Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 82 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
82
Dung lượng
1,55 MB
Nội dung
I H C QU C GIA TP HCM I H C BÁCH KHOA NGUY NGHIÊN C U T NG H P VÀ NG D NG V T LI U MESOPOROUS ZEOLITE STUDY ON SYNTHESIS AND APPLICATION OF MESOPOROUS ZEOLITE MATERIAL Chuyên ngành: K thu t hóa h c Mã s : 8520301 LU TP H CHÍ MINH, tháng 02 21 Cơng trình Cán b c hồn thành t i: i h c Bách Khoa -HCM ng d n khoa h c : (Ghi rõ h , tên, h c hàm, h c v ch ký) Cán b ch m nh n xét : (Ghi rõ h , tên, h c hàm, h c v ch ký) Cán b ch m nh n xét : (Ghi rõ h , tên, h c hàm, h c v ch ký) Lu cb ov t Thành ph n H ih HCM m: Xác nh n c a Ch t ch H ngành sau lu CH T CH H ã NG ng Khoa qu n lý chuyên c s a ch a (n u có) NG KHOA I H C BÁCH KHOA cl p NHI M V LU T Do H nh Phúc TH H tên h c viên: Nguy n 15/10/1995 Chuyên ngành: K thu t hóa h c MSHV: 1870533 TP H Chí Minh Mã s : 8520301 I TÀI: Nghiên c u t ng h p ng d ng v t li u mesoporous zeolite b pháp top down bottom up II NHI M V VÀ N I DUNG Nghiên c u t ng h p v t li u Mesoporous Zeolite X b down s d ng ngu n nguyên li u tro tr u Nghiên c u t ng h p v t li u Mesoporous Zeolite X b bottom up s d ng ngu n nguyên li u tro tr u u trúc tinh th , di n tich b m t c a v t li u Kh o sát ng d ng ban u c a v t li m so sánh v i silica III NGÀY GIAO NHI M V : 06/2019 IV NGÀY HOÀN THÀNH NHI M V : 02/2021 V CÁN B NG D N: PGS TS Nguy n Quang Long Tp H Chí Minh, ngày tháng CÁN B NG D N CH NHI M B PGS.TS Nguy n Quang Long PGS.TS Nguy n Quang Long NG KHOA K THU T HÓA H C Nam i O L IC u tiên, em xin g i l i c n PGS TS Nguy t nhi u công s c, tâm huy truy i t nh ng ki n th c, kinh nghi m quý báu cho em su t trình h c t p th c hi n Lu i H c Bách Khoa Tp HCM Xin c y, Cơ b mơn K thu t Hóa Lý iH Khoa K thu t Hóa H c, t nh ng ki n th c quý báu cho em trình h c t p t ng Xin c th y, Cô h ng ph n bi ng nh n xét q báu giúp em có th hồn thi n th c c a Xin c tr b n làm Phịng thí nghi m Hóa lý Xúc em có th làm t Sau em mu tài nghiên c u cg il ic n bè, nh ng em su t th i gian qua tài nghiên c u, lu n khơng th tránh kh i nh ng thi u sót, em r t mong nh Th y, Cô, thành viên h c s thơng c phía ng b n làm nghiên c u Xin chân thành c Tp H ii TÓM T T Trong nghiên c u này, k t qu th c nghi m v t ng h p mesoporous zeolite v i ngu n nguyên li u t ch t th i r n tro tr u nông nghi p b down bottom top up Tro tr u ngu n ch t th i r n d i ng SiO2 cao Vì v y, có ti Vi t Nam, có giá tr kinh t th t ngu n cung c p silica s n xu t zeolite Các bi n pháp x lý zeolite b ng axit ki m v i s có m t c a ch t ho t ng b m o thành công mesopore zeolite Mesoporous zeolite cs h u c meso kho ng 3-4 nm K t qu là, sau m r ng l x p, th tích l x p c a mesoporous zeolite Di n tích b m t l so sánh v i microporous zeolite c meso c a mesoporous zeolite microporous zeolite n so v i nh bao g m Nhi u x tia X (XRD), di n tích b m t riêng (SEM), kh o sát ng d silica k t qu u c a v t li u hút m so sánh v i v t li u c kh quan kh b -down (TMZc t ng h p b c t ng h p 9% so v i v t li u silica, c a v t li u -up v i t l CTAB 0,9g/100 mL dung d ch gel aluminosilicat (BMZ-0,9li u TMZ-RHA p ph c a v t li nhi i v t li u silica T 150oC, 110oC, 90o 11,46%, 4,5% BMZ-0,9-RHA nhi t li u silica l 150oC, 110oC, 90o t 19,88%, 9,39%, 4,2% iii gi i h p c a v t t 18,6%, t li u silica l n ABSTRACT In this study, experimental results on mesoporous zeolite preparation from a common solid waste, the rice husk ash by a Top-Down and Bottom-Up approach were reported The rice husk ash is an abundant source of solid waste in Vietnam which is low in economic value but high in SiO2 content Thus, it has great potential as a source of silica in the production of zeolite The consecutive treatments of zeolite by acid and alkaline in the presence of a cationic surfactant (CTAB) successfully generated mesopore in the zeolite The obtained mesoporous zeolite possessed mesopore with a size of around 3-4 nm As a result, after the top-down pore expansion, the pore volume of the mesoporous zeolite was significantly increased -husk-ash derived zeolite Significantly, the mesopore surface area of the mesoporous zeolite was 2.4 times higher than that of the parent zeolite The physicochemical properties of catalyst have been determined by various method including XRD, BET surface area, The thesis investigated the initial application of the material as hygroscopic when compared with silica and the results obtained are satisfactory when the adsorption capacity of the material is synthesized by the top-down method (TMZ- RHA) 9% higher than that of silica, and that of the material synthesized by bottom-up method with a CTAB ratio of 0.9g / 100 mL of aluminosilicate gel solution (BMZ-0.9-RHA) is high 7% more than the silica material The desorption rate of TMZ-RHA material at 150oC, 110oC, 90oC is 18.6%, 11.46%, 4.5%, and BMZ-0.9-RHA's higher temperature than silica, respectively degrees 150oC, 110oC, 90oC higher than the silica material is 19.88%, 9.39%, 4.2% respectively iv L A TÁC GI LU ng k t qu c trình bày Lu tơi th c hi n t ki n th c c a Tơi khơng n p lu n án cho b t c ng, Vi c c p b ng Tp H Chí Minh, ngày tháng TÁC GI LU N Nguy n Tr v C L IC ii TÓM T T iii ABSTRACT iv L A TÁC GI LU v U 1.1 Lý ch tài 1.2 M a nghiên c u 12 ng ph m vi c a nghiên c u 13 ng nghiên c u 13 1.3.2 Ph m vi c a nghiên c u 13 c th c ti n c tài nghiên c u 13 NG QUAN 14 2.1 Gi 14 14 19 21 2.2 Zeolite 23 2.2.1 Gi i thi u v zeolite 23 2.2.2 Tính ch 2.3 n c a zeolite 24 ng d ng c a zeolite 29 29 30 31 2.4 V t li u zeolite c u trúc phân c p dùng làm xúc tác 32 2.5 Zeolite NaX 33 C NGHI M 35 3.1 N i dung nghiên c u 35 3.1.1 T ng h p Natrisilica Natri Aluminate t ngu n nguyên li u vào c 35 vi 3.1.2 T ng h p v t li u mesoporous zeolite b - down 36 3.1.3 T ng h p v t li u mesoporous zeolite b - up 37 3.2 Phân t li u 38 u x tia X (XRD) 39 3.2.2 nh di n tích b m t riêng b ng h p ph N2 (BET) 41 3.2.3 n t quét (SEM) 41 T QU VÀ BÀN LU N 43 4.1 TMZ-RHA t ng h p b down 43 4.1.1 K t qu phân tích c u trúc v t li u XRD 43 4.1.2 K t qu h p ph - gi i h p N2 44 4.1.3 Phân b c l x p 45 4.1.4 K t qu phân tích SEM 46 4.1.5 ng d ng h p ph gi i h p m c a v t li u TMZ-RHA 48 4.2 MZ-RHA t ng h p b up 49 4.2.1 K t qu phân tích c u trúc XRD 49 4.2.2 K t qu h p ph - gi i h p N2 50 4.2.3 Phân b c l x p 53 4.2.4 K t qu phân tích SEM 55 4.2.5 ng d ng h p ph gi i h p m c a v t li u BMZ-x-RHA 56 K T LU N VÀ KI N NGH 58 DANH M C CƠNG TRÌNH CÔNG B C A TÁC GI 59 TÀI LI U THAM KH O 60 vii DANH M C HÌNH NH Hình V t li c l x p phân c p [4] Hình nh SEM c a h c nung 350oC (i, ii, iii) 500oC (iv) [5] Hình Các v t li u x p cho xúc tác quang xúc tác Hình C u t o h t lúa 14 Hình C u trúc lignocellulose [35] 14 Hình C u t o c a cellulose [37] 15 ng c a hemicellulose [38] 16 Hình Các monolignols ph bi u p- u coniferyl u sinapyl 17 Hình Ví d v c u trúc c a lignin [40] 19 Hình 10 Tr b sông Hình 11 ng c a th i gian nhi n thành ph n tro tr u [41] 21 Hình 12 Ch n l c hình d ng ch t tham gia ph n ng 27 Hình 13 Ch n l c hình d ng s n ph m ph n ng 27 Hình 14 S ch n l c hình d ng tr ng thái chuy n ti p 28 Hình 15 ng tiêu th [42] 31 t ng h p zeolite có c u trúc phân c p [17] 32 viii Micro riêng Micro (m2/g) (m2/g) (m2/g) (mL/g) Z-RHA 406 341 64 0.175 0.082 0.257 BMZ-0,3RHA 691 606 85 0.244 0.173 0.417 BMZ-0,9RHA 670 549 121 0.224 0.252 0.476 BMZ-1,5RHA 655 532 123 0.217 0.295 0.512 B ng t nh (mL/g) i v di n tích b m t c th (mL/g) tích l c a microporous zeolite có ngu n g c t tro tr u-m u Z-RHA, m u mesoporous zeolite BMZ-RHA t ng h theo c al x p c meso BMZ-x-RHA l c a Z-RHA 64 m2/ - up Di n tích b m t t 85 m2/g, 121 m2/g, 123 m2/g n tích b m t c a l x BMZ-RHA t 1.3-2.1 l n so v i Z- c meso , t ng th tích l x p k T ng th tích c a BMZ-RHA l n 0.417 mL/g, 0.476 mL/g, 0.512 mL/g c a Z-RHA 0,257 mL/ n 200% l ng th tích l x p c a zeolite c bi n tính th y t B ng 7, s c meso BMZ-RHA V i k t qu zeolite c ng tích ng th tích l x p k t qu phân tích XRD, có th k t lu n r ng mesoporous c t ng h p thành công b bottom 0,9g/100 mL cho th y di n tích b m t up V i n c meso có th ch p nh ng CTAB thích h p 54 CTAB cv im t 4.2.4 K t qu phân tích SEM Hình 35 th hi n hình nh SEM m u BMZ-0,9-RHA t ng h bottom up c hình d ng c a BMZ-RHA nh kho ng - 1,5 µm Các h t zeolite i u 55 ng nh t v hình d ng nh t 4.2.5 ng d ng h p ph gi i h p m c a v t li u BMZ-x-RHA 0.3 Silica BMZ-0.3-RHA BMZ-0.9-RHA BMZ-1.5-RHA 0.25 0.2 0.15 0.1 0.05 0 10 20 30 40 50 100 60 Silica 150oC Silica 110oC Silica 90oC BMZ-0,3-RHA 150oC BMZ-0,3-RHA 110oC 90 BMZ-0,3-RHA 90oC BMZ-0,9-RHA 150oC % H2 BMZ-0,9-RHA 110oC BMZ-0,9-RHA 90oC BMZ-1,5-RHA 150oC 80 BMZ-1,5-RHA 110oC BMZ-1,5-RHA 90oC Z-RHA 150oC Z-RHA 110oC Z-RHA 90oC 70 Hình 36 T 10 gi i h p m c a v t li u silica BMZ-x-RHA 56 150oC, 110oC, 90oC Hình 36 cho th y t kh p ph m c a v t li u BMZ-0.9-RHA cao t li u BMZ-0.3-RHA BMZ-1.5-RHA th so v i v t li u hút m silica Trong th i gian h p ph 60 phút, v t li u BMZ-0.9-RHA h p ph kh i ng m 0,2657g silica 0,2471g Hình 37 cho th y kh v t li u BMZ-xnh t Khi so sánh -0.9-RHA có kh nhi t 150oC, 110oC, 90oC t l t 19,88%, 9,39%, 4,2% Z-RHA, t i h p m c a gi i h p c a BMZ-0.9- ih pt t gi i h p c a BMZ-0.9- ng th i so sánh v i v t li u t 5,56%, 4,76%, 3,34% Qua k t qu có th th y v t li u zeolite có c u trúc meso th hi n ho t tính hút m t t i v t li u silica c v t li u zeolite ch mang c u trúc micro li u c c th hi thi ng th i t i v t li u zeolite c cl x h p ph gi i h mc av t cc i u có s c i thi n v di n tích b m t, d n kh 57 n kh i khu K T LU N VÀ KI N NGH Tro tr u, m t ch t th i r n d i Vi t Nam, có th chuy n hóa thành mesoporous zeolite X (MZ-RHA), m t nh ng v t li u có tri n v ng cao c u micro/meso c a Mesoporous zeolite u ch thành công b bottom - up s d ng m t s hóa ch ng V t li u zeolite c meso (3-4 nm) c u trúc c a zeolite X v tách chi t SiO2 t tro tr top c s h u kích c gi l i Nh t o thành s n ph m trung gian microporous zeolite FAU (Z- RHA) So v i Z-RHA, TMZ-RHA, BMZ-x-RHA có di n tích b m t l tích l x d ng c a MZ-RHA s down c meso Công vi c nghiên c c ti ng s d ng tính ch c bi t c a v t li u giá r th c t Do m tài t ng h p thành công v t li u mesoporous zeolite v i th i gia u ki tài ch m i kh m c a v t li u so sánh v i silica kh c k t qu kh quan Nh ng công vi c l kh o sát ng d ng c a v t li u làm xúc tác, làm ch t h p ph ô nhi m môi ng, v ti p t c ng d ng v t li u vào nhi u khía c ng c a v t li u mesoporous zeolite so sánh v i v t li 58 DANH M C CƠNG TRÌNH CÔNG B C A TÁC GI [1] Nguyen Truong Gia Hao, Tran Huynh Gia Huy, Nguyen Thi Truc Phuong, Le Nguyen Quang Tu, Nguyen Van Dung, Ngo Thanh An, Nguyen Quang Long, "Preparation and characterization of mesoporous zeolite from solid waste " - T p chí xúc tác - h p ph Vi t N n bi n) [2[ Tran Huynh Gia Huy, Nguyen Thi Truc Phuong, Bui Tan Loc, Dang Cam Vinh, Le Nguyen Quang Tu, Nguyen Truong Gia Hao, Nguyen Van Dung, Ngo Thanh An, Nguyen Quang Long "Mesostructured Zeolites Prepared by One-Pot Top-Down Synthesis Route for Carbon Dioxide Adsorption" CHEMICAL ENGINEERING TRANSACTIONS VOL 84, 2021 c ch p nh [3] Nguyen Truong Gia Hao, Tran Huynh Gia Huy, Nguyen Thi Truc Phuong, Le Nguyen Quang Tu, Nguyen Van Dung, Ngo Thanh An, Nguyen Quang Long, "Preparation and characterization of mesoporous zeolite from solid waste " - H i th o Khoa h c Qu c t Hóa h c ng d ng l - (07/2020) 59 TÀI LI U THAM KH O [1] Kim, S M., Kang, S M., Lee, C., Jang, S., Kim, J., Seo, H., & Yoon, H (2016) Repeated shape recovery of clustered nanopillars by mechanical pulling Journal of Materials Chemistry C, 4(40), 9608-9612 [2] Wang, L., Yang, G P., Yan, Y T., Jin, J., Ning, Y., & Wang, Y Y (2017) Solventinduced diversity of luminescent metal organic frameworks based on different secondary building units RSC advances, 7(73), 46125-46131 [3] Bradshaw, D., El-Hankari, S., & Lupica-Spagnolo, L (2014) Supramolecular templating of hierarchically porous metal organic frameworks Chemical Society Reviews, 43(16), 5431-5443 [4] Fang, B., Kim, J H., Kim, M S., & Yu, J S (2013) Hierarchical nanostructured carbons with meso macroporosity: design, characterization, and applications Accounts of chemical research, 46(7), 1397-1406 [5] Yang, X Y., Léonard, A., Lemaire, A., Tian, G., & Su, B L (2011) Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications Chemical Communications, 47(10), 27632786 [6] Zheng, X., Wang, H., Wang, C., Deng, Z., Chen, L., Li, Y., & Su, B L (2016) 3D interconnected macro-mesoporous electrode with self-assembled NiO nanodots for high-performance supercapacitor-like Li-ion battery Nano Energy, 22, 269-277 [7] http://www.ricehuskash.com, assess on 11/07/2020 [8] Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L O (2001) Carbon dioxide emissions from the global cement industry Annual review of energy and the environment, 26(1), 303-329 [9] VietnamBiz, 2019 rice market report , Internet: https://vietnambiz.vn/ [10] Khan, F I., & Ghoshal, A K (2000) Removal of volatile organic compounds from polluted air Journal of loss prevention in the process industries, 13(6), 527-545 60 [11] Perera, S D., Mariano, R G., Vu, K., Nour, N., Seitz, O., Chabal, Y., & Balkus Jr, K J (2012) Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity Acs Catalysis, 2(6), 949-956 [12] Su, B L., Sanchez, C., & Yang, X Y (Eds.) (2012) Hierarchically structured porous materials: from nanoscience to catalysis, separation, optics, energy, and life science John Wiley & Sons [13] Van Bekkum, H., Flanigen, E M., Jacobs, P A., & Jansen, J C (2001) Introduction to zeolite science and practice: Preface 2nd edition Studies in surface science and catalysis, 137 [14] Auerbach, S M., Carrado, K A., & Dutta, P K (2003) Handbook of zeolite science and technology CRC press [15] Rây Phân T Và V t Li u H p Ph Nhà xu t b n Bách Khoa - Hà N i, 2012 [16] Misaelides, P., Macásek, F., Pinnavaia, T J., & Colella, C (Eds.) (2012) Natural microporous materials in environmental technology (Vol 362) Springer Science & Business Media [17] & Fajula, F (2010) Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts Angewandte Chemie International Edition, 49(52), 10074-10078 [18] (a) B Liu, C Li, Y Ren, Y Tan, H Xi and Y Qian, Chem Eng J., 2012, 210, 96 102; (b) K Na, C Jo, J Kim, K Cho, J Jung, Y Seo, R J Messinger, B F Chmelka and R Ryoo, Science, 2011, 333, 328 332; (c) F.-S Xiao, L Wang, C Yin, Y Di, J Li, R Xu, D S Su, R Schlogl, T Yokoi and T Tatsumi, Angew Chem., Int Ed., 2006, 45, 3090 3093; (d) H Wang and T J Pinnavaia, Angew Chem., Int Ed., 61 2006, 45, 7603 7606; (e) M Choi, H S Cho, R Srivastava, C Venkatesan, D.-H Choi and R Ryoo, Nat Mater., 2006, 5, 718 723 [19] Park, D H., Kim, S S., Wang, H., Pinnavaia, T J., Papapetrou, M C., Lappas, A A., & Triantafyllidis, K S (2009) Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores Angewandte Chemie, 121(41), 7781-7784 [20] J Y Ying and J Garc a-Mart nez, US Pat., US 2005/0239634 A1, 2004 [21] (a) C.-Y Chen and S I Zones, in Zeolites and Catalysis: Synthesis, Reactions and Application, ed J Ce jka, A Corma and S I Zones, Wiley-VCH, Weinheim, Germany, 2010, pp 155 170; (b) S van Donk, A H Janssen, J H Bitter and K P de Jong, Catal Rev Sci Eng., 2003, 45, 297 319; (c) C S Triantafillidis, A G Vlessidis and N P Evmiridis, Ind Eng Chem Res., 2000, 39, 307 319 [21] Selvakumar, K V., Umesh, A., Ezhilkumar, P., Gayatri, S., Vinith, P., & Vignesh, V (2014) Extraction of silica from burnt paddy husk International Journal of ChemTech Research, 6(9), 4455-4459 [22] Byeon, E S., Jo, G., Jang, Y N., Yang, G S., & Jang, J (2015) High CO2 Adsorption on Improved ZSM-5 Zeolite Porous Structure Modified with Ethylenediamine and Desorption Characteristics with Microwave [23] Kalantarifard, A., Ghavaminejad, A., & Yang, G S (2017) High CO adsorption on improved ZSM-5 zeolite porous structure modified with ethylenediamine and desorption characteristics with microwave Journal of Material Cycles and Waste Management, 19(1), 394-405 [24] Wang, L., Yang, G P., Yan, Y T., Jin, J., Ning, Y., & Wang, Y Y (2017) Solventinduced diversity of luminescent metal organic frameworks based on different secondary building units RSC advances, 7(73), 46125-46131 62 [25] Bradshaw, D., El-Hankari, S., & Lupica-Spagnolo, L (2014) Supramolecular templating of hierarchically porous metal organic frameworks Chemical Society Reviews, 43(16), 5431-5443 [26] Princiotta, F (Ed.) (2011) Global climate change-the technology challenge (Vol 38) Springer Science & Business Media [27] lvarez, A., Bansode, A., Urakawa, A., Bavykina, A V., Wezendonk, T A., Makkee, M., & Kapteijn, F (2017) Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes Chemical reviews, 117(14), 9804-9838 [28] Haq, I U., Akhtar, K., & Malik, A (2014) Effect of experimental variables on the extraction of silica from the rice husk ash J Chem Soc Pak, 36(3), 382 [29] Mustapa, S I., Peng, L Y., & Hashim, A H (2010, June) Issues and challenges of renewable energy development: A Malaysian experience In Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies (ESD 2010) (pp 1-6) IEEE [30] Rafiq, Z., Nazir, R., Shah, M R., & Ali, S (2014) Utilization of magnesium and zinc oxide nano-adsorbents as potential materials for treatment of copper electroplating industry wastewater Journal of Environmental Chemical Engineering, 2(1), 642651 [31] Wu, H., Fan, J., Liu, E., Hu, X., Ma, Y., Fan, X., & Tang, C (2015) Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with a enhanced photocatalytic activity Journal of alloys and compounds, 623, 298-303 [32] MANUFACTURING PARTICLE BOARD FROM RICE HUSK AND COIR BRASHY," Vietnam Journal of Forest Science vol 2, 2010 63 [33] G V V R R D Koteswara Rao, P.R.T Pranav, "A Laboratory Study on the Affect of Rice Husk Ash & Lime on the Properties of Marine Clay," International Journal of Engineering and Innovative Technology (IJEIT), vol 2, pp 345-353, 2012 [34] Y.-p Chen and X.-s Cheng, "Preparation and characteristic analysis of rice husk high boiling solvent lignin," Journal of Forestry Research, vol 19, pp 159-163, 2008/06/01 2008 [35] T J Mussatto SI, "Lignocellulose as raw material in fermentation processes," Applied Microbiology and Microbial Biotechnology, pp 897-907, 2010 [36] P Roger C, "The Chemical Composition of Wood," in The Chemistry of Solid Wood vol 207, ed: American Chemical Society, 1984, pp 57-126 [37] M Poletto, A J Zattera, and V Pistor, Structural Characteristics and Thermal Properties of Native Cellulose, 2013 [38] D Plackett, Biopolymers: New Materials for Sustainable Films and Coatings: Wiley, 2011 [39] C Heitner, D Dimmel, and J Schmidt, Lignin and Lignans: Advances in Chemistry: CRC Press, 2011 [40] M J Rak, T Friscic, and A Moores, "Mechanochemical synthesis of Au, Pd, Ru and Re nanoparticles with lignin as a bio-based reducing agent and stabilizing matrix," Faraday Discussions, vol 170, pp 155-167, 2014 [41] N Zemke, "RICE HUSK ASH," Emmet Woods California Polytechnic State University, 2009 [42] K M Ajay kumar, Devendra Kumar, Om Parkash, "Properties and Industrial Applications of Rice husk: A review," International Journal of Emerging Technology and Advanced Engineering, vol 2, pp 2250-2459, 2012 64 [43] B Yilmaz and U Müller, "Catalytic Applications of Zeolites in Chemical Industry," Topics in Catalysis, vol 52, pp 888-895, 2009/06/01 2009 [44] I Y Lauriente DH, "The Chemical EconomicsHandbook," SRI consulting, vol 14, pp 599.1000 F, pp 8, 14, 2005 [45] K C S D N Subbukrishna, P J Paul, S Dasappa and N K S Rajan, "Precipitated Silica from Rice husk ash by IPSIT Process," 15th European Biomass Conference and Exhibition, 2007 [46] (a) M Wu, J Liu, J Jin, C Wang, S Z Huang, Z Deng, Y Li and B L Su, Appl Catal., B, 2014, 150, 411 420; (b) M Wu, J Jin, J Liu, Z Deng, Y Li, O Deparis and B L Su, J Mater Chem A, 2013, 1, 15491 15500; (c) M Wu, A Zhang, F Deng and B L Su, Appl Catal., B, 2013, 138, 219 228; (d) H Zhao, M Wu, J Liu, Z Deng, Y Li and B L Su, Appl Catal., B, 2016, 184, 182 190 [47] Yu, J., Zhang, L., Cheng, B., & Su, Y (2007) Hydrothermal preparation and photocatalytic activity of hierarchically sponge-like macro-/mesoporous titania The Journal of Physical Chemistry C, 111(28), 10582-10589 [48] K Xia, D Ferguson, Y Djaoued, J Robichaud, N Tchoukanova, R Bruening and E.McCalla, Appl Catal., A, 2010, 387, 231 241 [49] Li, M., Li, X., Jiang, G., & He, G (2015) Hierarchically macro mesoporous ZrO2 TiO2 composites with enhanced photocatalytic activity Ceramics International, 41(4), 5749-5757 [50] Li, X., Jiang, G., He, G., Zheng, W., Tan, Y., & Xiao, W (2014) Preparation of porous PPyTiO2 composites: Improved visible light photoactivity and the mechanism Chemical Engineering Journal, 236, 480-489 [51] Wang, Y., Ibad, M F., Kosslick, H., Harloff, J., Beweries, T., Radnik, J., & Guo, X (2015) Synthesis and comparative study of the photocatalytic performance of 65 hierarchically porous polymeric carbon nitrides Microporous and Mesoporous Materials, 211, 182-191 [52] Haq, I U., Akhtar, K., & Malik, A (2014) Effect of experimental variables on the extraction of silica from the rice husk ash J Chem Soc Pak, 36(3), 382 [53] M Inaba, K Murata, M Saito and I Takahara, Green Chem., 2007, 9, 638 646 [54] Oikawa, H., Shibata, Y., Inazu, K., Iwase, Y., Murai, K., Hyodo, S., & Baba, T (2006) Highly selective conversion of ethene to propene over SAPO-34 as a solid acid catalyst Applied Catalysis A: General, 312, 181-185 [55] M Iwamoto, K Kasai and T Haishi, ChemSusChem, 2011, 4, 1055 1058 [56] Varvarin, A M., Khomenko, K N., & Brei, V V (2011) Catalytic activity of HZSM-5 and H-ZSM-5/AL-MCM-41 in the conversion of ethanol to gasoline fraction hydrocarbons Theoretical and Experimental Chemistry, 47(1), 36-40 [57] (a) L Su, L Liu, J Zhuang, H Wang, Y Li, W Shen, Y Xu and X Bao, Catal Lett., 2003, 91, 155 167; (b) N Chu, J Yang, C Li, J Cui, Q Zhao, X Yin, J Lu and J Wang, Microporous Mesoporous Mater., 2009, 118, 169 175 [58] Chen, L H., Li, X Y., Rooke, J C., Zhang, Y H., Yang, X Y., Tang, Y., & Su, B L (2012) Hierarchically structured zeolites: synthesis, mass transport properties and applications Journal of Materials Chemistry, 22(34), 17381-17403 [59] J Y Ying and J Garc a-Mart nez, US Pat., US 2005/0239634 A1, 2004 [60] Einaga, H., Futamura, S., & Ibusuki, T (2001) Complete oxidation of benzene in gas phase by platinized titania photocatalysts Environmental science & technology, 35(9), 1880-1884 [61] Sun, M H., Huang, S Z., Chen, L H., Li, Y., Yang, X Y., Yuan, Z Y., & Su, B L (2016) Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine Chemical society reviews, 45(12), 3479-3563 66 [62] Flanigen E.M., Broach R.W., Wilson S.T (2010), Seperations and Catalysis Chemical society reviews 67 Zeolites in Industrial PH N LÝ L CH TRÍCH NGANG H tên: Nguy n Tr Ngày, tháng, n N a ch liên l c: 8f c sinh: Thành ph H Chí Minh C u Long, P22, Q.Bình Th nh, TPHCM QUÁ TRÌNH ÀO T O Th i gian 2013 - 2018 2018 - Nay Tên tr ng i h c Bách Khoa TPHCM i h c Bách Khoa TPHCM Nghành h c K thu t hóa h c K thu t hóa h c Hình th c t o Chính quy Chính quy Q TRÌNH CƠNG TÁC 2018 Nay: Công tác t i Công ty TNHH YueYou Vi t Nam 68 V ng ih c Cao h c ... m lý m c a mesoporous zeolite, nghiên c u t p trung c t ng h p v t li u mesoporous zeolite v i chi phí th p t ngu u tro tr u 2.5 Zeolite NaX Zeolite NaX thu c nhóm Faujasite (FAU) Zeolite X có... Minh Mã s : 8520301 I TÀI: Nghiên c u t ng h p ng d ng v t li u mesoporous zeolite b pháp top down bottom up II NHI M V VÀ N I DUNG Nghiên c u t ng h p v t li u Mesoporous Zeolite X b down s d ng... the mesoporous zeolite was significantly increased -husk-ash derived zeolite Significantly, the mesopore surface area of the mesoporous zeolite was 2.4 times higher than that of the parent zeolite