các dạng bài tập toán cơ bản lớp 4

Giải các dạng bài tập toán A3.doc

Giải các dạng bài tập toán A3.doc

... M 2 ( -4, 2),ta : 0.2 0 .4. 40 .2 0)2. 24( 2)1 04( 4 )42 4)( 24( ()('' 4 882 4 4 44 2 <−= <−=−=−⇒ −= =−= −=+−++−−+−== − −− − − −− eA eeACB eC eB eeMzA xx Vậy hàm số đạt cực đại tại M 2 ( -4, 2) ... dạng: )21( 4 8 ) )41 (44 ( 4 '' )41 ( 4 ' 44 . x x Ae x x Ae R y x x Ae R y x AxeA x ex R y += ++= +=⇒ == Thay vào ta : [ ] 5 1 15 .5 41 23168. .4) 41(3)21( 84& apos;3'' 44 4 44 4 =⇔=⇔ == −−−+= −+−+ =−− AA eeA xxxeA eA ... xx eCeCy − += 2 4 1 -Xét Pt vi phân cấp 2 ko thuần nhất đã cho: 1 4 )( 4 )( 4 4'3'' k xo p x e x e x f x eyyy ==⇒= =⇒=−− α α ⇒Ta tìm no riêng của Pt dạng: )21( 4 8 ) )41 (44 ( 4 '' )41 ( 4 ' 44 . x x Ae x x Ae R y x x Ae R y x AxeA x ex R y += ++= +=⇒ == Thay...

Ngày tải lên: 15/08/2012, 09:02

37 12,7K 51
MỘT SỐ DẠNG TOÁN CƠ BẢN LỚP 4

MỘT SỐ DẠNG TOÁN CƠ BẢN LỚP 4

... Ba lớp 4a;4b;4c. đi trồng cây cả 3 lớp trồng được 120 .Số cây lớp 4a và 4 b trồng được là 70 cây ;số cây lớp 4b và 4c là 90 cây ;số cây lớp 4c và 4a là 80 cây . Tính số cây mỗi lớp . 11.CÁC ... cây cả 2 lớp trồng được 70 cây . Tính số cây mỗi lớp biết 1 /4 số cây lớp 4a bằng 1/5 số cây lớp 4b. Bài 2: Hai lớp 4a và 4 b đi tròng cây cả 2 lớp trồng được 110 cây . Tính số cây mỗi lớp biết ... thời gian chạy đúng và chạy chậm-nên ta đưa bài toán về dạng toán tìm 2 số khi biết hiệu và tỉ) 18 Dạng Toán bản luyện thi Học sinh Giỏi Lớp 4 4 Bài 6:Hai bác thợ mộc nhận bàn ghế về đống .Bác...

Ngày tải lên: 28/08/2013, 14:12

22 8,7K 14
Cac dang bai tap boi duong HSG lop 9

Cac dang bai tap boi duong HSG lop 9

... dùng chất oxi hoá (O 2 , KMnO 4 ,) Ví dụ: 10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 5Fe 2 (SO 4 ) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O 4Fe(NO 3 ) 2 + O 2 + 4HNO 3 4Fe(NO 3 ) 3 + 2H 2 O - Chuyển ... .5H O 30,7( )m g= DạNG 4: BàI TậP Về CÔNG THứC HOá HọC BàI TậP Câu 1: Khi hoà tan 21g một kim loại hoá trị II trong dung dịch H 2 SO 4 loÃng d, ngời ta thu đợc 8 ,4 lít hiđro (đktc) và dung ... hoá chất tự chọn: a) 4 dung dịch: MgCl 2 , FeCl 2 , FeCl 3 , AlCl 3 . b) 4 dung dịch: H 2 SO 4 , Na 2 SO 4 , Na 2 CO 3 , MgSO 4 . c) 4 axit: HCl, HNO 3 , H 2 SO 4 , H 3 PO 4 . Câu 3: Chỉ đợc dùng...

Ngày tải lên: 04/09/2013, 21:10

23 2,9K 31
Các Dạng Bai Tap Vo Co- 01

Các Dạng Bai Tap Vo Co- 01

... là: a.19,59 và 80 ,41 b.19,95 và 80,05 c.15,95 và 84, 05 d.17 ,49 và 82,51 Bài 4: Nung 15. 04 gam muối Cu(NO 3 ) 2 thấy còn lại 8,56 gam chất rắn. % Cu(NO 3 ) 2 bị phân hủy? a. 45 b.65 c.75 d.85 Bài 5:Nhiệt ... d.13,63g Phương pháp5: CHUYỂN BÀI TOÁN HỖN HỢP THÀNH BÀI TOÁN CHẤT TƯƠNG ĐƯƠNG. A. NỘI DUNG PHƯƠNG PHÁP: - Nguyên tắc : Khi trong bài toán xảy ra nhiều phản ứng nhưng các phản ứng cùng loaih và ... của Oxit? C: BÀI TẬP VỀ NHÀ Bài 1:Dẫn Vlit CO 2 (đktc) vào dung dịch chứa 3,7 gam Ca(OH) 2 . Sau phản ứng thu được 4 gam kết tủa . Giá trị của V? a. 0,896 lit b. 1, 344 lit c. 2, 24 lit d.cả a,...

Ngày tải lên: 10/10/2013, 18:11

14 920 5
Tài liệu Các dạng bài tập C# :Căn bản mảng 1 chiều docx

Tài liệu Các dạng bài tập C# :Căn bản mảng 1 chiều docx

... ThucDon() { Các dạng bài tập C# :Căn bản mảng 1 chiều Saturday, 18. April 2009, 13:00 :46 Bài tập C# Đa phần các thao tác trên C# đều thực hiện dựa trên hàm, thụât toán về mảng 1 chiều, nếu nắm vững các ... toán về mảng 1 chiều, nếu nắm vững các thụât toán, thao tác về mảng 1 chiều thì C# đối với bạn chỉ khó về mặt kỹ thuật cài đặt thôi. Bài tập căn bản đầu tiên sẽ là về mảng 1 chiều: - Xóa phần...

Ngày tải lên: 25/01/2014, 10:20

7 3,6K 60
các dạng bài tập sóng cơ sóng âm (Tải: https://link1s.com/yHqvN)

các dạng bài tập sóng cơ sóng âm (Tải: https://link1s.com/yHqvN)

... tiểu. Các phương pháp giải nhanh bài tập bản: Dạng 1: tìm số điểm dao động cực đại ,cực tiểu trên đoạn AB. Cách 1: áp dụng d 2 -d 1 = ? Và d 2 +d 1 =AB Áp dụng 0<d 2 <AB Dạng 4: ... src="data:image/png;base 64, iVBORw0KGgoAAAANSUhEUgAABMgAAAYwCAIAAAAI8uQFAAAACXBIWXMAABYlAAAWJQFJUiTwAAAgAElEQVR42uzdTWyb54Hoe4qhJJqkJNqWREe1JEeWnZ7Yam/SfEBoJh7B58Jpisx0roFiivRkEVygyKYoBrebWVwMzmI2c1AU3QQHGGTRpphBAd9+BO04mAauMy0MJ2kzjRVPEjuOJbmKKck29UGaEmnqLjTjptYXxQ+JlH6/VUy+osmHb1H9/bzv8zQsLi4GAAAAoFRBQwAAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUA1Kd8Pm8QDCkAdzUsLi4aBQDY2P99Nvg/UEMKwB+ZsQQAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAADCEgAAAGEJAABArQsZAgAoWUNDg0Eo0+LiokEAEJYAIIoAYEdzKSwAAADCEgAAAGEJAACAsAQAAEBYAgAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAACAsAQAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAal3D4uKiUQAAAKBkZiwBAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAACEJQAAAMISAAAAYQkAAICwBAAAAGEJAACAsAQAAEBYAgAAICwBAABAWAIAACAsAQAAEJYAAAAISwAAABCWAAAACEsAAACEJQAAAMISAAAAhCUAAADCEgAAAGEJAACAsAQAAABhCQAAgLAEAABAWAIAACAsAQAAEJYAAAAgLAEAABCWAAAACEsAAACEJQAAAAhLAAAAhCUAAADCEgAAAGEJAAAAwhIAAABhCQAAgLAEAABAWAIAAICwBAAAQFgCAAAgLAEAABCWAAAACEsAAAAQlgAAAAhLAAAAhCUAAADCEgAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAhCUAAAAISwAAAIQlAAAAwhIAAABhCQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAAADKFDIEwEY1NDRU/DUXFxcNLABAvf5+6Jc5AAAAyuFSWAAAAIQlAAAAwhIAAABhCQAAgLAEAAAAYQkAAICwBAAAQFgCAAAgLAEAAEBYAgAAICwBAAAQlgAAAAhLAAAAEJYAAAAISwAAAIQlAAAAwhIAAACEJQAAAMISAAAAYQkAAICwBAAAQFgCAACAsAQAAEBYAgAAICwBAAAQlgAAACAsAQAAEJYAAAAISwAAAIQlAAAACEsAALan0cxkOp81DiAsAQCgxKp8efT13OIdQwHCEgAASqxK4wDCEgAAVCUISwAA2NKqHLs9ZUxAWAIAQIlVCQhLAABQlSAsAQBAVYKwBAAAVQkISwAAdmhV3r4zb4hAWAIAQIlVGQgExm7fMEogLAEAoMSqBIQlAACoShCWAACgKkFYAgBATVko5FQlCEsAAChdU7BxoLXXOICwBACA0j2779Eij7wwM2K4QFgCAMC9moKNQ+1HjQMISwAAKN3gngcNAghLAAAonUlLEJYAAFAuk5YgLAEAoCwmLUFYAgBAuYqZtFwo5AwUCEsAAFhZMZOWmTsLBgqEJQAArMqdliAsAQCgLO60BGEJAADlMmkJwhIAAMpi0hKEJQAAlGuNScv5O1aFBWEJAADrWWPScmJh2viAsAQAgPW50xKEJQAAlMWdliAsAQCgXCYtQVgCAEBZTFqCsAQAgHItn7S8uTBrWEBYAgBAsZZPWk4JSxCWAACwIeXcaVlYLHx/9Myp8XMXZkZSubTBhDKFDAEAAPVoadLyzNRwCVX5ytjZK5lkIBC4MDMSCARiofCRlu7+6P1d4T3RUNjYgrAEAGCnGNzz4EbD8tNVeddcPnv+1qXzty6JTChNw+LiolEAAKBOnZ0aXmrLZxKPPL77cAlVuQaRCcISAIDtb6GQ+/sPTw21Hz223gYkG63K5ZH5QCRxONbVvas93hg18iAsAQDYPpLZVCIcr2pVLjfQ2isyQVgCALBTVLwqRSYISwAAVGW1DLT2fq611z2ZCEsAAFCV5SpmMSHYNoKGAAAAVVlZQ+1HVSU7in0sAQBQlRXQF0lEQ+HDsa5wsPFQrMtXgLAEAABVWVRDdjS3Re5rago2GnaEJQAAbCuVqspEc1tnc1xDgrAEAGBnCTYE+yKJjbblUkN279q7677m7l3tjQ33WdkVhCUAADvXw/G+tcMyFgo/tfchDQnCEgAAVta9q33tAx6L91u4FSrFdiMAAGxD8cbo2gfsaWoxSiAsAQBgLQOtvQYBhCUAAJTusM0kQVgCAEA51r3NEhCWAACwlrVvs+xsajNEUClWhQUAYNsaaO29MDOy4lPN9zVu+dtbKOQydxbuebA1tCvYYPoHYQkAALXhcKxrtbDckoy8nk1dn781dvvGx5nkXD67xsF9kUQ0FD4c6+psatvdFG0KNvo2EZYAALAFauE2y3Q++97s6Puzf7iSSRb/U0sH363iRHPbQy3dn43tT4TjvlaEJQAAbJ41brOM3NdU7b99NDP58+Tbyfnp8l8qOT+dnJ8+MzUcC4Ufi/d/vu2BdTfqBGEJAACVsdptltW7uLSwWHhvduzXNy5WJCnvMZfPnpkaPjM13BdJ/Hn70Z5Ih68YYQkAANW1ybdZJrOp/++Tc9VIyntcySSvjCYTzW1fTjwqLxGWAABQRZt2m+VCIffq9bc3ea2g5Pz0y6OvJ5rbvrb/KRfHsoUsZAwAwHa2Ym4lmiu8ieVoZvJ7V36+VSvQJuenv/vRq2/e+rCwWPCNIywBAKDyBlp773mks7lia6sWFgtnp4ZfHn197e1DNsEvkr/7zkc/S+XSvnGEJQAAVNjhWFeVXnmhkHtl7OyZqeEa+aRz+ex3P3r10ty4Lx1hCQAAlVSl2yzT+ez3rvx8Q7tTbo4fXnvj7NSwy2IRlgAAUDHLb7MsfxPLdD770tXTW37562rOTA2/MnZWWyIsAQCgYu65zXJ/eXOYqVy6+KocaO0daO3tiyQ2+SNfySS1JZvGdiMAAGx/FdzNMp3P/uPIv65RlYnmtif3PtTZ1BYLhaOh8IpdOjk/fSs399vUR1Xd8XKpLb/efSzYYD4JYQkAAOWp1G2WC4XcGnOVA629T+75b4nwOkvOxhujS1fnPr778EIhN5KZvJz+5PytS1Vqyx9/cv5k16BzAGEJAABlWXE3y40qLBb++dqvV6zKvkjiL+5/vIS/pSnYeCjWdSjWdbzjcx/Mjf/6xsWKz2FemBlpb2o51n7UaYCwBACAsgy09t69Gra0Ccwff3J+xTVgh9qPlp9tTcHGpbsxU7n065PvVurC3SVnpob3NLUs388TKsXF1gAA7Ahl7mZ5aW58xdh7oed4ZScD 443 Rk12D3zr4bGU78NT4uVQu7TRAWAIAQOnKuc1yoZD76fU373kwFgp/u/8rPZGOarzbpbx88cDTiea2Sr3mP117wyKxCEsAACgr1WIrrdFajFevv7381sqvdn0xWuoLFikRjn/jwIlKLb2TnJ9+beIdZwLCEgAASnekpXvpPxob7iv+p0Yzk8svgn0m8UiV5irv/X29ITjQ2vu3h09WZCfM87cuJbMpZwLCEgAAStQfvT8QCAy09m5opvHnybfveaQvknh89+HNfOdNwcbne4aeSTxS/kv94NqvXBCLsAQAgBJ1hff0RRJ/df8Txf/IaGZy+f4ff73/yS15 /4/ vPvytg8/Gyrv+di6ffW92zMmAsAQAgFJEQ+Hne4aCDRv4HXj5dOUTuw81BRu36iPEG6N/c/Avyrws9rWJd0xaIiwBAGAzXJobXz5d+UjbwS3+Db4h+HzP0FAZe5zM5bNvpy77fhGWAABQdb+c/P09jySa2xLheC28t2PtR5/b/1TJP/6L5O8WCjlfMcISAACqKJ3PLp+ufHLvQ7XzDg/Ful7oOV7yj5+7+YFvGWEJAABV9N7s6PIHK7LnRwX1RDq+3f+V0pbzOTM17E5LhCUAAFTRb1MfLX8wWt6KrNUQDYVfPPB0aW1peViEJQAAVMuK18EOtPbW5rstuS1/feOi7xphCQBAredZnV5seSWTrK83XFpbJuenk9mUExVhCQBA7VblS1dPvzJ2th7b8trtqbp7z6W15ftz15yrCEsAAGq3Kufy2SuZZD225eT8TD0O+1JbbuhH3rKhJcISAIDadGNhdi6fXfrvemzLFS+FnZivg6tGo6HwhvYgmctnXQ2LsAQAoBb1RDoSzW2f7rQ6astULr3i48n56br4CD2Rjuf2P1X88a6GRVgCAFCjvpx49NN/rNNrYu8xk79dF+/zUKxrqP1okQdftOkIwhIAgNrUE+m4ZyGZemnLmVxmtac+nPtDvYz/n+19qC+SKObI5Pz0QiHnjEVYAgBQi460dN/zSF205XR+1bD8beqjuvlFvyF4smuwyEViby2kna4ISwAAatHeppblD9b1NbHJ+en0fy1KVPuiofD/2P/nxRw5sTDtdEVYAgBQcwqLhTduXFzxqbpuy7fran+ORDj+xO5D6x52c2HWGYuwBACg5rw3Oza3+uRe/bblW6nL9fW2T3Q+vO4FsVPCEmEJAECtKSwWXpt4Z+1jarYtw8HGNZ6dy2ffq6tlVIMNwROdD699TF1s0YmwBABgB0nns6+MnZ0r4l7E2mzLjk/twLmi1ybeqa9Jy4HW3sSaHyo57x5LhCUAADXj0tz4P1z+yZVMssjj6/Ga2Ll89t9WuX20Zt2zrSgISwAAak5hsXBhZuR/Xf7JD6+9sdGfrbW2bA3tWveYM1PDqVw9bdHRE+lIrDcTC8ISAICtkc5nz04N/88PfnRq/NxcqVtx1FRbBhuK+iX5n669UV8TrU/ufcjpirAEAKC2jGYmT42f+4fLPzkzNVz+q9VUW/ZFEusek5yfrq+tR4r5UCAsAQDYvKR86eN/eXn09QszIxV82dppy8+2fKaYw36R/N1oZrJevrVoKLzuviMgLAEAqLpULr2UlFVaR7RG2nJf8+4ij/zR+G/SpV4AvPmOtHQ7hxGWANtcPp9vqIJKvb0t/KuBWrBQyJ0aP/fdj16t9tYUtdCW+8LxIo+cy2dPjZ+rl5st+6P3r/j4QGuvMxxhCbBNhEKhxSqo1Nvbwr8a2FqFxcKbtz78+w9PVfbC11puy6ZgY/F3JNbRjimrbdHZ3tTiPEdYAgBQLel89pWxs79I/q60H4+FwqXNhm15rT0c79vQu627nS0/bY+wpDwhQwAAwGouzY1vaF/KWCh8pKW7P3p/R3NbY8N90f9aKuZk1+DdY1K59OT89K3c3G9TH619Ve1SW369+1iR+39U1oOxrg0dv7Q07rH2o/X4RXfvane2IywBAKiwwmLhx5+cL/La10Rz23/v+HxXeE+0iEVH 443 ReGM0EAg8vvtwOp+9kkm+k7pyJZOstbZcuhp2tTe2zdqyNbTLOY+wBACgwlX5ytjZdZsqFgo/Fu9/NN4fLXUTi2goPNDaO9Dam8qlX598d8WO3cK2HNzz4IbCsk7bMtHctiVzwghLAAC2rXQ++9LV03NrbqERC4VPdD58pKW7UkESb4ye7Bp8dt+j525+sNRmtdCWB6P7SvipWm7LsdtTyx/8Qvyg054y3fd3f/d3RgEAgOKr8pnEIye7BveFd1d8V6H7Gu47EOl8LN4/m7898ae3X97KpcduTw209m7mVkZL+yZdzUxs9AevZiZu35k/GN1Xaxsv/frGf0wsu6/1K/c/0RQ04URZTHkDAFBsVSaa277d/5XHdx+u6sxhNBQ+2TX44oGnE3+6N8aWrBP7+bYHSvvB87cu1eAeJB8vu7I30dxW8pXMICwBANhYVT6TeOQbB05sWoQkwvFvHDjx6eVkt6Qt 443 RoVIvar2SSX7no5+l15z+3UypXHr59+s6WIQlAACVUVgsrFGVsVD4hZ7j1Z6oXOFX1YbgQGvvt/u/0hdJfLrWJudnNvNtDO55sOSfnctnX7p6ejQzWQvf8uuT7y5/8P8odUoWhCUAAH/ilbGza1Tliwee7ol0bNV7i4bCX+8+9kzikaU/vtBzPBGOb+YbaAo2DpWxEs9cPvvy6Otnp4a39rLYVC69fNHdofajTcFG5z/lc5MuAMBOd3ZqeLVNNZaqcsvvwQs2BB/ffbh3V2cgENjkqlwyuOfB5WvVbsiZqeGRzOTJrsGtGswVpyvLmYyFP/kfqSEAANjJRjOTqyVTjVTlXYlwfEuqMhAINAUb706ZluxKJvkPl39yYWZk86cuRzOTpisRlgAAVMVCIfej8d+s9uz/3ft/Wi/0rkfj/fesUluaU+Pn/vfV11K59Ka981Qu/fLo68sfN12JsAQAoAJevf72ardWvtBzPN4YNUR//L25Ifi1/U9V5KWS89Pf/ejVf0n+dqGQ24R/O/jHkX9d/vjJrkHTlQhLAADKteLlkUuG2o9u4Wo9NSveGC3/gti7zt+69Pcfnjo7NVy9vEzns/987dfL/+2gL5IYaO31hSIsAQAo18+Tb6/4eCwU/rO9DxmfFT0a7//03iflOzM1XKW8XNqYdMVlme7ZHRTK17C4uGgUAAB2mktz4z+89saKTz23/6lDsS5DtHawrXYJcTme2H3okbaDFVmg6MLMyKnxcys+dbJr0HQlwhIAgAr4X5d/smIa9UUSz/cMGZ+tastAIJBobvtC/OCRlp4SVk4qLBau3b7xq9X3j3li96EvJb7gG0RYAgBQrtHM5IrLhAYCgRd6jru7sswxrGxh9u7q7GhuDTascwtbMpt6f+7aW6nLa+RuXyTx9e5j674UCEsAANb3/dEzq81o/b8PflV41E5bfjoyD0Q69+9qDwcbO/5r15OZXGY6n7m5MHtxdiw5P732K6hKhCUAABWTzmf/4fJPVnxqqP3osfajhqg227IcsVD4xQNP25WU6vEvFgAAO8t7s6OrPfXZ2H7jsyE9kY4Xeo6rShCWAAA7y/uzf1jtqd1NUeNTQlt+6+CzsVrNtkRzm6pEWAIAUEkLhdxqd1cGAoGmYKMhKkG8MfrNvi9Xdn/LiuiLJL5x4ISqRFgCAFBJtxbSa0SI8SlZU7Dx+Z6hZxKP1M5bGmjttVoPmyZkCAAAdo6JhVXXDjWvVb7Hdx8+HPvMP117Y901Wqvtuf1PHYp1+UYQlgAAVN6Hc+MGoarijdEXH/jShZmR1ybeWWNLyepJNLc93z3knwkQlgAAVMvEfMogbIKB1t4jLd3/duPimanhTftLY6Hwic6Hj7R0u/wVYQkAQBVt+SWamy+VW/m20sh9TVVdrCjYEDzWfnRwz4P/Pv3xGzcuVnv2cqj96OCeBy2/hLAEAGArXZgZOdk1WO+fYqGQu7WQnliY/nBu/ONMct2cSzS3HYh09kfv7wrvqcblo03Bxsd3H 340 3n/t9o1fTQ2vsSRvaWKh8GPx/kfj/a59RVgCAFAT0vlsPfbJQiF3PZv6OJO8ODu20SnZ5Px0cn76/K1LS5H55N6HHox1VXzeL9gQ7Il0PN8ztFDIjWQm350ZuTAzUuZr9kUSg3sePBjd58JXakHD4uKiUQAA2CH+7v1/XuPZOlpKtLBYmJyfGbk98dvURxW/vnegtfd4x+fijdGqfoRULj12e+ra7amrmYkiP8LS/OqRlp594birXqkpZiwBAPhP49mbNR6WFZzxW8OFmZELMyNP7D50vONz1eu3eGM03hgdaO2925mBQGD+Tm75ljCdTW2xUNjFrtQyM5YAADvI2jOWgUDgbw+frMGpsFQu/eHcH6oxObmuk12Dd9sPWI0ZSwAA/ujfpz9+fPfhWngnhcXCtds3Ps4k30pd3pINIZecGj/3TurKX+9/0qWnICwBACjKGzcuPhrv38L1YJYudr2c/mRpQZ1acCWT/N6Vn7 944 GkXo8JqXAoLALCDfH/0zLo7Xgy09m7+viPpfHY8e/PczQ8qviFHpcRC4f+x/88T4bizCJYzYwkAsIMUM+d2YWake9fezbkgNplNVWll14qby2dfunr6hZ7jPZEOJxLcw4wlAMAOcmFm5NT4uWKOrN6iNTV4sWvxYqGwa2JBWAIA7GjJbOqlq6eLPLgvkjjZNViRiLq7Es/F2bHan5xcty2/2fdla/mAsAQA2KEKi4X/+cGPNvQjz+1/qrTNLRcKuevZ1PX5W+/P/qFm75wsTV8k8XzPkNMJhCUAwA51avzchZmRjXbU4J4HeyMda0/TLRRytxbSEwvT125PXc1M1PvM5NqeSTxSI/uygLAEAGCzXZob/+G1N0r72Vgo/EAk0d7UsqepZemRmwuzUwuz6Xx2m81JFuPb/V9xsyUssSosAMDOcjC6r+SfnctnNzrbuY2dnnhn8/dlgdoUNAQAADvr97+G4FD7UeNQvgszI8lsyjiAsAQA2IkejfcbhIr49c3/MAggLAEAdqJoKGzSsiIuzIyk81njAMISAGAnGtzzYMzCM5XwduqyQQCrwgIA7FDlLA9bFxLNbQcinft3tbeFIq2NkaUH 443 RdD6bW7wzdnvq9p35sds3Ps4k58qYdYyFwv9P/1ecTuxwVoUFANihDsW6Blp7t9kqr32RxGdbPtO7q7OjuTXYsPLVeUt7hMQbo4FA4PHdgUAgMJqZ/NXUcGk7pszls6lceunVYMcyYwkAsHMVFgvf+ehnc3V+l2AsFH4s3v9AJLEvHG8KNpb8Oul89u3U5TNTwxv9wWcSjzy++7DTCWEJAMAOlc5nX7p6uh7bsi+SeDje1xdJRCt6s2gym/rBtV9taEAGWnttaImwFJYAANqyPtry7uTk/l17V7vStXwLhdw/X/t18VfGus0ShCUAALXellWanFzbqfFzxd+A+reHT5ZzFS7UO4v3AAAQiIbCLx 54+ tT4udIWsKmGzZmcXMNf3f/ExHwqOT9dzMGZOwvCkp3MjCUAAP+psFh4beKd87cubeF7WFrW9XDsM7WwzmrxE7nfOvishWERlgAA8J9KWL2mTJVa1rUaRjOTL4++vu5hJ7sGB1p7nTzsWC6FBQDgTyTC8b85+BfvzY69NvFOVfNyoLX3cKxrk++c3KieSEcsFK73HVlAWAIAsNmCDcGB1t4jLd0Vz8ulmOze1V5HF46e6Hz41Pg5ZwUISwAASszLgdbeZDb1/ty1t1KXSyjMvkiio7m1P3p/R3Nbnd6FeKSl+1RAWIKwBACgDIlwPBGOH2s/ulDIXc+mpvOZmwuzUwuzKx58ONYVCAQ6m9pioXAtX+O60cAufusREJYAALCqpmBjT6RjB37ww7EuYQlrCBoCAABYW2dT29oHdO9qN0oISwAAYFW7m+xRCcISAADKsO7umpH7mowSwhIAAChRLBRetzxBWAIAAKt6IJIwCAhLAABgLYXFwhrPLu2wAsISAABY1Uz+9hrPrrtmLAhLAADY6cZuT632VCwUToTjhghhCQAArOXmwuxqTz0W7zc+ICwBAGAdF2fHVnvKyj0gLAEAYB2pXDo5P73iU4nmtp5IhyECYQkAAGv5/fTHqz315N6HjA8ISwAAWEthsXBmanjFp2Kh8JGWbkMEwhIAANby3up3V57ofDjY4NdpEJYAALC6hULutYl3VnzKdCUISz0r6xMAACAASURBVAAAWN+r19+ey2dXfOov9z1uuhKEJQAArCWZTV2YGVnxqb5I4lCsyxCBsAQAgFUVFgs/uPar1Z492TVoiEBYAgDAWlX5ytjZ1S6CPdk1GA2FjRIISwAAWNVrE+9cySRXfGqgtXegtdcQgbAEAIBVnZ0aPn/r0opPJZrb/ur+JwwRCEsAAFjVpbnxM1PDqz37fPeQlWBhRSFDAAAAgUDg7NTwGlX5Qs9xt1bCavyLCwAAWyOVS9dRVfZEOnxlsBozlgAAbIHRzOTLo6/3RRJbvshqYbHw40/Or7ZlZSAQeG7/U6oS1tawuLhoFAAA2PyqvPvHk12DR1q6t+T2xXQ++/2xM8n56dUOeCbxyOO7D/vKQFgCAFBbll93mmhu+9r+p+KN0c18GxdmRk6Nn1vjAFfAgrAEAKCe2jIQCAy09j6779GmYGO1//Z0Pnt64p01Ln9VlSAsAQCo17YMBAJD7UcH9zxYpbxcKOTO3fxgjXV6AoFALBT+atcXVSUISwAA6rgtY6Hwic6HH4x1VTAvFwq5f5/++BfJ3619WKK57fnuITuLgLAEAKDu23LJUPvRz7c9UOa9l6OZybdSl9e+8HXJE7sPneh8eEuWEQJhCQAA1WrLQCDQF0kM7nmwN9JR/ATmQiF3PZv6OJN8K3V5Lp8t5kdOdg0OtPb6OkBYAgCwPdtySaK57Qvxg7sbYx3Nba2hXZ+eWkzns7nFO2O3p24uzF6cHVtjB5EVX3bz16QFYQkAAFvTlpW1dDOniUooU8gQAABQC461Hw0EApvZllVdfhaEJQAAbOe23LQNM0FYAgDAdmvLgdbe4x2fczslCEsAALSlpARhCQAAm9WWiea2/+v+wUQ4bmBBWAIAoC03JhYKf7Xriz2RDuMJwhIAAG25YSe7Bo+0dH96r0tAWAIAoC2LMtDa+3Tnw9FQ2ACCsAQAgA235XP7nzoU6zJuICwBAKCUtvzWwWet+wqbzxXnAADUR1sOtR9d+5gndh9SlSAsAQCg9LYc3PNZowTCEgAASmzLgdZe05UgLAEAoPS2TOezBgeEJQAAlN6WVzLJwmLB4ICwBACA0tvyvdkxIwPCEgAASm/LU+PnFgo5IwPCEgAASm/LV6+/bVhg84UMAQDAVknl0pPz05fTn1zNTCTnp+95ti+SiIbC3bv2HmnpiYbChmu1tgwEAmemhpf+2N7UYkxg8zUsLi4aBQCATe7JczffP3/rUvE/kmhu++8dnz8Y3RdscMXZCs5ODZ+ZGh5qP3pszY0uAWEJAFDfCouFj9LXfzn5++WTk0XqiyROdg2avVzRaGayJ9JhHEBYAgBsW5fmxn96/c25Suy1+ELPcQUFCEsAgB1koZB79frbF2ZGKvia3+7/inlLQFgCAOwIF2ZGTo2fq/jL9kUSz/cMGV6gRlgVFgCgKgqLhVfGzl7JJKvx4lcyyWQ2lQjHjTMgLAEAtqd0PvvS1dMVuaNyNRML08ISqBGWqwYAqL+qDAQCH86NG2qgRpixBACopNHM5I/Gf1PtqgwEApH7mow2ICwBALabdD778ujrm/N3HWnpMeBAjXApLABAxarypaunN+2v2+cGS6BmmLEEAKhYVa52BWyiue0L8YOHY5+JN0YDgUAql56/kxu5PfGL5O9K++ue2H2oKdho2IEaYR9LAIByrbGzSKK57Wv7n1rqyeUWCrnXJ989f+vShv66RHPbNw6cCDa49AwQlgAA28XZqeEzU8PLHx9qP/pnex9atwBTufTPPnmz+B0vv93/lWgobNgBYQkAsE2MZiZXXLDnuf1PHYp1Ff86b976cN0rY/siiZNdg6oSEJYAANtHYbHwnY9+tvzWyhd6jvdEOjb6aqlc+h9H/nW1GzWfSTzyaLzfFbCAsAQA2FZWvAh2qP3osfajJZfqR+nrv5z8fXJ+eumRvkgiGgof7/jcajdqAghLAIB6lcqlv/vRq/c8ONDae7JrsPwXT+ezgUDAVa9AXbDdCABAiV6ffPeeRxLNbX91/xMVeXFJCdQR1+gDAJQilUtfmBm558EvJx51DyQgLAEAKMqK05UlLNgDICwBAHaidD674nSlkQGEJQAARXlvdvSeR2KhsOlKQFgCAFCs36Y+uueRIy3ddfcp0qtsmAmwUVaFBQDYmFQufXeTyU+FZU8dfYRLc+Pnbn5wJZN8bv9Th2JdvlOgTGYsAQA25sO5Pyx/cF84Xkcf4d2ZkSuZZCAQ+On1NxcKOd8pICwBADbV2O0byx9sCjbW0Ud4LN6/9B9z+ezy5W0BhCUAQHUtXw+27uzftffuf5+/dSmVS/taAWEJALBJtkeDBRuCT+w+dPePJi0BYQkAsHkmly3bU6c+vdrQhZkRk5aAsAQA2CTZVZa6KSwW6uuDfPpq2IBJS0BYAgBsmmu3p1Z8fCZ/u85+C2wI9kUSd/94YWbEtpaAsAQA2AyZOwsrPj62SnDWss+2fObTf3w7ddn3CwhLAIAtc3Nhtu7ec++uzk//8czUcN1d0AsISwCA7WMkM1l377mjufWeR66ttEUngLAEAKikifnUio9fySTrbrov2HDvr4LvzY76igFhCQBQXcnVtxupx+m+gdbeT//x/K1LroYFhCUAQHV9eiXVe7xVh4vfRO5r2gZ5DAhLAIB6Eg2FV3vqwszIwiq7XNas/bva73nk40zStwwISwCALXPu5gf1/hEuzo75HgFhCQCwZc5MDdfdpOU9kvPTbrMEhCUAQBUdjnWtfcA2mLScyd/2RQPCEgCgWtpCkbUPODM1nMql6+XjfDg3vkJY5jK+aEBYAgBUS2tjZN1jfvbJm/XycVbclnM6LywBYQkAUDXxxui6x1zJJC/MjNTFx1lxW87bd+Z90YCwBACoojW2srzr1Pi5dD5b4x9ktUt2x2xlCQhLAICq+mzLZ4o57KWrp2t8edXJlaYrAYQlAEDV9e7qLOawuXz2lbGztfxBfjn5e98mICwBALZAIhyPhcLFHHklkzw7NVybnyKdzybNWALCEgBgqzwW7y/yyDNTw7XZlu/NjvoeAWEJALBlPt/2QPEH12BbLhRyb9y4uNqzkfuafMWAsAQAqK54YzTR3Fa/bXnu5gdzqy9au39Xu68YEJYAAFX35N6HNnR87bRlKpc+U6t3fgLCEgBgBznS0l3kEj6fbstT4+e2fA+Sn33y5toHdDa1+X4BYQkAUP3fohqCJzof3uhPXZgZ+d9XX0uvfhlqtZ2dGr6SSa59zO6mqO8XEJYAAJuhhEnLQCCQnJ9+6erpS3Pjm/+GL8yMrHsRbCwUbgo2+nIBYQkAsCm/SDUEv9r1xRJ+cC6f/eG1N/4l+dvNvCx2NDN5avxcMbXsmwWEJQDA5umJdAy09pb2s+dvXfrORz/bnKnL0czky6OvF3Nkf/R+XysgLAEANtWz+x4t4YLYJUtTl98fPZPKpav3Di/NjRdZlYFAoDfS4TsFNqphcXHRKAAAlFluP7z2RpkvMtDae7zjc/HGSi6cU1gs/PiT8xdmRoo8PtHc9uIDX/KFAsISAGAL/Evyt+dvXSr/dfoiiT9vP7p/195gQ7lXlo1mJn80/pu5jaxA+9z+pw7FunybwEaFDAEAsM3cvax0/k5uYmG6LRRpbYwsPRK5r6lKS56e6Hx4cn5m3Z081nUlk7wymoyFwo/F+z8b258Ixzf6CoXFwnuzY69NvDO38U1NDkb3OX+AEpixBADqXjqfvZJJXrs9VWTa9UUSHc2t/dH7O5rbKnjpaTqffenq6blK71H5xO5D+3e1d+9qX/etpnLp309/vO6GIqs52TVY8kJEgLAUlgBAXUpmU+/PXbs4O5acny6z3Pqj9/dGOsqfzExmUy9dPV29j5xobutsjh/+06tVby7MTi3MFn8j5YpiofDfHPyL8q+/BYQlAEAdKCwWPkpf/+Xk78vsyeWW7m/sKW9Z1OI39qgp7q4EhCUAsFOSsuS7B4sXC4Wf2vvQo/H+kqfv6q4tLQYLCEsAYEcoYY3TMvPyROfDR1q6S8vL+mrLFw88XcIqQQDCEgCoG+l89vTEO2XeQ1hyXv7lvsdLu0a0XtrymcQjj+8+7DQDhCUAsG1t8kTligZae5/d92gJS/vUfls+sfvQlxJfcJoBwhIA2J4Ki4XXJt45f+tSjbyfF3qOl7CuTzKb+sG1X21tGK+mL5L4evcxK8ECwhIA2J7S+eyp8XPFbEq5mYbaj/7Z3oc2WmK1+VliofA3+75c/g4rAMISAKjRqnzp6untNMtXa7OvsVD4xQNPR0NhJxsgLAEAVbkFEs1tz3cPlVBll+bGf3r9zS3/aCW/fwBhCQDUgVQu/Y8j/1pMeiWa2zqb/2SHjI8zyc3cjKS0Gb+FQu7V629vyQq3S9xXCQhLAGA7W3eucqC193Csq3tXe2to14pptFDIZe4sjN2eunZ7qtrXnZZzNelWTV2e7BocaO11pgHCEgDYnhYKue9d+flqrTXQ2nu 843 PxxuiGXjOZTY3cnnjjxsUqJVw5s3+FxcLbqcu/SP5uc4Y30dz2tf1PbXQAAYQlAFA3CouFV8bOrrhu6kBr79OdD5d5Q+BoZvKt1OVqXIBa5pWlC4XcuZsfnJkart7YxkLhv9z3+KFYl9MMEJYAwHZ2avzcitU31H70WPvRSv0tVaq48t9kYbHw3uzYr29cTM5PV/CNJZrbntz70JGWbndUAsISANjmLs2N//DaG8sff6HneE+ko+J/XTXy8rn9T1VkSjCZTb0/d+3i7Fg5hRkLhY+0dB9p6anG6AEISwCg5qx4a+Um7LKYzmdPT7xTqYtjY6HwN/u+3BRsrODbG8/eHM/eLDIyY6HwA5HE4VhXZ1NbIhx3XgHCEgDYQVa8CLZKc5XLjWYmfzT+m4os7dMXSTzfM1S9DM4t3pm/k5tY+GNkhoONHc1tgUAgcl9TBZsWQFgCAPVkNDP58ujr9zz4TOKRx3cf3rT3UFgsvDbxTkX2JrGZB7BjuZMbANgyP0++fc8jfZHEZlZlIBAINgS/lPjCCz3HY2VfeXtq/NxCIedrBYQlALB9jGYm09XZv7FSb2/53YN/vf/JLXkzPZGOb/Z9uS+SKPN1zt38wIkHCEsAYPtU5cujr7909XTNtuXy6cqB1t4tvFewKdj4fM/QUHkbh5yZGq7lmAcQlgDAxqoyEAjM5bMvXT1dg9dnrjhd+Vi8f8vf2LH2o8/tf6qcVzg98Y4zEBCWAMA2qcq7tVaDS4b+atk2konmthrZd/FQrOtbB58t+ZbLCzMjqVzaeQgISwBgm1TlUPvRY+Vd21kNC4XclUzyngef3PtQ7bzDeGP0xQNPl9yWr0++61QEhCUAoCqraCQzufzB7l3tNfUmo6HwiweeTjS3lfCzF2ZG3GkJCEsAoO6r8ondh2qzKgOrLJ0ab4zW2vuMhsLfOHCitKVi305ddk4CwhIAqOOq7IskTnQ+XJtvNZ3PLr8OtrSJwc34Vakh+PXuYyW05Zmp4cJiwZkJCEsAoC6rMhYKn+waDDbU6P/L31iYXf5gZ3O8dn9bKrUtr92+4eQEhCUAUH9VGQgEvtr1xWipq85sguvzt+rvF6aS2nL5yrcAwhIAqIOqjIXC+3ftreX3PLbSPF7tL3UTbAie7Brc0DqxVzLJGtxBFEBYAgBrVWUgEDjR+XDNXgS75MLMyIoNVvsDvrRO7IbacsX1bwGEJQBQu1UZCASOtHTX8tteY2ayLvbniIbCX+36YvHHv7tSRQMISwCgdqtyoLW3xqcrc4t3VntqxUV9alBPpOO5/U8VefAFYQkISwCgjqoyEAh01/bdlWv7uB6uhl1yKNb1xO5DRR6cyqWdtICwBADqoyoDgcCu+5rr96O9lbpcR+/2ROfDRe69OXZ7ynkLCEsAoD6qMhAI3L4zX+MfYf7OqqukzuWzyWyqbn6Fagg+3z1UzJG1/6UACEsAUJV/9P7sH2r8U0wsTK/x7K9v/kcdfSPRUPhk1+C6h624vQqAsAQAarEqA/WwcWI42LjGsxdmRurrjsSB1t51L4iti9VuAYQlAKjKP3p98t1a/iwd62XYuZvv19e387X1Voi9Uj+LEgEISwBQlYFAIHD+1qXRzGT9ft7zty7V1xRfvDE60Nq79jE1Po0MICwBQFXe60fjv6nZNos3Rtc95vTEO/X1NR3v+NzaB2TuLDiZAWEJANRNVQYCgbl89tT4ucJioU4/+IWZkUtz43X0htedtIzc1+R8BoQlAFA3VbnkSib5ytjZ2mzLYrZ//On1N+vr8tHH4v1rPNu05pJFAMISAKi5qrzblv9 242 INfroDkc51j5nLZ1+9/nYdfWX7d+113gLCEgDYVlW55MzU8Nmp4dprsPZiDrswM/LmrQ/r5jeqhmBfJOHsBYQlALCtqrJm27K7uLAMBAK/SP4umU3Vy3f32ZbPOIEBYQkAbLeqrM22jDdGY6FwkQf/4Nqv6mX3kd5dK1/iW8w9pQDCEgCo3aqszbY80tJd5JFz+ez3x87UxQq3zfetvEJPZ3Pc6Q0ISwCgvquyBtvySEtP8Qcn56drdoXbYhyOdTnDAWEJANR9VdZaW250DdVa3j1lXW2hiJMcEJYAwNZUZSwUHmjtLf52xDpqy2BD8Indh3ZIW+5tanGeA9teyBAAQE1V5UBr75N7/ltHc2uw4T///bewWHhvduzU+LlKtWUgEDjWfnRrP/sjbQfP37pUQlt+vfvY3ZGpfYnmtmhF/2kAQFgCAGtV5VD70Ufj/cs7JNgQHGjt7YskTo2fu5JJbo+2TITjiea25Pz0tmnLyZU+yxfiB53qwE7gUlgA2PqqTDS3fbv/K8faj64xuxUNhb/efWyoQjVYC9fEPrn3oRJ+aqktFwq5WvtOx7M3lz +42 h4kAMISAKhkVQ609n7jwIliLpgMNgSPtR892TW4PdrySEt3aXeQXskkv3fl57W2v+XF2bF7HomFwomwvUYAYQkAVLkqh9qPnuwa3NCFnQOtvS/0HN8GbRlsCJ7ofLi0n53LZ1+6eno0M1kjX2s6n11+We9j8X4nPCAsAYDK+9WnQm6o/WhpNzr2RDq2R1uWPGm51JYvj77+5q0Pa+FrfTt1efmDg3sedMIDwhIAqLyvdx/riyTKqcq7bfnigacrshnJFrZlOZOWS36R/N33R89s7S2XC4XcmWUDONR+tCnY6IQHdoiGxcVFowAAm6mwWPgoff1QrKv8l0rnsy9dPT33/7N3Z7FxnQeC74t0kSwVS1wskmWzuciUqGQsMnekKBaETqQImkCyjKTTIyBIw 24/ GAEaemkEweRlHi4u7kO/5CIw+kUI0NCD20E3Aqg7iWFbQo+gyHZD8BJ7Ei2TaDMXDaMSKam4VKm4qOo+MMNmSIkia2NV8feDH8RiLadOHVH+8zvn+/JxtWGOoZvL3vjxjV/m+BYiwdBfd3x9vS5ofDf26+VLp3x/2zebauod7cAGYcQSAIr+r29VdV6qMhAI1AdD5T5uWV1V/RfPvJDjk8xfcvlu7NfFH7ocSo4ur8r+hm5VCQhLAKBsVEBb9kba+xu6c3+eD+9f+/ubb1+bGinalifmUksWI513qPVLjkxAWAIA2rKovvnMnrxs/9Rc6qe33jvx+bvx2USht3kmPXti4PTy 249 GdxuuBDYa11gCQIUo9+str02N/PTWe3l8wv6G7kOtXypQ4yXmUm8Mn1u+xEhPOPpq10FHIyAsAQBtuT5teWrkwsWJwfw+ZyHycoX9/MPt367Px9ArgLAEALRlNtKZ9JvD528mY3l/5mhd439p/b+21T9TXVWd4xZ+Er/+TuzTR373WPu+vFwsCiAsAQBtmb2Z9Ozf33w7Lxv/uHf0XDjasWnLWgtzfpGY/zH6m+Wnv87b29z7YvTLDj9AWAIA2nL92zKPG7+Cvc292+ufbQ89/cQzV4eSo5cnh5avKbJYTzj6SueBHIdDAYQlAKAt8yaWij9ywtUC6W/oDj9V27GpZfGNDx5ODz +4+ 3ky9sR9qCoBhCUAaMtSbMvijFvmLhIMHd96xIQ9wAbnV2sAULHKen3LPG68qgQoNCOWAFDhyn3c8tTIhULME5u7aF3jq50HVSWAsASAXA0lR7fUbi7xuij3NUjev3vlXHHHS59oNddVpjPpibkHww/Gbj0YSz6c6dy0pbkm0lrXmN9FNQGEJQCUfVWeHDpbFudDlnVbBgKBa1Mjv7j9UYlccrm3ufdw266Vq3KFDe4JR4+17zPUCQhLAOCPVTn/50gw9Lc9L9VW12jLwplJz751+5OLE4Pruxtf7tjfG2nPfTuPte/rb+j29wgQlgCgKtcztDZgW87v+bdjn8Smx4v/0qsZaZxJz/79zbdXuYe1JSAsAUBVlllVVkxbBop+ZmwkGDrctms1EXhq5MKaxlR/uP3bzokFhCUAqMpyqspKast0Jn3rwd0ijF4ebOn72pbnV76iciF3f3rrvTU9+WomAQIQlgBQyVW5t7n3xeiXy/GNVEZbzovPJn4z/vnH8ev5HcCMBEP7tzz/nxufW+WlszPp2b+7eiqLFzq+9Ug01OQvFyAsAWAjVmW5jzVVUlvOi6Xiv5u6dWVyOMcxzP6G7q80be/YtGVNH24sFT8xcDqLl3OlJSAsAWCDVmVZLDGyAdty3kx69nYqfnv6/vCDu58nY6t5g/0N3Z2btnRvamuta8julwUXJwZPjVzI4oHlO+4NsCBoFwDAWqsyEAh8p/3PK2DOlfpg6PjWI3lpy3NjlwKBQIm0ZW11TVe4tSvc+kLzH2+Jzybm/zD8YCwQCISqa1rrGudvaQhuysuw89WpkeweOJC 846 8YICwBYMNVZSQY6gq3Vsa7q9S2XKKppn7JH0roI3jKrLBA2TMFGQCsrSoDgcDhtl32zOPa8vzYpY353sNP1Wb3wC9u/jNHDiAsAWBjVWUkGNq5ubNi3mMeL7Pc4G3Zsakluwc+U9fs7xogLAFgA1VlIBB4LhytmFUH816VG7kt22obswxLa40AwhIANlRVBgKBHZF2Vaktl2uta4isfT6no9Hdq1wnE0BYAkCFVGXFWLkqI/mY8HajtWV1VfVfd3x9TQ/pCUf3NG33Nw4QlgCgKiutKl/rOnR86xFtmYVoqGlvc+/q73+sfV/FnFYNCEsAYA1VmfVyheVSlV3h1vk1SLRlFg637VpNW0brGn +4/ dsVsBQqwLyqTCZjLwBAYC1jlf/3F75TpgNNq6nKVd55TQ629JXm+pYFEkvF//HWrx63 645 Gd+9p2m6sEhCWALBxq7J8M2lNVaktc5TOpG89uDs+l7w6NXJnOl7/VKg73Noeero99LSBSkBYAsBGr8p539/2zaaa+squSm0JwCo5BwMAVZnNbD3/MPhv6Uy64qsyEAi43hIAYQkA+a/KQCAwNZd6c/h8WbRlLlWpLQEQlgBQkKqcdzMZO3Pns4qvSm0JgLAEgIJU5bwP718r5UbKV1VqSwCEJQAUpCpLvJHyW5XaEgBhCQAFqcqSbaRCVKW2BEBYAkBBqrIEG6lwVaktARCWAKjKglRlSTVSoauylNsyMZdK5GO9TQCEJQCsQ1WWSFsWpypLsy3n3/uJgdPaEkBYAkC5VuW6t2Uxq7LU2nLhvU/NpU4MnJ5JzzrmAYQlABSpKiPBUH9DdwW0ZfGrshBt+W7s1+lMeq0PjKXii997W21jsOophz1AMVVlMhl7AYCNVpX9Dd1fffo/RUNNC7fMpGcv3Pv9ufwF4cGWvgMtfZVdlavcgDXpCUdf6TxQXbXa331fnBg8NXIh64cDICwBYM1VebClb9/TX6itrnlcIL0xfC42PV5GbbnuVZn3tozWNb7aebD+SaOg6Uz6X//w4cWJQVUJICwBoEhVufpcOXPnsw/vXyuLtiyRqsx7W6688elM+vLk8Ad3ryz+FYCqBBCWAFDYquxv6P7LZ/euvjrOj13K12mxhWvLkqrKQrRlf0P3odYvNdXUL37+T+LXl380qhJAWAJAYasyu7TL40SyhWjLEqzKQrTlQjcmHqYed4qyqgRYd34EA1CBfrVoRCvrqOsKt77WdSgv25P3eWJLtioDeZ0ndsHNZExVAghLACiqVzoP9ISjgZyHCkuzLUu5KgvXlqoSoJQ5FRaAypTOpG8kbvdG2nN/qpI6J7b0q3KVm6oqAYQlAGwsJdKWZVSVhW5LVQlQUvw4BoAnK4VzYsuuKgOBQH0w9L3ub6hKAGEJAKx/W5ZjVc5rqqnP135TlQDCEgC0ZZZtWb5Vmff9pioBhCUAaMs1t2W5V+XCfnu5Y7+qBBCWAECx27IyqnJeb6T9YA4z4qpKAGEJANpyzW1ZSVU572tbnp9fX1RVAghLAKDgbVl5VRkIBKqrqr/b8VVVCSAsAYCCt2VFVuW82uqaY+37VCWAsAQACtiWFVyV8/obuqN1jaoSoJJUZTIZewEAcjGUHD05dDYvT7W3uffy5HAFV+W8j+5ffSf2qaoEqBh+WANArvI4bvnh/WsVX5WBQGBH5M9UJYCwBAAK1ZYVX5VPpCoBhCUAaEtVqSoBhCUAUDJtWZFVOf1wVlUCCEsAoBht2d/QXZFjlb+buqUqAYQlAFCMtrw4Mbh4fcuK8XH8uqoEEJYAQJHacmF9y4pxbWpkycy3qhJAWAIA2nK10pn0L25/pCoBhCUAoC2z9P7dK4uHK1UlgLAEALTlGlybGjm36C2oSgBhCQBoyzUYSo7+9NZ7qhJAWAIA2jIbibnUz0b+XVUCCEsAQFtmWZUnBk4vXFqpKgGEJQCgLVUlAMISALRlsZy+85mqBBCWAIC2zN5fPru3JxxVlQCVrSqTydgLAFBkQ8nRk0Nn8/JUB1v6DrT0lfKbTWfS79+98rUtz6tKAGEJAGhLAHgEvzgEgPVhDRIAhCUAoC0BQFgCgLYEAGEJANpSWwIgLAFAW2pLozRGUAAAIABJREFUAIQlAKAtARCWAIC2BABhCQDaUlsCICwBQFtqSwCEJQCgLQEQlgCAtgQAYQkA2jLfbZmYSyXmUj4dAIQlAGjLLKvyxMDpEwOntSUAwhIAtGWWVTk1l5qaS50YOD2TnvXpACAsAUBbrlYsFZ+vyvkv22obg1VP+WgAmFeVyWTsBQAofUPJ0ZNDZ/PyVP0N3X/57N7qqtX+fvnixOCpkQsLX/aEo690Hlj9wwEQlgBABbZlTzj63Y6v1lbXrHy3dCZ95s5nH96/pioBEJYAoC2XigRDf93x9Wio6XFJeXly+IO7V2LT46oSAGEJANrysfobuo+07aoPhhZuScylPolfP7fsUkxVCYCwBABt+YTCvDMdXzw+qSoBEJYAoC3zQ1UCsDL/QgBAWcrjGiSqEgBhCQDaUlUCICwBgNJrS1UJgLAEAG2pKgEQlgDAerSlqgRAWAKAtlSVAAhLAGDtbXk0ultVAiAsAYDsvdC8Y29zr6oEQFgCANk73LarJxxVlQAISwAg23/aq6qPte9TlQAISwAge/XB0JraUlUCICwBgKV2bu6M1jWqSgCEJQCQ7T/wVdVfbtqmKgEQlgBA9nZE/kxVAlAcQbsAgHI0lBx9O/ZJIBD4q479TTX1dshaqUoA8sg/JwCUZVWeHDobmx6PTY+/fuOtj+5ftU9UJQDCEgDWVpWLb3kn9um1qRF7Zonph7OqEgBhCQBLnR+7tKQq5/301nvx2YT9s9jvpm6pSgCEJQAsrcpzY5ce992zo7+1ixb7OH5dVQIgLAFgtVUZCAS+1NBtLy24NjUyNZdSlQAISwBYbVX2hKO9kXY7al46k/7F7Y9UJQDCEgDWUJWvdB6woxa8f/fK4uFKVQmAsARAVT65KlXTgmtTI4v3mP0DgLAEQFWqyjUYSo7+9NZ79g8AwhIAVGU2EnOpn438u/0DgLAEAFWZZVWeGDi9cGml/QOAsARgQ/vo/lVVqSoBEJYAkKWh5Og7sU9V5ZqcvvOZqgRAWALAH6vy5NBZVblWf/ns3p5w1P4BYL1UZTIZewGAdZeYS12eHDJWmbV0Jv3+3Stf2/K8/QOAsARgY7XQ6PTE76ZufRy/vnAm5wr6G7p3RNo7N7U0BDfJJwAQlgBs9KS8PDl8ZtGVgWu1t7l3d+O2aKjJzgQAYQnAxjKTnr1w7/erHKJ8omhd41e3PN/f0G3HAoCwBGBDuDgxeGrkQt6fNlrX+Fcd+5tq6u1hABCWAFSsxFzq1MiFm8lY4V7iYEufqWsAQFgCUJkKNFC5XE84eqx9X30wZJ8DgLAEoEKkM+k3h88XdKByiUgwdHzrEW0JAMISgEqQmEu9MXwuNj1e5NeNBEPfaf/zrnCrjwAAhCUA5V2VJwZO52Xq1+z8cPu3jVsCQHGY4QCA/Iul4utblYFA4MTA6Zn0rM8CAIrAiCUAeZaYS/3o+s+X3z6/5mTnppYl64Ik5lJ3ZyY/T8auTA7n97zZnnD0lc4D5okFAGEJQJlV5fKxyv6G7kOtX1rNOpMz6dn/Of75e3ev5Gu082BL34GWPp8LAAhLAMq4Kl/u2N8baV/T86Qz6RuJ2/9j9Dd5GcD8/rZvrqZpAQBhCcA6W76ySCQY+l73N3KJuqHk6M9G/j3H0cv+hu5j7ft8QAAgLAEode/Gfv3h/WuLqzIv60mmM+lP4tffiX2ay5MYtASAgjKfAQB5cG1qZHFVBgKB73V/Iy+rfVRXVb/QvOP41iORHJ7t7OhvfUYAICwBKF0z6dlf3P5o8S0vd+zP7whhNNT0g23f6m/ozu7hFycGE+u69gkACEsAWMlbtz9ZfBlktK5xrbP1rOpfrKrqY+37DmY7xeviiz8BAGEJQAkZSo5enBhcfMtL0T2Fe7kDLX2vdR3K4oFXp0Z8WAAgLAEoRW/HPln8ZSQY6gq3FvQVu8KtWbTlkvoFAIQlACVhKDm6ZKnJnZs7i/C62bVlfDbhIwMAYQlAaVkyXBkIBLbXP1ucl86iLYcfjPnIAEBYAlBC4rOJJcOVgUCgta6xaBvQFW59uWP/6u9/b2bSpwYAwhKAEvKb8c/XfRt6I+2rnyd2TFgCgLAEoKR8HL++/MaG4KYib8aBlr6s17cEAIQlAOsmloovXrtywVzmYfE35pvP7IkEQz4UABCWAJSTwQd3Hnn7/Zl1mHm1trrmL555wYcCAMISgHIy/ODuI2+/MzO+LtvTG2l3QiwACEsAysnnydgjb7+1fkt6HGnb5XMBAGEJQHmYSc8+8gLLQCDw4f1r6Ux6XbaqPhhaedCyc9MWnx0ACEsASkLy4cwK3708ObxeG/aVpu0rfHfTU3U+OwAQlgCUgQ/uXlmvl+4Kt64wPWznphafDgAISwBKwsRscoXvxqbHr02NrNe2PReOPu5bxV9jEwCEJQA82vhccuU7/OL2RzPp2XXZtsddSBmta6yu8q8eAAhLAMrE1FzqrdufrMtLP1PX/Mjbv9y0zecCAMISgFLRVtv4xPtcnBhclxNiHzeaunNzlw8OAIQlAKWi7qma1dztF7c/SjxmVZIii9Y11j9+Uh8AIEdBuwCAApmaS50YOH1865F1j7qXonsK8bTx2cTEbHLJGGlbbWNrXYPrOQEQlgCwkvBTtatvyzeGz/3N1sNFC61bD8aW3BIJhrrCrfl6/nQmfevB3cuTQx/ev7bC3fobur/U0N0baXe0ACAsAeARaqtronWNsenx1dw5Nj3+5vD5VzoPFKctl/feXzzzQr6S8vLk8Jk7n02t4vzeixODFycGo3WNL0X35DFrAaA0OVEHgGw8v7lz9Xe+mYy9OXw+nUkXeqtiqfiSW6J1jbkPG6Yz6Y/uX/3xjV+eGrkwtZarRmPT4yeHzp4auVCE9w4AwhKAMvNcOLqm+8+3ZaEXt/zg3v9acstfdezP8Tnjs4mfDJx5J/bpVLYTEV2cGHxz+HyJzGMEAMISgFLxTKhprQ+5mYz9/c23C9dXsVT84sTg4lv2Nvc21dTn8pwf3b/6+o23VnnS78rv/cTAaW0JgLAEgP8wf5nlWh81NZf60fWfDyVH8 749 6Uz6X/5wYfEt0brGw227cnnCN4bOvRP7NF9bODWXck4sAMISAP7Emi6zXOzk0Nl3Y7/Ob2L96x8+XDKu+Fcd+7OeLigxl/rxjV/eTMbyu8duJmNn7nzmyAFAWALAH+17+gtZP/bD+9d+MnAmPpvIy5acH7u05CTYlzv2Z30S7FBy9MTA6anCnLb64f1r16ZGHDwACEsACAQCgdrqmoMtfVk/PDY9/vqNt96N/TqXGX3SmfT5sUvnxi4tvvFgS1/WM8EOJUdPDp2dKuTFkD+99V6hJzECAGEJQNnIZdBy3of3r/3d1VPnxy5l0VrpTPrN4fNLqrInHP3aluez25jzY5dODp3NfbdE6xr7G7pXuAb19wYtAagsVZlMxl4AIGvLBwyz1t/Q/dWn/1N0FfPNpjPpy5PDZ+58tmRosSccfaXzQHaXVub4RiLB0OG2XT3haH0wtPJGzt/5B9u+lfUloAAgLAGoKOlM+sc3fpnHc0ejdY1bw23b659trWtccp3kTHr2dip+e/r+e3evLH/FrKsynUn/6x8+XHKV5pocje7e07T9kS+dzqTfv3tlebK+1nWoK9y6sf8fpMpfHygs/5+PsASgjMRnE6/feKugLxEJhgKBwAr5mktVvjl8PusJYCPB0Pe6v/HEiYLeGDq35CWidY3Hn3vRwQNAZXASDgC5aqqpf7ljf0FfYmouVYJV2d/Q/YNt31rN9LPH2vdF/s8psvNi0+Om8AFAWALAf+iNtOcyQ2wuDrb0vdp1MIuqTMylfjJwJuuqPNa+71j7vlW+bn0wtH/ZlEK3U3FHDgDCEgD+w4GWvuK35Wtdhw5k9aKJudSJgdOx6fEsHhsJho5vPdLf0L2mR+3c3LU0LKfvO2wAEJYAsLQtj0Z3F+e1esLRH27/dnbz38xXZXYTDs1X5Wqmrl2iPhhasgDJ8IO7jhkAKkPQLgAgj15o3vFMXXNeVoNcwQqzsBa0KnvC0e92fLW2uia7zX5+c+fiMdLPsz0LFwCEJQAVrivc+sPt3z41cuFmAcKpJxz91rMvrGa+nEcaSo7+bOTfs67KrBfJnPd07ebFX+ZxjRYAEJYAVJr6YOjVroMXJwbP3Pksj/nUE46+2nUw64cPJUezHko92NL3tS3P51KVACAsAWDN+hu6d27uvDw5nK+83NXUs15VeSAf8xK11TYuuWUmPZv1ibUAICwBKKDEXKr+T1dNXC/VVdXzeXnrwd3Lk0Mf3r+2+sdG6xq/3LTtndinuW9GKVRlIBCYmEsuuSX5cEZYAiAsASgJsVR88MGd303+7+WXNfY3dHdu2tK9qa21rmG9zuSsrqruCrd2hVsPt+0anZ64MzN+dWokMZdasrXRusa2uqbOTVuaayLd4db54so9LK9Njfz01nvZPfZodPcLzTvytR9S6dklt9RUPeXoBUBYArCe0pn0E080vTgxeHFicP7PB1v6vhjpyGKpjDwWZjTUFA01rXURyKydH7t0buxSdo99retQdsuZrF6JDCwDgLAE2KCuTY384vZHa7p28dzYpXNjl6J1jS9F9xQ6mfIiPptY/OWDh9NlXZW3How5bgEQlgCUhJn07Fu3P1kYh1yr2PT4yaGz0brG//rsvnUcvczC8IO7LzSXa1UGAoGB5B1HLwDCEoD1l5hLnRg4nfskq7Hp8RMDp49Gd+9p2l4uq2jcmY6v5m7pTPpf//BhduEdCYa+1/2NrNfJXPnXAbHp8cW3ROsaHc8AVAbrcQGUk/hsIi9VueCd2KdvDp9P5O8J82tiNrkkhmeWzX+zvCrfHD6fdVUe33qkEFUZCAQGk6NLbmmra3JIAyAsASiqxFzq9RtvTeU7Am8mYycGTg8ty55SML5sfY7/Of75yrvoJwNnlk+Nu/qqLNxsOtcTf1hyS/ipWkc1AMISgKJW5YmB0wV68qm51Mmhs1lftFlM7929ks6kH/mtixODJwZOLznddJV6wtG/7XmpcFWZzqSXr+HZsanFgQ2AsASgSNKZ9KmRC1MFPmH11MiF89nOdlM0U3OpM3c+W17dbwydy3oX9YSjr3QemF82s0AuTw4vv7FTWAJQKUzeA1AGPolfz+70zrWan0b1QEtfKe+ND+9fuzw5vHNz587NXdPp2d8uWqgzC3ubew+37Sr09EUf3L2y/MaG4CbHNgDCEoBiSMyl3ol9WrSXOzd2aTA5+krngVKeKnZqLvXh/WvLTy5dq4MtfUWo6GtTI8tP0I3WNZbLZLwA8ET+SQModaeXnflZaDeTsTeHzz/uUsaKcTS6uwhVmc6kf3H7o+W3P7+507ENgLAEoBjis4l1mVOn4tvyta5DLzTvKMILvX/3yiOv/PxipMPhDYCwBKAYzo7+dr1euhTasjEYzvtzRoKh72/7Zle4tTi/Fzj3mPmQWusaHN4AVAzXWAKUrpn07CqHK6N1jVvDbQvLV9x6MHZ5cjj3WWTn23Idr7dsqMlzWEbrGl/tPFi4ZUUWS2fS/3TrvUd+a29zrwssARCWABTD76dGVlNKL0X3LBl/62/oPty269aDu2/HPsluXccSacv8zps6v6xI0d7I+3evPG7n79zc5fAGoJL4dSlA6fosfnPlOxxr33f8uRcfeVZndVV1V7j1+HMvvtyxP5LbAN06nhNbXVXdE47m5akOtvQVsyqvTY087iTYSDDUsWmLwxsAYQlAwc2kZ1dYuzISDL3Wdai/ofuJz9Mbaf/Btm/tbe4t07bc9/QXcn+Slzv2H2jpK1pVJuZSP33MSbCBQGD/luedBwuAsASgGAaToyt89/jWI6uffqa6qvrF6Jdf6zqUy9DlerVld26z7ESCoeNbj/RG2ov5G4ETA6dXuMN/bnzO4Q2AsASgGEZS9x73rZc79mcx/UxXuPX41iPRusbyasva6pqsz4btCUePbz0SDTUVbWvTmfQ/3/pghWmT9jb31lbXOLwBEJasq6qq8vsPyMrjRiz3NvdmPf5WHwz9zdbDuVy1uC5t+a1nX8juga90HijOBLAL3hw+v8IJzIFAYN/TX3RsAyAsWW+ZTPn9B2SbcMtv7AlHD7ftyunnflX1q10HD7b0lVFbNtXUH43uzuKBc5mHxfzIzo9dWrkqD7b0NdXUO7YBEJYAFEN8NvHI 24+ 178vLvC8HWvrKqy33NG1fzUxFSyQfzhSzKh83DeyCvExEBADCEoDsHWzpy+OJneXVltVV1cfa973csf9xd+gJR49Gd2c3sFmcqjwa3e3qSgAqVdAuAChBo9Pjy2/M+3jXgZa+QCDwxCJauS2LuThkb6T9//nidxNzqbszk+Nzyc5NLfO3L5xfGp9NvBP7dOH+0w9nA4VPudVUZSQY2tO03YENQKUyYglQbLFU/IkDfan07JJbCjSbaNmdExsIBOqDoa5wa39Dd1NN/fx/j7vnnZnxUqjKQCDw1x1ft3YlAMISgPwYSo6eGDj9xBh78HB6yS27G7cVaJPKsS1X6d7MZOGePJ1Jvxv79Wqqcm9zbzGXPAEAYQlQ4VV5cujsamJs+MHdxV9GgqGClknFtGVDcNPiLx+3ZEteqvLN4fMf3r/2xHtGgqEcJ/IFAGEJwB/NpGfnqzKLGNu5ubPQm1cZbbnkdNOVF//IWmIu9ZOBM6t8cifBAiAsAcib/zn+edYxtnNzVxG2sCLPiU3MpfL7hLFU/MTA6dj0qq7ePBrd7SRYAIQlAPmRzqTfu3sl6xh7plhxUnltOZK6l8dnuzgxeGLg9NTqYrW/ofuF5h0OfgCEJQD5cSNx+3E1spoYK+b6hxXWlhfu/T5fvxp4N/brUyMXVnn/aF3jXz6715EPgLAEIG/+x+hvso6x/obuIm9tJbXlzWQs97NhY6n4j2/8cjVT9cyLBEOvdh50aSUAwhKAvIml4k+8JG+FGAs/VVv8ba6ktvwkfj3rx6Yz6fNjl1Z/+uu873V/oz4YcuQDICwByJsP7v2vtcbY4pjs2NSyLptdMW15buxSdoOWQ8nRH9 /45 WpWqlzsta5DTTX1DnsAhCUAeZOYS12cGFxrjK1XTFZqW54aubCmzRhKjp 74/ N2TQ2en1likr3Ud6gq3OuwBEJYA5NNaz8Ocj7EHD6cXbgkVceaeSm3Lm8nY+3evrGYzhpKjbwydOzl0dpULiqhKAAgEAkG7AKBwZtKzaz2Rcr6CbiZjC1+21jWu77s40NIXCASyeCOL2/KVzgNrmswmMZe6PDmUx+U6zo1d+jh+/XDbrp2bO5dvSSwV/93UrY/j16eynelHVQIgLAEoiN9PjVTGG8m9LX8ycObVzoOrnNImMZeany/nwcOZA2scL+1v6H7cucdTc6lTIxfOBD/bv+X5TU/VBQKBezOTYzOTqz9XWVUCgLAEKLYzdz6rmPeSY1vGpsdPDJz+ 646 vR0NNK99zKDn6s5F/nx85PDd2qT30dG+kPY9vZGou9U7s0zw+oaoEANdYAhTKUHJ0KucVFEutLXO53nJqLnVi4PRH968+7g7pTPrixODiKXN6wtFt9c+s6VV25LVCVxYJhn 64/ duqEgCEJUChvB37JC/P88s/fFQiC0Lm3paBQOCd2KcnPn83PptY3uE/GThzauTCwi094ehar8wspp5w9G97XrJeJQAEAoGqTCZjLwDkXXw28fqNt/LYMCWVWOfHLmV9TuyCaF3j1nBbx6aWq1Mjd6bjS2Zhzfot53fPP87e5t7DbbtKNnoBQFgCVIJTIxdynxKm4tuyEG92Jj37d1dPFfS9v9yxv7eIJ9wCQOnzq1aA/JtJz+a3KgMlsyDkgtzPiS1QQtdW10QKdnpqtK7xh9u/rSoBQFgCFNyFe78vxNNuhLbMy8Dszs2dhXi/x9r3HX/uRRdVAoCwBCi4dCZduHNEK7st83W6787NXfl9m/0N3T/c/u3+hm6HNwA8knUsAfLs8uTwklsiwdDhtl07N3fOZR7eTsXfjn2yZKKaLNqydK63zHF9y7xXZSAQ6Aq3Rusac9nJC6J1jS9F91hQBABWZvIegFVJZ9K3Htz9PBnb9FTtpqfq2mobI8HQI8+KPPH5u4uT5mh0956m7Ut66drUyC9uf5TLKpcVNpdP3t9O7nPDSkoAEJYAeROfTZwd/e0jJ+Ppb+j+5jN7aqtrFm4ZSo6eHDq78OWx9n2PO38yMZc6NXLhZjKmLQv0Rt6N/frD+9eyeGB/Q/dXmrZLSgAQlgD5sSQUl5s/zXWhHt8YOrfQinube1+MfnmFx6Yz6TeHz2/wtizcW0hn0j8ZOLP6E2KjdY1fbtq2c3OX6XkAQFgCrEMmHY3ufqF5x+LTLyPB0A+2feuJvZTOpN+/e6WkTiLNseXWlMqF3vh0Jv1J/Po7sU9X3oZdTT2dm1qaauod8wAgLAHyaa0X6R3feuTOzPipkQvzX65wEmwuBVv6bTmTnv27q6dKarPTmfTo9MSdmT8OXd6bmXy6dnNjMNxQE24Ibiqd8V4AEJYAlebUyIVHXlf5OJFg6G97XppNP/wkfv3K5PDfbD28pmKppLZczcWNpXYSLwAgLAHyLDGX+tH1n6/1Uf0N3cfa92X9oh/dv7rySZvlkmqxVPzEwGlVCQAbh3/UAR4huwl11jTCudwLzTte6zqUyza/OXw+nUmv+96LhppUJQAIS4DCOj926cTn7w4lRyvvrcVnE7k8vCvcWhltqSoBQFgCFLYqz41dik2Pnxw6W7J5eXVqJLsHDj8Yy/GlK7gtVSUACEuAvFXlwpcLeZnjQF/edW7akt0Db+UclhXQljPpWVUJAMISoBhVuTgvX7/x1qmRC6WTlzsif5bdAy9PDudlA8q6LS/c+72qBABhCVC8qlxwcWKwdPKyqaY+Egxl8cC22sZ8bUOZtmU6k /44 fl1VAoCwBCh2VZZgXh7feiSLtqzPKkcrqS0/iV+fmkupSgDYUKxjCZRQVS7R39B9qPVLTTX167XlsVT8H2/9anEmPdGx9n39Dd353Yyh5OjJobNZP7yYabdkU1UlAAhLgPWsygV7m3sPtX6ptrpmXbY/nUlfnhz+4O6V2PT4wo3Rusa2uqbEXGr5cpc/3P7t/A5allFbJuZSJwZOL3S4qgQAYQlQElW54GBL376nv7Beefm45vzJwJklwXn8uRcL9HIl3paqEgA2Mv/kA2VQlYFA4NzYpb+7eur82KVHLmWxPj9Aq6oXV2UgEPjqlucL93KlfL2lqgQAYQlQ6lVZmnm5ZBuidY15v7qyXNpyai6lKgFgI3MqLFA2VbnEwZa+r215fh0D5tTIhYsTgwtfHt96JBpqKsLrluY5sfNbpSoBQFgClE1VzosEQ4fbdu3c3Fn8konPJl6/8dbCl/0N3cfa9xXt1UuzLWOpeGtdg6oEAGEJUDZVub55+cbQuYUpYSPB0N/2vFTkiYXKaA0SAEBYAqxWOpO+9eDu+Fxy/st7M5NjM5Pzf74zHV8yz03e5XfMMJ1JP3g487iFQy5ODJ4aubDwZdFOgtWWAICwBPhjs03MPVj4cmI2udCigUDg6tTIwp9Xn6NZN9L8xoxOj4+k7g0mR5evS7k4XMNP1XZsaglV1/z01nsLtx+N7n6hecd67cwc2zISDB3femStC28m5lLv3b18uG2XKAUAhCVQZuKziYU/Dz8Ym//Dg4fTd2cm1xo5M+nZweTo9cQfPrx/LZdNWpeTYNe3LRdWFjHgCQAIS2CDiqXiH9z7X4tnc83d3ubenZu7OjZtWa/Kyr0tv9f9jaaa+tXsvX+89auFlUUOtvQdaOlzUAEAwhLYKIaSo2/HPincpZ6RYOgrTdv3Pf2FdRnAzLEtA4HAa12HusKtK9zh2tTI4nOAjVgCAMIS2EDis4l/uvVeoWcPWnCwpW9d8jL3tnzc0qDx2cTZ0d8uHuZVlQCAsAQ2ipn07NnR3+Z4IWV+I63E2zISDO3f8nz3prbm2vrkw5nph7Ofjt9YsgNVJQAgLIGNYskFgcW3+msXS6otV6YqAQBhCWwI6Uz6/btXzo1dKoWNORrdvadpezFLrHBtqSoBAGEJbAgz6dl/vvXBCitSFl+0rvHVzoNrXS6y1NpSVQIAwhLYEBZWWSy1DYsEQ3/d8fVoqKlM21JVAgDCElCVJeGJS3qUZluqSgBAWAIbQnw28Q+D/1bKVTnvaHT3C807ivZyH92/+k7sU1UJAAhLgCd44lhlJBh6LhzdEWlvq21srq1fsshkfDYxOj0+kro3mBwtwsWZB1v6DrT0FW3nnB+7lPU8RqoSABCWgKoMROsaX4ruWf0JqOlM+taDu58nYx/Hrxdu/LPI58SeGrlwcWJQVQIAwhLg0R 345 vD5Rw4zrjUplxtKjn4cv55FkpVaW6Yz6R/f+OWaOllVAgDCEtgo3hg698iqPNjS97Utz+eli2bSs7+fGjlz57P8DmBGgqHjW48UbQ2S+Gzi9RtvqUoAQFgC/ImLE4OnRi4sv/3ljv29kfb8vlY6k 748 OZzfvIwEQz/Y9q2i9dsqL7ZUlQDAWvn/BqBcJeZSy6syEgx9f9s3816VgUCguqq6v6H7B9u+dTB/8+5MzaXO3PmsaHts39NfUJUAgLAE+A+PHKs8vvVIU019AX9oVlUfaOn7/rZv9oSjeXnCD+9fuzY1Upw9Vltds7e5V1UCAMISIBAIBC5ODC6/tPK1rkPFuWSxqab+1a6DL3fsj+Tj5X5x+6OZ9Gxx9lvHphZVCQAIS4BAOpNefgbp0ejuYi7gEQgEeiPtx7ceyX3ocmou9dbtT9Z3l6pKAEBYAhvL5cnhJTPoROsa9zRtL/6W1AdDr3YdPBrdnePzXJwYjKXiRdjgq4867VZVAgDCEthYHjlc+VJ0zzp20QvNO45vPZLjabH/8ocLRdjUxLIpbVUlACCgP0LLAAAgAElEQVQsgQ1n+XBlJBjq2LRlfbcqGmo6vvVItK4x62eITY8PJUcLupEz6dklF6aqSgBAWAIb0fLhyq80bS+FNKoPhv5m6+FcLrl8O1bYKy2XXMmpKgEAYQlsRLFUfGrZyZxfjHSUyo/UqupXuw5mvdBlQQcth5KjFycGVSUAICyBje53U7eW3BIJhqKhppLayAMtfVm3ZYEGLeOziZNDZ1UlACAsAQIfx68vueW5nFf7KKm2jE2Px2cT+d2YxFzqHwb/TVUCAMIS4NHnwe6ItJfm1h5o6Xut61AWD/zN+Of5rcoTA6cX9puqBACEJbChDT64U14b3BVuzaItz41dSmfShdgeVQkACEtgoxt+cLfstrkr3JrFObG38vdO64Oh+TU2VSUAICwBAosnNS0jWVxv+auxS3ncgPpg6G97XlKVAICwBDa6mfTsI2+/NzNZeW15MxnL79mwtdU1qhIAEJbARnd/5tFzpQ4WbOHH/Pralud71jKB7a0yPO8XABCWACXtzsz4I2/P++BeoX7aVlW/0nkgEgyt8v6fJ2M+dABAWAIUyej0RHn8wK2qPr71yCrvfGVy2CcLAAhLgCL53dStctnU+mDo5Y79q7lnbHr8cZeVAgAIS4A8+zh+vYy2tjfSvre5dzX3TD6c8eECAMISIG8ePJx+3Lem5lJDZTKFz7zDbbtWc7HlxGzS5w4ACEuAPIblSsN3+V34seA/eauqv9P+50+82/icsAQAhCVA/jxdu3mF795MxuKziTJ6O13h1v6G7pXvUxZLdAIACEugcpwd/W15bfCRtl0r32FMWAIAwhIgjzo3tax8h4sTg7FUvIzeUX0wdLClzycLAAhLgBLyj7d+lc6ky2iD9zRt96kBAMISoEjCT9U+8T5Tc6lPymrpkfpgqCcc9eECAMISoBhqq2tWs0THO7FPy2sWn31Pf8GHCwAIS4DHSsylrk2NxGcTeYm951Y3uPcPg/82k54tl13UHW51nAAA5S5oFwCF6MnLk0O/jt+ITY8vvj1a1/hfn90XDTVl97Q7Iu0XJwafeLepudQ/3/rg1a6DZbGvaqtresLRm8mYwwYAKF9GLIE8G0qO/uj6z9+JfbqkKgOBQGx6/MTA6Xdjv85uRPGJE8MuuJmMnR+7VC57bFdTzyNvX81lpQAAwhKoNB/dv3py6OzK9/nw/rW/v/l2Yi611idvqqlfzWWW886NXRpKjpbFTgtV1zzy9o5VhzQAgLAEKsRQcvSd2KeruefUXOrUyIUslgbZublz9Xc+OXS2LNqyta7xkbd3CksAQFgCG83bsU9Wf+ebydj7d6+sPSy71nT/cmnLR3IqLAAgLIGNZSg5uvyiypWdG7sUS8XX9JCOTVvWumEnh86W1wIkC2ofc4osAICwBCrT5cmhLB716fiNtf3Mqqre29y71lf5h8F/K7txyyzeJgCAsATKW/LhTFY5OrzWh+xu3LbWh0zNpUr5nNjhB2PLb1zrSb8AAMISKHufZ7US49Rcaq1Lj0RDTdHHzHazspJty3szk8tvzOKkXwAAYQmUt/qn6rJ74O01XmYZCAS+uuX57F7r5NDZixODpbbrBpflbk84Wl3l5zMAICyBDeb5tSwEslgWQ507N3eufkHLJU6NXDg/dimLlU4KJD6buLlsD+x7+guOKABAWAIbzhcjHdk9cNPaF9Worqo+3LYr6009N3bpzeHzaz0Ft0DOjv52yS2RYGhb/TOOKABAWAIbTjTUdLClL6uwzOYc2lwGLQOBwM1k7O9vvr3uy5Ak5lLLT8093LbLebAAgLAENqgDLX094ehaH9VWm81MPDkOWgYCgam51Os33lrfSy7fu3v5kc3sWAIAhCWwUaQz6VMjFxJzqYVbXu06+FrXoUfO2vq4qVxb6xqye/Wdmzuzmx52sVMjF94YOrf4LRTNtamRD+9fW3LjwZY+w5UAQNmpymQy9gKQXVW+OXz+ZjIWCYaObz1S/6cnpibmUrOZhwtfNgQ3VVdVDyVHTw6dXXy3vc29L0a/nPU2xGcTr994Ky9v51j7vv6G7qLtvcdt+X/fcay2usbRBQCUF78XB3KqykAgMDWXOjFwesmgX30w1FRTv/Df/CjcltrNS55n5+auXDajqab+aHR3Xt7RqZELJz5/tzhXXSbmUv8w+G+PjFtVCQAIS2DDVeW8R7blclN/eodoXWNXuDXHjdnTtD33E2LnxabHX7/x1qmRCwWdMDYxlzo1cmFq2b7qb+gu5pApAICwBEqoKlfflv/yhwuLv3wpuicPP8Wqqv+qY38e3+DFicG/u3rq/NilQoxeJuZSJwZOL997kWDom8/scXQBAGXKNZZAHqpycSAtv95yIdhOjfxHWPY3dB9r35evDVt+9WZe9Dd0f/Xp/xQNNeUrWc/c+WzqUe39csf+3ki7AwwAEJbARq/KFdoyMZf60fWfL77P3/a8lN/rCZeEax5F6xq/3LRt5+au+mxXzoyl4mfufPa4XZfjDEYAAMISqKiqfFxbvjF0bvFjX+s6lPvVlcudH7t0buxS4XbCfGHuiPxZU039au6fmEtdnhx67+6VqcefIdwTjr7SecASIwCAsARU5Upt+dH9q+/EPl 341 tHo7headxRoU0+NXLg4MViEfdITjnaHW5+u3dxW21j31J8MvY5Oj6fSsx/cvRKbHn/ik6hKAEBYAqryCW15d2Zy8dWP+b208pFbe+bOZx/ev1b6O3aF61EBAIQloCr/o50Ci1YZKdoAXaHPiVWVAADCEihGVS5PqR9s+1bRTvtccv6tqgQAEJZA2Vdl8VNqKDn6s5F/n1pxac3i6wlHv9vx1fzOiAsAsL7MGAEUvCrXS1e49fjWIz3haOlsUn9D9yudB1QlAFBhjFgCRarKdTz/s3BLXK7JsfZ9/Q3dDjAAQFgCqrIs2zIxlzp957PirETyyDf+ve5vrHL1SwAAYQlUYFXOj7N9nozlfr3i+s5bE59N/NOt9564vGR+HY3u3tO03WKVAICwBDZiVUaCocNtu3Zu7lyIosRc6mYydubOZ7kU5rrPiTqUHP04fr0Io5f9Dd1H2naZ/RUAEJbABq3K/obuv3x27yPH2dKZ9Jk7n3 14/ 1r5tmUgEIjPJn4z/vnH8euFmDZ2b3Pvvqe/6NxXAEBYAhu3Kl/u2N8baV/5UUPJ0ZNDZ8u6LefFUvFPx29cnhzOy4m++7c8/58bnzPvKwAgLIGNG5Zr6r2Kact5ibnUSOre9cQfBpJ31nQdZk84uquppyccddYrACAsgY3elndmxtdaeom51ImB01mP9ZVaWy4Wn01MzCbH55KBQODezOTYzOT87Tv+z1hu56aWmqqnxCQAgLAE/qMt5zIPsziHs4LbEgAAYQkUibYEANjIrKsG5EF9MHR865FItmU4NZc6MXA6UYDZWQEAEJaAtgQAQFgC2lJbAgAISwBtCQCAsAS0JQAAwhLQlgAACEtAW2pLAABhCaAtAQAQloC2BABAWALaEgAAYQkUSjqTjqXi2hIAAGEJZFmVbw6fPzFweig5qi0BABCWQDZVeTMZCwQCJ4fOaksAAIQlkGVVztOWAAAUWlUmk7EXoFKrcsFrXYe6wq0lsp2JudSJgdNT2fZhJBj6Tvufl87bAQBAWELlV2XltWV2bycxl5rNPGyqqXe0AAAIS2DNVaktA4HAG0PnbiZj0brGl6J7DHgCAOSRayxho1RloLKut1zr2xlKjs7votj0+OXJIYcNAICwBNZclZXalufHLq3mnm/HPln48+7GbY4cAABhCWRTlRXZlufGLp0fu5TOpFe4z/mxS7Hp8fk/R+sao6EmBw8AgLAEsqzKSm3LN4fPz6RnH/ndoeTouUWjmv+l9f9y8AAA5JfJe2DDVeWCCpvLJxIMHW7btXNzZ3XVH39lNpOevXDv94urMhIM/WDbtxbuAACAsARVmasKa8v5dNy5ubNjU8vVqZGLE4NLvns0uvuF5h0OIQAAYQmqMj9VWaltuYL/vuNYbXWNowgAIL+cDwYbuioDFXe95Qr2NveqSgAAYQmqMs9VuaHact/TX3QUAQAIS1CVsQI9f8W3ZbSusamm3oEEAFAIrrGEcq3Kvc29HZtaGoPh8bnkrQdjlyeHc780sYKvtyyptwYAICyBda7K/obuI2276v90QC+dSV+eHD5z57McS6zU2vJH13+e+/NEgqH/tv3bjiUAgAJxKiyUU1VGgqGXO/Yfa99Xv+w00eqq6v6G7h9s+9be5t5cXrHUzonNy/McbtvlWAIAEJagKgORYOj41iO9kfaV/kpXVb8Y/fKx9n0V05Z58YUVdxoAAMISNoT5qlzlCF5/Q/drXYcqoC3TmXTuT3Kwpc8qIwAAwhI2ovhs4sHDmVc6D/SEo2uqynld4dYfbv92LhOrlkJbTsw9WPhztK4xu7ezp2m7wwkAoKCCdgGUjsRcaiR177cTgxcnBhdubK1t2FHfPpt5uNZnm1+0I5eJVU8OnS2duXza6pqOtO1a69vpb+iuL8CSmAAALGbEEkrFxYnBH13/+U9vvbe4KgOBwOjMxKfjN1+/8dZH96+u9dTQ3BeELPf1Lb9iuBIAQFjCRjCTnn1j6NypkQsr3+2d2Kc/GTizodpy+MFYLm8nWtdo7UoAAGEJlS8xl/r7m28vXqZyBbHp8ffvXlnrS2zYccuvbnneAQYAICyh8qtyrRcNnhu7FEvFN0hb3lo2Yrn6txMJhnZu7nSMAQAIS6hk6Uz61MiFLGbW+d3UrSxerhzbciB5J+u385Wm7dVVfsQBAAhLqGiXJ4dXeQbsEoPZ1l3ZtWVsejzrt2OVEQAAYQkVLp1Jn7nzWXaPzS5Hy64t47OJrN+OVUYAAIQlVL4bidtZLy+Zo3Jpy6tT/zu7txMJho607XKMAQAIS6hwF+79PuvH9oSjG6Etfzf5v7N4O5Fg6PjWI4YrAQCEJVS4mfRsLqezttY15L4NJd6W8dnEkl3UUrv5iW8nWteoKgEAhCVsCPdnErk8fHfjtrxsRim35W/GP19yy9MrhuUf385zL6pKAABhCRvCnZnxrB97NLo7GmrK15aUZlvOpGfPjV1ynAAACEvgse7NTGb3wJ5wNO+raJRgWz7yAtS22kZHDgCAsAT+aCyrsDzWvu/VroPVVfn/a1tSbTmTnv04fn357XVP1ThyAACEJZCNnnD0aHT3f99xrL+hu3CvUjpt+c+3PnjkQizhp2odDAAApSloF0AJ6m/o7ty0pXtTW2tdQyGGKFdoyxMDp7NeYPPk0NmXO/b3Rtqz3oaP7l993Hy5tdVGLAEAhCWwokgwdLhtV084uo7zmubelj+99d7Blr4DLX1ZPHYoOfpO7NNHfiv3pTsBACgcp8JS3uKziRLcqlgqnlhjmO1t7v3Btm/1N3Sv+2oZuZ8Te27s0htD59a6B4aSoyeHzj7uu93hVkc7AICwhPwbSo6+fuOtUyMX0pl0SW3ViYHTJwZOr76s5scqi3bKaxHa8mYy9qPrP782NbKaO6cz6fNjl1aoykAg0B562gEPACAsIf/9Np8iFycG3xw+XyJtubBVU3Op1bflV5q2l05V5qstA4HAT2+99/9d//nFicEVPp2h5OhPBs48cdVKYQkAUMqqMpmMvUD5VuWCnnD0WPu+9T2PNJ1J/7+//9niWyLB0PGtR5Zv1cWJwVMjFxa+PNa+r6AzvmYtMZfK5XrLxfth5+bO7fXPttb9cS3Kidnk58nYlcnh2PT4Ex8erWs8/tyLDnsAAGEJBazKlSuuaJbk4gpbteSe39/2zaaa+tLc2/lqy1zkONMsAACF5lRYKqQqA2s8+7QQPrh7ZZVb1VbbWC47PC/nxOYiEgyZuQcAQFhCMapyoeJ+dP3nQ8nRddm2x53VubwtI+s99WsZteXhtl1WsAQAEJZQpKpccHLobPHb8lcrTj+zpC2XnBk7uorrDDdmW85fnOngBwAQllDUqlxoy4sTg0XbvPhs4mYytvJ9lrRlTzi68K1Uerb0P4J1acvvtP95qc2XCwCAsGRDVOW8UyMXzj9pEYt8uXDvd6u52+K2/OLmP1u4/d7MZFl8EPNtGa0r0gWie5t7u1xdCQAgLGG9qnLeubFLRWjLmfTsh/evrfLOC235TF3zwo1jZRKW8235N1sPLx5uLZCecPRw2y7HPwCAsIT1rMqFtnxj6Fw6ky7cRl 649 /s13X++LesWTUhTzLN28/BTo6r6lc4DB1v6CvcSkWDoux1fdRIsAICwhPWvynk3k7E3h88XqC3TmfTH8etrfdTUXOofb/1q8S2JdV0oMou2PNDSd6x9X4Gq8vjWI2aCBQAQllAqVbnQlj8ZOFOIeLs8OTyV1dMuedTd8jkbdkF/Q/f3t30zv5dczldlfVktxwIAgLCk8qtyXmx6fMliknnxwd0reXmez580qWxpaqqp/5uth/c29+bl2XrC0R9s+5aqBAAoO1WZTMZeoHyrMhIMPReOttRufrp28/wt92YmB5Ojj1v8IxIMfa/7G0019aUWwJFg6L9t/3b5fmrx2cQ/3XovlsOCnEeju/c0bXddJQCAsIQipVp/Q/dXmrZ3bNqyQofEUvFPx288cr7W17oO5WUdizeGzt3M30jjD7d/u9wH6y5ODH5w98pa8zJa1/hXHfvzVfsAAAhLVOXZJyblodYvrT5CZtKzF+79/tyyRUdyb8v4bOL1G2/l8e0fa9/X39BdGZ/jr8YurSa5e8LRr7f0WawSAEBYQpGqMhIMfaf9z7OLkEeeqHk0uvuF5h1Zb/C7sV+vfvnK1aiweWtm0rO3U/HLk0PJhzOL11OZP3v5Sw3d7aGnXU4JACAsoXhV2ROOfrfjqzkuQXFxYvDUyIWFLw+29B3IdjHGmfTs3109lff9YE5UAACEJRSkKnMpwCUWhi5zfM7zY5eWn16rLQEAEJZQilWZ9ysP05n0jcTt3kh7Ls/w4xu/nCrAqpjaEgAAYQl5rsp8Td+aX0tOqV0I4J2bO6urqmOp+O+mbuU4nqktAQAQllCxVRkIBE58/u7ieYAOtvTte/oLS67/TMylTo1cyGUxEm0JAEC5sBY5qnLNW764Ko+17zvQ0rd8VqH6YOiVzgN7m3uzfqGpudSJgdOJgp1wCwAAwhJVuT4+jl9f+PPBlr4Vrv+srqp+MfrlgzlMEaQtAQAQllBpVRmfTSwsyRita/zaluef+JADLX3aEgAAYQmq8o9GF50E+1J0T3XVqv4GHWjpe63rkLYEAKBSmbwHVbk2sVT8X/5wIRAIHH/uxfy+/ZWZywcAAGGJqqyEqlwwk55dPmGPtgQAQFiCqlz/XaEtAQAoO66xRFUWVVe41fWWAAAIS1CV2hIAAIQlqlJbAgCAsERVakttCQCAsGTjVmUkGNpSu3mD7yVtCQCAsIQsq1IUaUsAAIQl5FSVokhbAgAgLCHXqhRF2hIAAGEJuValKNKWAAAIS8i1KkWRtgQAQFhCrlUpirQlAADCElWZa1WKIm0JAICwRFXmhyjSlgAACEtUpbbUlgAACEtYv6oURaXTlom5VCwVd5wDACAsKb+q1Jal0JaJudSJgdMnBk4PJUcd7QAAPFFVJpOxF8hvVfY3dF+cGMz9hSLB0PGtR+qDITs8x4x/uWN/b6R99S/3s5F/n/o/OXp865FoqMlhDwCAsKR4kfNa16GucOv5sUvnxi5py9Jpy73NvYdav1RbXbPCfdKZ9Pt3ryz+4HrC0Vc6D1RXObUBAABhSXGrcv7P2rLU2jIQCBxr37dzc+fyUExn0pcnh8/c+Wxq0XmzqhIAAGHJelaltizZtowEQ/u3PP9MXXNDTTgQCIxOj9+fnXrv7pWpP70UU1UCACAsWf+q1JYl25ZPpCoBAFgT/+NIAasyEAgcaOk72NKX+zaYJ3ZejvPEqkoAAIQlZVaV2r ... Một số dạng bài tập sóng cơ- sóng âm I ,Cơ sở lí thuyết vật lí. +,sóng là sự lan truyền dao động trong môi trường vật chất theo thời gian +,phân loại sóng cơ: -sóng dọc: truyền...

Ngày tải lên: 23/02/2014, 16:58

19 1K 1
Tìm hiểu và hướng dẫn giải một số dạng bài tập hữu cơ chương 5 và chương 6 lớp 11 ban cơ bản

Tìm hiểu và hướng dẫn giải một số dạng bài tập hữu cơ chương 5 và chương 6 lớp 11 ban cơ bản

... II.2.2 Nhiệm vụ - ðưa ra các dạng bài tập bản, ña dạng theo hình thức trắc nghiệm câu hỏi và bài toán hóa học. Nội dung bài tập xoay quanh các loại bài tập ñã nêu trong chương 2 của ... ñược các bài tập trong sách giáo khoa. ở Trường Trung Học Phổ Thông Tràm Chim. - ðứng lớp giảng dạy các bài tập trong chương 5 và 6 lớp 11 ban bản theo phương pháp giải bài tập hữu ... 0,05 22 ,4 1,12 n 4 CH == Số mol hỗn hợp (mol) 0,2 22 ,4 4 ,48 n hh == Thành phần phần trăm của CH 4 %25%100. 2,0 05,0 V% .100% V% 4 4 4 CH X CH CH ==⇒ = n n Chọn đáp án :A - Với dạng bài tập...

Ngày tải lên: 10/04/2013, 11:29

58 1,4K 1
Các dạng bài tập cơ bản về VLHN

Các dạng bài tập cơ bản về VLHN

... lắc đơn . Dạng 1 ; Bài tập về chu kì và tần số của con lắc đơn . Các Dạng bài tập về điện xoay chiều . Dạng1 : Bài tập về máy biến thế và Truyền tải điện năng P 2 : P 2 : áp dụng các công thức ... của con lắc lò xo . P 2 : áp dụng các công thức Các Dạng bài tập về dao động học Chủ đề 1: Đai cơng về dao động điều hòa . Dạng1 : Xác định các đại lợng vật lý (x, v. a, E đ , E t F đh ... T /4 T 0 = nT = mT/2 = kT /4 B ớc3 QuÃng đờng đi đợc trong 1 chu kì là 4A , T/2 là 2A và T /4 là A . Vậy quÃng đờng đi trong t 0 S = nT.4A = 4A.mT/2 Chú ý : vận tốc trung bình : v TB = S / t Dạng...

Ngày tải lên: 29/06/2013, 01:27

4 1,1K 14
cac dang bai tap co ban 11 chat luong "cuc hay""

cac dang bai tap co ban 11 chat luong "cuc hay""

... gam B. 50 ,4 gam C. 78,75 gam D. 31,5 gam Các dạng bài tập hóa học 11 giáo viên trần văn hợp muốn thảo luận về các dạng bài tập hóa 11 xin lien hệ số dt : 09880817 24 1: Hòa tan 2, 24 ml khí HCl ... CO 2 40 . Thổi V ml (đktc) CO 2 vào 300 ml dd Ca(OH) 2 0,02M, thu được 0,2g kết tủa.Gía trị V là: A. 44 .8 hoặc 89,6 B .44 ,8 hoặc 2 24 C. 2 24 D. 44 ,8 41 : Cho 6,72 lít CO 2 (đktc) tác dụng với 40 0ml ... H 3 PO 4 tác dụng với dung dịch chứa 5 mol NaOH sau phản ứng thu được các muối nào A. NaH 2 PO 4 và Na 2 HPO 4 B. Na 2 HPO 4 và Na 3 PO 4 C. NaH 2 PO 4 và Na 3 PO 4 D. Na 2 HPO 4 , NaH 2 PO 4...

Ngày tải lên: 08/11/2013, 02:11

4 1K 2

Bạn có muốn tìm thêm với từ khóa:

w