5V2VJwZO52Xq1+z8cPu3jVsCQHGY4QCA/Iul4utblYFA4MTA6Zn0rM8CAIrAiCUAeZaYS/3o+s+X3z6/5mTnppYl64Ik5lJ3ZyY/T8auTA7n97zZnnD0lc4D5okFAGEJQJlV5fKxyv6G7kOtX1rNOpMz6dn/Of75e3ev5Gu082BL34GWPp8LAAhLAMq4Kl/u2N8baV/T86Qz6RuJ2/9j9Dd5GcD8/rZvrqZpAQBhCcA6W76ySCQY+l73N3KJuqHk6M9G/j3H0cv+hu5j7ft8QAAgLAEode/Gfv3h/WuLqzIv60mmM+lP4tffiX2ay5MYtASAgjKfAQB5cG1qZHFVBgKB73V/Iy+rfVRXVb/QvOP41iORHJ7t7OhvfUYAICwBKF0z6dlf3P5o8S0vd+zP7whhNNT0g23f6m/ozu7hFycGE+u69gkACEsAWMlbtz9ZfBlktK5xrbP1rOpfrKrqY+37DmY7xeviiz8BAGEJQAkZSo5enBhcfMtL0T2Fe7kDLX2vdR3K4oFXp0Z8WAAgLAEoRW/HPln8ZSQY6gq3FvQVu8KtWbTlkvoFAIQlACVhKDm6ZKnJnZs7i/C62bVlfDbhIwMAYQlAaVkyXBkIBLbXP1ucl86iLYcfjPnIAEBYAlBC4rOJJcOVgUCgta6xaBvQFW59uWP/6u9/b2bSpwYAwhKAEvKb8c/XfRt6I+2rnyd2TFgCgLAEoKR8HL++/MaG4KYib8aBlr6s17cEAIQlAOsmloovXrtywVzmYfE35pvP7IkEQz4UABCWAJSTwQd3Hnn7/Zl1mHm1trrmL555wYcCAMISgHIy/ODuI2+/MzO+LtvTG2l3QiwACEsAysnnydgjb7+1fkt6HGnb5XMBAGEJQHmYSc8+8gLLQCDw4f1r6Ux6XbaqPhhaedCyc9MWnx0ACEsASkLy4cwK3708ObxeG/aVpu0rfHfTU3U+OwAQlgCUgQ/uXlmvl+4Kt64wPWznphafDgAISwBKwsRscoXvxqbHr02NrNe2PReOPu5bxV9jEwCEJQA82vhccuU7/OL2RzPp2XXZtsddSBmta6yu8q8eAAhLAMrE1FzqrdufrMtLP1PX/Mjbv9y0zecCAMISgFLRVtv4xPtcnBhclxNiHzeaunNzlw8OAIQlAKWi7qma1dztF7c/SjxmVZIii9Y11j9+Uh8AIEdBuwCAApmaS50YOH1865F1j7qXonsK8bTx2cTEbHLJGGlbbWNrXYPrOQEQlgCwkvBTtatvyzeGz/3N1sNFC61bD8aW3BIJhrrCrfl6/nQmfevB3cuTQx/ev7bC3fobur/U0N0baXe0ACAsAeARaqtronWNsenx1dw5Nj3+5vD5VzoPFKctl/feXzzzQr6S8vLk8Jk7n02t4vzeixODFycGo3WNL0X35DFrAaA0OVEHgGw8v7lz9Xe+mYy9OXw+nUkXeqtiqfiSW6J1jbkPG6Yz6Y/uX/3xjV+eGrkwtZarRmPT4yeHzp4auVCE9w4AwhKAMvNcOLqm+8+3ZaEXt/zg3v9acstfdezP8Tnjs4mfDJx5J/bpVLYTEV2cGHxz+HyJzGMEAMISgFLxTKhprQ+5mYz9/c23C9dXsVT84sTg4lv2Nvc21dTn8pwf3b/6+o23VnnS78rv/cTAaW0JgLAEgP8wf5nlWh81NZf60fWfDyVH8 749 6Uz6X/5wYfEt0brGw227cnnCN4bOvRP7NF9bODWXck4sAMISAP7Emi6zXOzk0Nl3Y7/Ob2L96x8+XDKu+Fcd+7OeLigxl/rxjV/eTMbyu8duJmNn7nzmyAFAWALAH+17+gtZP/bD+9d+MnAmPpvIy5acH7u05CTYlzv2Z30S7FBy9MTA6anCnLb64f1r16ZGHDwACEsACAQCgdrqmoMtfVk/PDY9/vqNt96N/TqXGX3SmfT5sUvnxi4tvvFgS1/WM8EOJUdPDp2dKuTFkD+99V6hJzECAGEJQNnIZdBy3of3r/3d1VPnxy5l0VrpTPrN4fNLqrInHP3aluez25jzY5dODp3NfbdE6xr7G7pXuAb19wYtAagsVZlMxl4AIGvLBwyz1t/Q/dWn/1N0FfPNpjPpy5PDZ+58tmRosSccfaXzQHaXVub4RiLB0OG2XT3haH0wtPJGzt/5B9u+lfUloAAgLAGoKOlM+sc3fpnHc0ejdY1bw23b659trWtccp3kTHr2dip+e/r+e3evLH/FrKsynUn/6x8+XHKV5pocje7e07T9kS+dzqTfv3tlebK+1nWoK9y6sf8fpMpfHygs/5+PsASgjMRnE6/feKugLxEJhgKBwAr5mktVvjl8PusJYCPB0Pe6v/HEiYLeGDq35CWidY3Hn3vRwQNAZXASDgC5aqqpf7ljf0FfYmouVYJV2d/Q/YNt31rN9LPH2vdF/s8psvNi0+Om8AFAWALAf+iNtOcyQ2wuDrb0vdp1MIuqTMylfjJwJuuqPNa+71j7vlW+bn0wtH/ZlEK3U3FHDgDCEgD+w4GWvuK35Wtdhw5k9aKJudSJgdOx6fEsHhsJho5vPdLf0L2mR+3c3LU0LKfvO2wAEJYAsLQtj0Z3F+e1esLRH27/dnbz38xXZXYTDs1X5Wqmrl2iPhhasgDJ8IO7jhkAKkPQLgAgj15o3vFMXXNeVoNcwQqzsBa0KnvC0e92fLW2uia7zX5+c+fiMdLPsz0LFwCEJQAVrivc+sPt3z41cuFmAcKpJxz91rMvrGa+nEcaSo7+bOTfs67KrBfJnPd07ebFX+ZxjRYAEJYAVJr6YOjVroMXJwbP3Pksj/nUE46+2nUw64cPJUezHko92NL3tS3P51KVACAsAWDN+hu6d27uvDw5nK+83NXUs15VeSAf8xK11TYuuWUmPZv1ibUAICwBKKDEXKr+T1dNXC/VVdXzeXnrwd3Lk0Mf3r+2+sdG6xq/3LTtndinuW9GKVRlIBCYmEsuuSX5cEZYAiAsASgJsVR88MGd303+7+WXNfY3dHdu2tK9qa21rmG9zuSsrqruCrd2hVsPt+0anZ64MzN+dWokMZdasrXRusa2uqbOTVuaayLd4db54so9LK9Njfz01nvZPfZodPcLzTvytR9S6dklt9RUPeXoBUBYArCe0pn0E080vTgxeHFicP7PB1v6vhjpyGKpjDwWZjTUFA01rXURyKydH7t0buxSdo99retQdsuZrF6JDCwDgLAE2KCuTY384vZHa7p28dzYpXNjl6J1jS9F9xQ6mfIiPptY/OWDh9NlXZW3How5bgEQlgCUhJn07Fu3P1kYh1yr2PT4yaGz0brG//rsvnUcvczC8IO7LzSXa1UGAoGB5B1HLwDCEoD1l5hLnRg4nfskq7Hp8RMDp49Gd+9p2l4uq2jcmY6v5m7pTPpf//BhduEdCYa+1/2NrNfJXPnXAbHp8cW3ROsaHc8AVAbrcQGUk/hsIi9VueCd2KdvDp9P5O8J82tiNrkkhmeWzX+zvCrfHD6fdVUe33qkEFUZCAQGk6NLbmmra3JIAyAsASiqxFzq9RtvTeU7Am8mYycGTg8ty55SML5sfY7/Of75yrvoJwNnlk+Nu/qqLNxsOtcTf1hyS/ipWkc1AMISgKJW5YmB0wV68qm51Mmhs1lftFlM7929ks6kH/mtixODJwZOLznddJV6wtG/7XmpcFWZzqSXr+HZsanFgQ2AsASgSNKZ9KmRC1MFPmH11MiF89nOdlM0U3OpM3c+W17dbwydy3oX9YSjr3QemF82s0AuTw4vv7FTWAJQKUzeA1AGPolfz+70zrWan0b1QEtfKe+ND+9fuzw5vHNz587NXdPp2d8uWqgzC3ubew+37Sr09EUf3L2y/MaG4CbHNgDCEoBiSMyl3ol9WrSXOzd2aTA5+krngVKeKnZqLvXh/WvLTy5dq4MtfUWo6GtTI8tP0I3WNZbLZLwA8ET+SQModaeXnflZaDeTsTeHzz/uUsaKcTS6uwhVmc6kf3H7o+W3P7+507ENgLAEoBjis4l1mVOn4tvyta5DLzTvKMILvX/3yiOv/PxipMPhDYCwBKAYzo7+dr1euhTasjEYzvtzRoKh72/7Zle4tTi/Fzj3mPmQWusaHN4AVAzXWAKUrpn07CqHK6N1jVvDbQvLV9x6MHZ5cjj3WWTn23Idr7dsqMlzWEbrGl/tPFi4ZUUWS2fS/3TrvUd+a29zrwssARCWABTD76dGVlNKL0X3LBl/62/oPty269aDu2/HPsluXccSacv8zps6v6xI0d7I+3evPG7n79zc5fAGoJL4dSlA6fosfnPlOxxr33f8uRcfeVZndVV1V7j1+HMvvtyxP5LbAN06nhNbXVXdE47m5akOtvQVsyqvTY087iTYSDDUsWmLwxsAYQlAwc2kZ1dYuzISDL3Wdai/ofuJz9Mbaf/Btm/tbe4t07bc9/QXcn+Slzv2H2jpK1pVJuZSP33MSbCBQGD/luedBwuAsASgGAaToyt89/jWI6uffqa6qvrF6Jdf6zqUy9DlerVld26z7ESCoeNbj/RG2ov5G4ETA6dXuMN/bnzO4Q2AsASgGEZS9x73rZc79mcx/UxXuPX41iPRusbyasva6pqsz4btCUePbz0SDTUVbWvTmfQ/3/pghWmT9jb31lbXOLwBEJasq6qq8vsPyMrjRiz3NvdmPf5WHwz9zdbDuVy1uC5t+a1nX8juga90HijOBLAL3hw+v8IJzIFAYN/TX3RsAyAsWW+ZTPn9B2SbcMtv7AlHD7ftyunnflX1q10HD7b0lVFbNtXUH43uzuKBc5mHxfzIzo9dWrkqD7b0NdXUO7YBEJYAFEN8NvHI 24+ 178vLvC8HWvrKqy33NG1fzUxFSyQfzhSzKh83DeyCvExEBADCEoDsHWzpy+OJneXVltVV1cfa973csf9xd+gJR49Gd2c3sFmcqjwa3e3qSgAqVdAuAChBo9Pjy2/M+3jXgZa+QCDwxCJauS2LuThkb6T9//nidxNzqbszk+Nzyc5NLfO3L5xfGp9NvBP7dOH+0w9nA4VPudVUZSQY2tO03YENQKUyYglQbLFU/IkDfan07JJbCjSbaNmdExsIBOqDoa5wa39Dd1NN/fx/j7vnnZnxUqjKQCDw1x1ft3YlAMISgPwYSo6eGDj9xBh78HB6yS27G7cVaJPKsS1X6d7MZOGePJ1Jvxv79Wqqcm9zbzGXPAEAYQlQ4VV5cujsamJs+MHdxV9GgqGClknFtGVDcNPiLx+3ZEteqvLN4fMf3r/2xHtGgqEcJ/IFAGEJwB/NpGfnqzKLGNu5ubPQm1cZbbnkdNOVF//IWmIu9ZOBM6t8cifBAiAsAcib/zn+edYxtnNzVxG2sCLPiU3MpfL7hLFU/MTA6dj0qq7ePBrd7SRYAIQlAPmRzqTfu3sl6xh7plhxUnltOZK6l8dnuzgxeGLg9NTqYrW/ofuF5h0OfgCEJQD5cSNx+3E1spoYK+b6hxXWlhfu/T5fvxp4N/brUyMXVnn/aF3jXz6715EPgLAEIG/+x+hvso6x/obuIm9tJbXlzWQs97NhY6n4j2/8cjVT9cyLBEOvdh50aSUAwhKAvIml4k+8JG+FGAs/VVv8ba6ktvwkfj3rx6Yz6fNjl1Z/+uu873V/oz4YcuQDICwByJsP7v2vtcbY4pjs2NSyLptdMW15buxSdoOWQ8nRH9 /45 WpWqlzsta5DTTX1DnsAhCUAeZOYS12cGFxrjK1XTFZqW54aubCmzRhKjp 74/ N2TQ2en1likr3Ud6gq3OuwBEJYA5NNaz8Ocj7EHD6cXbgkVceaeSm3Lm8nY+3evrGYzhpKjbwydOzl0dpULiqhKAAgEAkG7AKBwZtKzaz2Rcr6CbiZjC1+21jWu77s40NIXCASyeCOL2/KVzgNrmswmMZe6PDmUx+U6zo1d+jh+/XDbrp2bO5dvSSwV/93UrY/j16eynelHVQIgLAEoiN9PjVTGG8m9LX8ycObVzoOrnNImMZeany/nwcOZA2scL+1v6H7cucdTc6lTIxfOBD/bv+X5TU/VBQKBezOTYzOTqz9XWVUCgLAEKLYzdz6rmPeSY1vGpsdPDJz+ 646 vR0NNK99zKDn6s5F/nx85PDd2qT30dG+kPY9vZGou9U7s0zw+oaoEANdYAhTKUHJ0KucVFEutLXO53nJqLnVi4PRH968+7g7pTPrixODiKXN6wtFt9c+s6VV25LVCVxYJhn 64/ duqEgCEJUChvB37JC/P88s/fFQiC0Lm3paBQOCd2KcnPn83PptY3uE/GThzauTCwi094ehar8wspp5w9G97XrJeJQAEAoGqTCZjLwDkXXw28fqNt/LYMCWVWOfHLmV9TuyCaF3j1nBbx6aWq1Mjd6bjS2Zhzfot53fPP87e5t7DbbtKNnoBQFgCVIJTIxdynxKm4tuyEG92Jj37d1dPFfS9v9yxv7eIJ9wCQOnzq1aA/JtJz+a3KgMlsyDkgtzPiS1QQtdW10QKdnpqtK7xh9u/rSoBQFgCFNyFe78vxNNuhLbMy8Dszs2dhXi/x9r3HX/uRRdVAoCwBCi4dCZduHNEK7st83W6787NXfl9m/0N3T/c/u3+hm6HNwA8knUsAfLs8uTwklsiwdDhtl07N3fOZR7eTsXfjn2yZKKaLNqydK63zHF9y7xXZSAQ6Aq3Rusac9nJC6J1jS9F91hQBABWZvIegFVJZ9K3Htz9PBnb9FTtpqfq2mobI8HQI8+KPPH5u4uT5mh0956m7Ut66drUyC9uf5TLKpcVNpdP3t9O7nPDSkoAEJYAeROfTZwd/e0jJ+Ppb+j+5jN7aqtrFm4ZSo6eHDq78OWx9n2PO38yMZc6NXLhZjKmLQv0Rt6N/frD+9eyeGB/Q/dXmrZLSgAQlgD5sSQUl5s/zXWhHt8YOrfQinube1+MfnmFx6Yz6TeHz2/wtizcW0hn0j8ZOLP6E2KjdY1fbtq2c3OX6XkAQFgCrEMmHY3ufqF5x+LTLyPB0A+2feuJvZTOpN+/e6WkTiLNseXWlMqF3vh0Jv1J/Po7sU9X3oZdTT2dm1qaauod8wAgLAHyaa0X6R3feuTOzPipkQvzX65wEmwuBVv6bTmTnv27q6dKarPTmfTo9MSdmT8OXd6bmXy6dnNjMNxQE24Ibiqd8V4AEJYAlebUyIVHXlf5OJFg6G97XppNP/wkfv3K5PDfbD28pmKppLZczcWNpXYSLwAgLAHyLDGX+tH1n6/1Uf0N3cfa92X9oh/dv7rySZvlkmqxVPzEwGlVCQAbh3/UAR4huwl11jTCudwLzTte6zqUyza/OXw+nUmv+96LhppUJQAIS4DCOj926cTn7w4lRyvvrcVnE7k8vCvcWhltqSoBQFgCFLYqz41dik2Pnxw6W7J5eXVqJLsHDj8Yy/GlK7gtVSUACEuAvFXlwpcLeZnjQF/edW7akt0Db+UclhXQljPpWVUJAMISoBhVuTgvX7/x1qmRC6WTlzsif5bdAy9PDudlA8q6LS/c+72qBABhCVC8qlxwcWKwdPKyqaY+Egxl8cC22sZ8bUOZtmU6k /44 fl1VAoCwBCh2VZZgXh7feiSLtqzPKkcrqS0/iV+fmkupSgDYUKxjCZRQVS7R39B9qPVLTTX167XlsVT8H2/9anEmPdGx9n39Dd353Yyh5OjJobNZP7yYabdkU1UlAAhLgPWsygV7m3sPtX6ptrpmXbY/nUlfnhz+4O6V2PT4wo3Rusa2uqbEXGr5cpc/3P7t/A5allFbJuZSJwZOL3S4qgQAYQlQElW54GBL376nv7Beefm45vzJwJklwXn8uRcL9HIl3paqEgA2Mv/kA2VQlYFA4NzYpb+7eur82KVHLmWxPj9Aq6oXV2UgEPjqlucL93KlfL2lqgQAYQlQ6lVZmnm5ZBuidY15v7qyXNpyai6lKgFgI3MqLFA2VbnEwZa+r215fh0D5tTIhYsTgwtfHt96JBpqKsLrluY5sfNbpSoBQFgClE1VzosEQ4fbdu3c3Fn8konPJl6/8dbCl/0N3cfa9xXt1UuzLWOpeGtdg6oEAGEJUDZVub55+cbQuYUpYSPB0N/2vFTkiYXKaA0SAEBYAqxWOpO+9eDu+Fxy/st7M5NjM5Pzf74zHV8yz03e5XfMMJ1JP3g487iFQy5ODJ4aubDwZdFOgtWWAICwBPhjs03MPVj4cmI2udCigUDg6tTIwp9Xn6NZN9L8xoxOj4+k7g0mR5evS7k4XMNP1XZsaglV1/z01nsLtx+N7n6hecd67cwc2zISDB3femStC28m5lLv3b18uG2XKAUAhCVQZuKziYU/Dz8Ym//Dg4fTd2cm1xo5M+nZweTo9cQfPrx/LZdNWpeTYNe3LRdWFjHgCQAIS2CDiqXiH9z7X4tnc83d3ubenZu7OjZtWa/Kyr0tv9f9jaaa+tXsvX+89auFlUUOtvQdaOlzUAEAwhLYKIaSo2/HPincpZ6RYOgrTdv3Pf2FdRnAzLEtA4HAa12HusKtK9zh2tTI4nOAjVgCAMIS2EDis4l/uvVeoWcPWnCwpW9d8jL3tnzc0qDx2cTZ0d8uHuZVlQCAsAQ2ipn07NnR3+Z4IWV+I63E2zISDO3f8nz3prbm2vrkw5nph7Ofjt9YsgNVJQAgLIGNYskFgcW3+msXS6otV6YqAQBhCWwI6Uz6/btXzo1dKoWNORrdvadpezFLrHBtqSoBAGEJbAgz6dl/vvXBCitSFl+0rvHVzoNrXS6y1NpSVQIAwhLYEBZWWSy1DYsEQ3/d8fVoqKlM21JVAgDCElCVJeGJS3qUZluqSgBAWAIbQnw28Q+D/1bKVTnvaHT3C807ivZyH92/+k7sU1UJAAhLgCd44lhlJBh6LhzdEWlvq21srq1fsshkfDYxOj0+kro3mBwtwsWZB1v6DrT0FW3nnB+7lPU8RqoSABCWgKoMROsaX4ruWf0JqOlM+taDu58nYx/Hrxdu/LPI58SeGrlwcWJQVQIAwhLg0R 345 vD5Rw4zrjUplxtKjn4cv55FkpVaW6Yz6R/f+OWaOllVAgDCEtgo3hg698iqPNjS97Utz+eli2bSs7+fGjlz57P8DmBGgqHjW48UbQ2S+Gzi9RtvqUoAQFgC/ImLE4OnRi4sv/3ljv29kfb8vlY6k 748 OZzfvIwEQz/Y9q2i9dsqL7ZUlQDAWvn/BqBcJeZSy6syEgx9f9s3816VgUCguqq6v6H7B9u+dTB/8+5MzaXO3PmsaHts39NfUJUAgLAE+A+PHKs8vvVIU019AX9oVlUfaOn7/rZv9oSjeXnCD+9fuzY1Upw9Vltds7e5V1UCAMISIBAIBC5ODC6/tPK1rkPFuWSxqab+1a6DL3fsj+Tj5X5x+6OZ9Gxx9lvHphZVCQAIS4BAOpNefgbp0ejuYi7gEQgEeiPtx7ceyX3ocmou9dbtT9Z3l6pKAEBYAhvL5cnhJTPoROsa9zRtL/6W1AdDr3YdPBrdnePzXJwYjKXiRdjgq4867VZVAgDCEthYHjlc+VJ0zzp20QvNO45vPZLjabH/8ocLRdjUxLIpbVUlACCgP0LLAAAgAElEQVQsgQ1n+XBlJBjq2LRlfbcqGmo6vvVItK4x62eITY8PJUcLupEz6dklF6aqSgBAWAIb0fLhyq80bS+FNKoPhv5m6+FcLrl8O1bYKy2XXMmpKgEAYQlsRLFUfGrZyZxfjHSUyo/UqupXuw5mvdBlQQcth5KjFycGVSUAICyBje53U7eW3BIJhqKhppLayAMtfVm3ZYEGLeOziZNDZ1UlACAsAQIfx68vueW5nFf7KKm2jE2Px2cT+d2YxFzqHwb/TVUCAMIS4NHnwe6ItJfm1h5o6Xut61AWD/zN+Of5rcoTA6cX9puqBACEJbChDT64U14b3BVuzaItz41dSmfShdgeVQkACEtgoxt+cLfstrkr3JrFObG38vdO64Oh+TU2VSUAICwBAosnNS0jWVxv+auxS3ncgPpg6G97XlKVAICwBDa6mfTsI2+/NzNZeW15MxnL79mwtdU1qhIAEJbARnd/5tFzpQ4WbOHH/Pralud71jKB7a0yPO8XABCWACXtzsz4I2/P++BeoX7aVlW/0nkgEgyt8v6fJ2M+dABAWAIUyej0RHn8wK2qPr71yCrvfGVy2CcLAAhLgCL53dStctnU+mDo5Y79q7lnbHr8cZeVAgAIS4A8+zh+vYy2tjfSvre5dzX3TD6c8eECAMISIG8ePJx+3Lem5lJDZTKFz7zDbbtWc7HlxGzS5w4ACEuAPIblSsN3+V34seA/eauqv9P+50+82/icsAQAhCVA/jxdu3mF795MxuKziTJ6O13h1v6G7pXvUxZLdAIACEugcpwd/W15bfCRtl0r32FMWAIAwhIgjzo3tax8h4sTg7FUvIzeUX0wdLClzycLAAhLgBLyj7d+lc6ky2iD9zRt96kBAMISoEjCT9U+8T5Tc6lPymrpkfpgqCcc9eECAMISoBhqq2tWs0THO7FPy2sWn31Pf8GHCwAIS4DHSsylrk2NxGcTeYm951Y3uPcPg/82k54tl13UHW51nAAA5S5oFwCF6MnLk0O/jt+ITY8vvj1a1/hfn90XDTVl97Q7Iu0XJwafeLepudQ/3/rg1a6DZbGvaqtresLRm8mYwwYAKF9GLIE8G0qO/uj6z9+JfbqkKgOBQGx6/MTA6Xdjv85uRPGJE8MuuJmMnR+7VC57bFdTzyNvX81lpQAAwhKoNB/dv3py6OzK9/nw/rW/v/l2Yi611idvqqlfzWWW886NXRpKjpbFTgtV1zzy9o5VhzQAgLAEKsRQcvSd2KeruefUXOrUyIUslgbZublz9Xc+OXS2LNqyta7xkbd3CksAQFgCG83bsU9Wf+ebydj7d6+sPSy71nT/cmnLR3IqLAAgLIGNZSg5uvyiypWdG7sUS8XX9JCOTVvWumEnh86W1wIkC2ofc4osAICwBCrT5cmhLB716fiNtf3Mqqre29y71lf5h8F/K7txyyzeJgCAsATKW/LhTFY5OrzWh+xu3LbWh0zNpUr5nNjhB2PLb1zrSb8AAMISKHufZ7US49Rcaq1Lj0RDTdHHzHazspJty3szk8tvzOKkXwAAYQmUt/qn6rJ74O01XmYZCAS+uuX57F7r5NDZixODpbbrBpflbk84Wl3l5zMAICyBDeb5tSwEslgWQ507N3eufkHLJU6NXDg/dimLlU4KJD6buLlsD+x7+guOKABAWAIbzhcjHdk9cNPaF9Worqo+3LYr6009N3bpzeHzaz0Ft0DOjv52yS2RYGhb/TOOKABAWAIbTjTUdLClL6uwzOYc2lwGLQOBwM1k7O9vvr3uy5Ak5lLLT8093LbLebAAgLAENqgDLX094ehaH9VWm81MPDkOWgYCgam51Os33lrfSy7fu3v5kc3sWAIAhCWwUaQz6VMjFxJzqYVbXu06+FrXoUfO2vq4qVxb6xqye/Wdmzuzmx52sVMjF94YOrf4LRTNtamRD+9fW3LjwZY+w5UAQNmpymQy9gKQXVW+OXz+ZjIWCYaObz1S/6cnpibmUrOZhwtfNgQ3VVdVDyVHTw6dXXy3vc29L0a/nPU2xGcTr994Ky9v51j7vv6G7qLtvcdt+X/fcay2usbRBQCUF78XB3KqykAgMDWXOjFwesmgX30w1FRTv/Df/CjcltrNS55n5+auXDajqab+aHR3Xt7RqZELJz5/tzhXXSbmUv8w+G+PjFtVCQAIS2DDVeW8R7blclN/eodoXWNXuDXHjdnTtD33E2LnxabHX7/x1qmRCwWdMDYxlzo1cmFq2b7qb+gu5pApAICwBEqoKlfflv/yhwuLv3wpuicPP8Wqqv+qY38e3+DFicG/u3rq/NilQoxeJuZSJwZOL997kWDom8/scXQBAGXKNZZAHqpycSAtv95yIdhOjfxHWPY3dB9r35evDVt+9WZe9Dd0f/Xp/xQNNeUrWc/c+WzqUe39csf+3ki7AwwAEJbARq/KFdoyMZf60fWfL77P3/a8lN/rCZeEax5F6xq/3LRt5+au+mxXzoyl4mfufPa4XZfjDEYAAMISqKiqfFxbvjF0bvFjX+s6lPvVlcudH7t0buxS4XbCfGHuiPxZU039au6fmEtdnhx67+6VqcefIdwTjr7SecASIwCAsARU5Upt+dH9q+/EPl 341 tHo7headxRoU0+NXLg4MViEfdITjnaHW5+u3dxW21j31J8MvY5Oj6fSsx/cvRKbHn/ik6hKAEBYAqryCW15d2Zy8dWP+b208pFbe+bOZx/ev1b6O3aF61EBAIQloCr/o50Ci1YZKdoAXaHPiVWVAADCEihGVS5PqR9s+1bRTvtccv6tqgQAEJZA2Vdl8VNqKDn6s5F/n1pxac3i6wlHv9vx1fzOiAsAsL7MGAEUvCrXS1e49fjWIz3haOlsUn9D9yudB1QlAFBhjFgCRarKdTz/s3BLXK7JsfZ9/Q3dDjAAQFgCqrIs2zIxlzp957PirETyyDf+ve5vrHL1SwAAYQlUYFXOj7N9nozlfr3i+s5bE59N/NOt9564vGR+HY3u3tO03WKVAICwBDZiVUaCocNtu3Zu7lyIosRc6mYydubOZ7kU5rrPiTqUHP04fr0Io5f9Dd1H2naZ/RUAEJbABq3K/obuv3x27yPH2dKZ9Jk7n3 14/ 1r5tmUgEIjPJn4z/vnH8euFmDZ2b3Pvvqe/6NxXAEBYAhu3Kl/u2N8baV/5UUPJ0ZNDZ8u6LefFUvFPx29cnhzOy4m++7c8/58bnzPvKwAgLIGNG5Zr6r2Kact5ibnUSOre9cQfBpJ31nQdZk84uquppyccddYrACAsgY3elndmxtdaeom51ImB01mP9ZVaWy4Wn01MzCbH55KBQODezOTYzOT87Tv+z1hu56aWmqqnxCQAgLAE/qMt5zIPsziHs4LbEgAAYQkUibYEANjIrKsG5EF9MHR865FItmU4NZc6MXA6UYDZWQEAEJaAtgQAQFgC2lJbAgAISwBtCQCAsAS0JQAAwhLQlgAACEtAW2pLAABhCaAtAQAQloC2BABAWALaEgAAYQkUSjqTjqXi2hIAAGEJZFmVbw6fPzFweig5qi0BABCWQDZVeTMZCwQCJ4fOaksAAIQlkGVVztOWAAAUWlUmk7EXoFKrcsFrXYe6wq0lsp2JudSJgdNT2fZhJBj6Tvufl87bAQBAWELlV2XltWV2bycxl5rNPGyqqXe0AAAIS2DNVaktA4HAG0PnbiZj0brGl6J7DHgCAOSRayxho1RloLKut1zr2xlKjs7votj0+OXJIYcNAICwBNZclZXalufHLq3mnm/HPln48+7GbY4cAABhCWRTlRXZlufGLp0fu5TOpFe4z/mxS7Hp8fk/R+sao6EmBw8AgLAEsqzKSm3LN4fPz6RnH/ndoeTouUWjmv+l9f9y8AAA5JfJe2DDVeWCCpvLJxIMHW7btXNzZ3XVH39lNpOevXDv94urMhIM/WDbtxbuAACAsARVmasKa8v5dNy5ubNjU8vVqZGLE4NLvns0uvuF5h0OIQAAYQmqMj9VWaltuYL/vuNYbXWNowgAIL+cDwYbuioDFXe95Qr2NveqSgAAYQmqMs9VuaHact/TX3QUAQAIS1CVsQI9f8W3ZbSusamm3oEEAFAIrrGEcq3Kvc29HZtaGoPh8bnkrQdjlyeHc780sYKvtyyptwYAICyBda7K/obuI2276v90QC+dSV+eHD5z57McS6zU2vJH13+e+/NEgqH/tv3bjiUAgAJxKiyUU1VGgqGXO/Yfa99Xv+w00eqq6v6G7h9s+9be5t5cXrHUzonNy/McbtvlWAIAEJagKgORYOj41iO9kfaV/kpXVb8Y/fKx9n0V05Z58YUVdxoAAMISNoT5qlzlCF5/Q/drXYcqoC3TmXTuT3Kwpc8qIwAAwhI2ovhs4sHDmVc6D/SEo2uqynld4dYfbv92LhOrlkJbTsw9WPhztK4xu7ezp2m7wwkAoKCCdgGUjsRcaiR177cTgxcnBhdubK1t2FHfPpt5uNZnm1+0I5eJVU8OnS2duXza6pqOtO1a69vpb+iuL8CSmAAALGbEEkrFxYnBH13/+U9vvbe4KgOBwOjMxKfjN1+/8dZH96+u9dTQ3BeELPf1Lb9iuBIAQFjCRjCTnn1j6NypkQsr3+2d2Kc/GTizodpy+MFYLm8nWtdo7UoAAGEJlS8xl/r7m28vXqZyBbHp8ffvXlnrS2zYccuvbnneAQYAICyh8qtyrRcNnhu7FEvFN0hb3lo2Yrn6txMJhnZu7nSMAQAIS6hk6Uz61MiFLGbW+d3UrSxerhzbciB5J+u385Wm7dVVfsQBAAhLqGiXJ4dXeQbsEoPZ1l3ZtWVsejzrt2OVEQAAYQkVLp1Jn7nzWXaPzS5Hy64t47OJrN+OVUYAAIQlVL4bidtZLy+Zo3Jpy6tT/zu7txMJho607XKMAQAIS6hwF+79PuvH9oSjG6Etfzf5v7N4O5Fg6PjWI4YrAQCEJVS4mfRsLqezttY15L4NJd6W8dnEkl3UUrv5iW8nWteoKgEAhCVsCPdnErk8fHfjtrxsRim35W/GP19yy9MrhuUf385zL6pKAABhCRvCnZnxrB97NLo7GmrK15aUZlvOpGfPjV1ynAAACEvgse7NTGb3wJ5wNO+raJRgWz7yAtS22kZHDgCAsAT+aCyrsDzWvu/VroPVVfn/a1tSbTmTnv04fn357XVP1ThyAACEJZCNnnD0aHT3f99xrL+hu3CvUjpt+c+3PnjkQizhp2odDAAApSloF0AJ6m/o7ty0pXtTW2tdQyGGKFdoyxMDp7NeYPPk0NmXO/b3Rtqz3oaP7l993Hy5tdVGLAEAhCWwokgwdLhtV084uo7zmubelj+99d7Blr4DLX1ZPHYoOfpO7NNHfiv3pTsBACgcp8JS3uKziRLcqlgqnlhjmO1t7v3Btm/1N3Sv+2oZuZ8Te27s0htD59a6B4aSoyeHzj7uu93hVkc7AICwhPwbSo6+fuOtUyMX0pl0SW3ViYHTJwZOr76s5scqi3bKaxHa8mYy9qPrP782NbKaO6cz6fNjl1aoykAg0B562gEPACAsIf/9Np8iFycG3xw+XyJtubBVU3Op1bflV5q2l05V5qstA4HAT2+99/9d//nFicEVPp2h5OhPBs48cdVKYQkAUMqqMpmMvUD5VuWCnnD0WPu+9T2PNJ1J/7+//9niWyLB0PGtR5Zv1cWJwVMjFxa+PNa+r6AzvmYtMZfK5XrLxfth5+bO7fXPttb9cS3Kidnk58nYlcnh2PT4Ex8erWs8/tyLDnsAAGEJBazKlSuuaJbk4gpbteSe39/2zaaa+tLc2/lqy1zkONMsAACF5lRYKqQqA2s8+7QQPrh7ZZVb1VbbWC47PC/nxOYiEgyZuQcAQFhCMapyoeJ+dP3nQ8nRddm2x53VubwtI+s99WsZteXhtl1WsAQAEJZQpKpccHLobPHb8lcrTj+zpC2XnBk7uorrDDdmW85fnOngBwAQllDUqlxoy4sTg0XbvPhs4mYytvJ9lrRlTzi68K1Uerb0P4J1acvvtP95qc2XCwCAsGRDVOW8UyMXzj9pEYt8uXDvd6u52+K2/OLmP1u4/d7MZFl8EPNtGa0r0gWie5t7u1xdCQAgLGG9qnLeubFLRWjLmfTsh/evrfLOC235TF3zwo1jZRKW8235N1sPLx5uLZCecPRw2y7HPwCAsIT1rMqFtnxj6Fw6ky7cRl 649 /s13X++LesWTUhTzLN28/BTo6r6lc4DB1v6CvcSkWDoux1fdRIsAICwhPWvynk3k7E3h88XqC3TmfTH8etrfdTUXOofb/1q8S2JdV0oMou2PNDSd6x9X4Gq8vjWI2aCBQAQllAqVbnQlj8ZOFOIeLs8OTyV1dMuedTd8jkbdkF/Q/f3t30zv5dczldlfVktxwIAgLCk8qtyXmx6fMliknnxwd0reXmez580qWxpaqqp/5uth/c29+bl2XrC0R9s+5aqBAAoO1WZTMZeoHyrMhIMPReOttRufrp28/wt92YmB5Ojj1v8IxIMfa/7G0019aUWwJFg6L9t/3b5fmrx2cQ/3XovlsOCnEeju/c0bXddJQCAsIQipVp/Q/dXmrZ3bNqyQofEUvFPx288cr7W17oO5WUdizeGzt3M30jjD7d/u9wH6y5ODH5w98pa8zJa1/hXHfvzVfsAAAhLVOXZJyblodYvrT5CZtKzF+79/tyyRUdyb8v4bOL1G2/l8e0fa9/X39BdGZ/jr8YurSa5e8LRr7f0WawSAEBYQpGqMhIMfaf9z7OLkEeeqHk0uvuF5h1Zb/C7sV+vfvnK1aiweWtm0rO3U/HLk0PJhzOL11OZP3v5Sw3d7aGnXU4JACAsoXhV2ROOfrfjqzkuQXFxYvDUyIWFLw+29B3IdjHGmfTs3109lff9YE5UAACEJRSkKnMpwCUWhi5zfM7zY5eWn16rLQEAEJZQilWZ9ysP05n0jcTt3kh7Ls/w4xu/nCrAqpjaEgAAYQl5rsp8Td+aX0tOqV0I4J2bO6urqmOp+O+mbuU4nqktAQAQllCxVRkIBE58/u7ieYAOtvTte/oLS67/TMylTo1cyGUxEm0JAEC5sBY5qnLNW764Ko+17zvQ0rd8VqH6YOiVzgN7m3uzfqGpudSJgdOJgp1wCwAAwhJVuT4+jl9f+PPBlr4Vrv+srqp+MfrlgzlMEaQtAQAQllBpVRmfTSwsyRita/zaluef+JADLX3aEgAAYQmq8o9GF50E+1J0T3XVqv4GHWjpe63rkLYEAKBSmbwHVbk2sVT8X/5wIRAIHH/uxfy+/ZWZywcAAGGJqqyEqlwwk55dPmGPtgQAQFiCqlz/XaEtAQAoO66xRFUWVVe41fWWAAAIS1CV2hIAAIQlqlJbAgCAsERVakttCQCAsGTjVmUkGNpSu3mD7yVtCQCAsIQsq1IUaUsAAIQl5FSVokhbAgAgLCHXqhRF2hIAAGEJuValKNKWAAAIS8i1KkWRtgQAQFhCrlUpirQlAADCElWZa1WKIm0JAICwRFXmhyjSlgAACEtUpbbUlgAACEtYv6oURaXTlom5VCwVd5wDACAsKb+q1Jal0JaJudSJgdMnBk4PJUcd7QAAPFFVJpOxF8hvVfY3dF+cGMz9hSLB0PGtR+qDITs8x4x/uWN/b6R99S/3s5F/n/o/OXp865FoqMlhDwCAsKR4kfNa16GucOv5sUvnxi5py9Jpy73NvYdav1RbXbPCfdKZ9Pt3ryz+4HrC0Vc6D1RXObUBAABhSXGrcv7P2rLU2jIQCBxr37dzc+fyUExn0pcnh8/c+Wxq0XmzqhIAAGHJelaltizZtowEQ/u3PP9MXXNDTTgQCIxOj9+fnXrv7pWpP70UU1UCACAsWf+q1JYl25ZPpCoBAFgT/+NIAasyEAgcaOk72NKX+zaYJ3ZejvPEqkoAAIQlZVaV2r ... Một số dạng bài tập sóng cơ- sóng âm I ,Cơ sở lí thuyết vật lí. +,sóng cơ là sự lan truyền dao động cơ trong môi trường vật chất theo thời gian +,phân loại sóng cơ: -sóng dọc: truyền...
Ngày tải lên: 23/02/2014, 16:58
skkn đổi mới phương pháp dạy-học các dạng bài luyện từ và câu lớp 4 thcs cẩm châu cẩm thủy
Ngày tải lên: 19/07/2014, 21:05
Tìm hiểu và hướng dẫn giải một số dạng bài tập hữu cơ chương 5 và chương 6 lớp 11 ban cơ bản
... II.2.2 Nhiệm vụ - ðưa ra các dạng bài tập cơ bản, ña dạng theo hình thức trắc nghiệm có câu hỏi và bài toán hóa học. Nội dung bài tập xoay quanh các loại bài tập ñã nêu trong chương 2 của ... ñược các bài tập có trong sách giáo khoa. ở Trường Trung Học Phổ Thông Tràm Chim. - ðứng lớp giảng dạy các bài tập trong chương 5 và 6 lớp 11 ban cơ bản theo phương pháp giải bài tập hữu cơ ... 0,05 22 ,4 1,12 n 4 CH == Số mol hỗn hợp (mol) 0,2 22 ,4 4 ,48 n hh == Thành phần phần trăm của CH 4 %25%100. 2,0 05,0 V% .100% V% 4 4 4 CH X CH CH ==⇒ = n n Chọn đáp án :A - Với dạng bài tập...
Ngày tải lên: 10/04/2013, 11:29
Các dạng bài tập cơ bản về VLHN
... lắc đơn . Dạng 1 ; Bài tập về chu kì và tần số của con lắc đơn . Các Dạng bài tập về điện xoay chiều . Dạng1 : Bài tập về máy biến thế và Truyền tải điện năng P 2 : P 2 : áp dụng các công thức ... của con lắc lò xo . P 2 : áp dụng các công thức Các Dạng bài tập về dao động cơ học Chủ đề 1: Đai cơng về dao động điều hòa . Dạng1 : Xác định các đại lợng vật lý (x, v. a, E đ , E t F đh ... T /4 T 0 = nT = mT/2 = kT /4 B ớc3 QuÃng đờng đi đợc trong 1 chu kì là 4A , T/2 là 2A và T /4 là A . Vậy quÃng đờng đi trong t 0 S = nT.4A = 4A.mT/2 Chú ý : vận tốc trung bình : v TB = S / t Dạng...
Ngày tải lên: 29/06/2013, 01:27
cac dang bai tap co ban 11 chat luong "cuc hay""
... gam B. 50 ,4 gam C. 78,75 gam D. 31,5 gam Các dạng bài tập hóa học 11 giáo viên trần văn hợp muốn thảo luận về các dạng bài tập hóa 11 xin lien hệ số dt : 09880817 24 1: Hòa tan 2, 24 ml khí HCl ... CO 2 40 . Thổi V ml (đktc) CO 2 vào 300 ml dd Ca(OH) 2 0,02M, thu được 0,2g kết tủa.Gía trị V là: A. 44 .8 hoặc 89,6 B .44 ,8 hoặc 2 24 C. 2 24 D. 44 ,8 41 : Cho 6,72 lít CO 2 (đktc) tác dụng với 40 0ml ... H 3 PO 4 tác dụng với dung dịch chứa 5 mol NaOH sau phản ứng thu được các muối nào A. NaH 2 PO 4 và Na 2 HPO 4 B. Na 2 HPO 4 và Na 3 PO 4 C. NaH 2 PO 4 và Na 3 PO 4 D. Na 2 HPO 4 , NaH 2 PO 4...
Ngày tải lên: 08/11/2013, 02:11
Bạn có muốn tìm thêm với từ khóa: