1. Trang chủ
  2. » Giáo Dục - Đào Tạo

TIỂU LUẬN GIỮA KHOÁ môn TOÁN CAO cấp 2 ngày 532016, giả sử ông bách gửi 10 triệu đồng vào một tài khoản tiết kiệm lãi suất 5,24% năm

12 28 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 205,88 KB

Nội dung

NGÂN HÀNG NHÀ NƯỚC VIỆT NAM BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC NGÂN HÀNG TP HỒ CHÍ MINH TIỂU LUẬN GIỮA KHỐ MƠN: TỐN CAO CẤP GIÁO VIÊN: NGUYỄN NGỌC GIANG TP Hồ Chí Minh, 2022 BÀI TUYẾN: (3 NGUỒN: NGUỒN UFM, KINH TẾ ĐÀ NẴNG, ĐH LAO ĐỘNG) Ví dụ Ngày 5/3/2016, giả sử Ông Bách gửi 10 triệu đồng vào tài khoản tiết kiệm lãi suất 5,24% năm Tính số tiền Ơng Bách sở hữu vào ngày 5/3/2020 (Giả sử lãi suất không đổi suốt năm) Giải Ta có +) Số tiền vào ngày 5/3/2016: V 0=10 triệu đồng +) Ngày đáo hạn 5/3/2020: t = năm +) Lãi suất: r = 5,24%/năm Áp dụng cơng thức, ta có lượng vốn đầu tư năm Lượng tiền Ông Bách nhận vào gày 5/3/2020, V =10 ( 1+0,0534 )4 =12,367 triệu đồng TRANG 35 Ví dụ Một nhà đầu tư bỏ tiền để thực dự án: +) Dự án Chi phí 2000 USD đem lại 3000 USD sau năm +) Dự án Chi phí 2000 USD đem lại 4000 USD sau năm +) Dự án Chi phí 3000 USD đem lại 4800 USD sau năm Với lãi suất thịnh hành 10% năm nên chọn dự án nào? Giải Để trả lời câu hỏi ta so sánh NPV dự án nói +) Chi phí dự án: C 1=2000 ,C 2=2000 , C 3=3000 +) Khoản tiền mà dự án đem lại; B1=3000 , B 2=4000 , B 3=4800 +) Lãi suất dự án: r 1=r 2=r 3=10 %=0,1 +) Kỳ hạn dự án: n1 =4 , n 2=6 , n3=5 Áp dụng cơng thức , ta có: Dự án NP V =B1 ( 1+ r )−n −C 1=3000.(1+0,1)−4 −2000=49,04 USD Dự án NP V =B ( 1+r )−n −C 2=4000.(1+0,1)−6−2000=257,9USD Dự án NP V =B ( 1+r )−n −C3=4800.(1+0,1)−5−3000=−19,58 USD Ta chọn dự án dự án NPV lớn TRANG 37 Ví dụ Cho biết hàm đầu tư I (t)=40 √5 t dt và quỹ vốn tại thời điểm t = là 90 Hãy xác định hàm quỹ vốn K(t) Giải K (t )=∫ 40 √ t dt =40.∫ t /5 dt =25 t /5 +C K (0)=90=C Vậy K (t )=25 t8 /5 + 90 TRANG 17 Ví dụ 4: Cho biết hàm cầu ngược p=42−5 Q−Q 2.Giả sử sản phẩm được bán trên thị trường với giá p0 = Hãy tính thặng dư của người tiêu dùng Giải Tại p0 = 6, ta có phương trình sau: −Q2−5 Q+ 42=6 ↔ Q=−9(loại ) Q=4 [ Áp dụng công thức tính thặng dư của người tiêu dùng, ta có: Q0 CS=∫ D (Q)dQ−¿ p Q 0=∫ (−Q 2−5 Q+ 42)dQ−¿ 6.4=83 ¿ ¿ 0 −1 Trang18 Ví dụ Giả sử doanh thu cận biên mức sản lượng Q MR=−2 Q2−2 Q+ 60 Xác định tổng doanh thu hàm cầu ngược sản phẩm/ Giải Hàm tổng doanh thu: −2 Q −Q2+ 60 Q+ C −2 Với Q = TR = nên C = Do đó: TR= Q −Q +60 Q TR=∫ MRdQ=∫ (−2 Q 2−2 Q+60 ) dQ= Hàm cầu ngược: TR=pQ → p= TR −2 = Q −Q+60 Q TRANG 26 Ví dụ 6: Một doanh nghiệp có hàm sản xuất Q=25 K 0,5 L0,5 Trong K,L,Q mức sử dụng vốn, mức sử dụng lao động sản lượng Giả sử doanh nghiệp sử dụng 25 đơn vị vốn 100 đơn vị lao động, tính sản lượng cận biên theo vốn, sản lượng cận biên theo lao động giải thích ý nghĩa Giải + Sản lượng cận biên theo vốn là: Q ' K= ∂Q 25 L =25.0,5 K −0,5 L0,5 = ∂K K O, ( ) Với K = 25, L = 100 thì: 25 100 Q ' K= 25 O ,5 ( ) =25 Điều có nghĩa là: Nếu có doanh nghiệp nâng mức sử dụng vốn K từ 25 lên 26 đơn vị giữ nguyên mức sử dụng L = 100 lao động sản lượng tăng thêm khoảng 25 đơn vị sản phẩm + Sản lượng cận biên theo lao động là: Q ' L= ∂Q 25 K =25.0,5 K 0,5 L−0,5 = ∂K L O, ( ) Với K = 25, L = 100 thì: Q ' L= 25 25 100 O ,5 ( ) = 25 =6,25 Điều có nghĩa là: Nếu có doanh nghiệp nâng mức sử dụng lao động L từ 100 lên 101 đơn vị giữ nguyên mức sử dụng vốn sản lượng tăng thêm khoảng 6,25 đơn vị sản phẩm BÀI VY ( T CÓ THÊM BÀI, CÓ BÀI TRÙNG VS M NÊN T XĨA RỊI CỊN BÀI) Bài Một doanh nghiệp có hàm sản xuất Q = 20 K 0,4 L0,4 Giả sử giá thuê đơn vị tư $10, giá thuê đơn vị lao động $8 doanh nghiệp tiến hành sản xuất với ngân sách cố định $320 Tìm mức sử dụng lao động tư để doanh nghiệp có sản lượng cực đại Khi ngân sách sản xuất tăng 3% sản lượng cực đại thay đổi nào? Giải Cần tìm (K;L) để tối đa hóa sản lượng ràng buộc ngân sách 10K +8L = 320 Hàm Lagrange: l=20 K 0,4 L0,4 +(320−10 K −8 L) Điều kiện cần l ' K =8 K−0,6 L0,4 −10=0 K =16 0,4 −0,6 L=20 l ' L=8 K L −8 0,4 −0,6 l' ❑ =320−10 K −8 L=0 ¿16 20 { {  Điểm dừng M(16;20) với =160,4 20−0,6 Điều kiện đủ g1=10 ; g2=8; L11 =l' K =−4,8 K −1,6 L0,4 0 L21 L22 | Nên M cực đại hàm sản xuất (K = 16; L = 20) kết hợp đầu vào cần tìm https://drive.google.com/file/d/1woP3E8-SOnJmSHiPjwK_tAr1C6EF2X_2/view Bài 2: Một cơng ty độc quyền sản xuất loại sản phẩm tiêu thụ sản phẩm thị trường với hàm cầu Q=1500−5p. Hãy tính doanh thu cận biên mức sản lượng Q=650Q=650 và giải tích ý nghĩa kết tìm GIẢI Ta có: 1 Q=1500−5p⇔p=− Q+300⇒TR(Q)=pQ=− Q +300 Do đó  MR=TR′(Q)=− Q+300⇒MR(650)=40. Điều có ý nghĩa mức sản lượng 650 sản xuất thêm đơn vị sản phẩm tổng doanh thu cơng ty tăng thêm 40 đơn vị doanh thu https://vted.vn/tin-tuc/ung-dung-cua-dao-ham-trong-phan-tich-kinh-te4919.htm l bai 3: Giả sử hàm sản xuất doanh nghiệp Q=5√ L. Tính sản phẩm vật cận biên lao động mức sử dụng 100 đơn vị lao động giải tích ý nghĩa kết tìm Ta có  MPPL=Q′(L)= 2√ L ⇒MPPL(100)= 2√ L =0,25 Điều có ý nghĩa mức sử dụng 100 đơn vị lao động, tăng thêm đơn vị lao động sản lượng vật tăng thêm khoảng 0,25 đơn vị vật https://vted.vn/tin-tuc/ung-dung-cua-dao-ham-trong-phan-tich-kinh-te4919.html BÀI 4: Nếu chi phí cận biên việc sản xuất x đơn vị sản phầm cho bởi C′(x) = 0.3x2 + 2x và chi phí cố định $2,000, tìm hàm chi phí C(x) và chi phí sản xuất 20 đơn vị sản phẩm Giải: Ta biết chi phí cận biên đạo hàm hàm chi phí chi phí cố định chi phí mức khơng sản phẩm Do để tìm hàm C(x) thì ta lấy ngun hàm của hàm chi phí câ ̣n biên, suy C(x) = 0.1x3 + x2 + K      với  K tùy ý Ta xác định số tích phân dựa vào C(0) = 2,000, suy ra K = 2000 Vâ ̣y chi phí sản xuất của 20 đơn vị sản phẩm là C(20)= 3200$ https://kkhtn.duytan.edu.vn/Home/ArticleDetail/vn/92/2167/ung-dung-cua-tichphan-trong-kinh-te Ví dụ Một dự án số vốn đầu tư ban đầu 30000 USD sau năm đem lại cho bạn đặn 5000 USD năm liên tiếp 10 năm sau Lãi suất khơng đổi 10%/năm Bạn có chấp nhận dự án hay không? Giải Để đánh giá dự án, ta tính giá trị rịng dự án Ta có + Số tiền năm: a= 5000 USD, + Lãi suất: r=10%/ năm, + Kỳ hạn: n =10 năm, +) Vốn ban đầu: C= 30000 USD Giá trị dòng tiền, ta áp dụng biểu thức (2.7): PV =a 1−¿ ¿ Giá trị ròng: NPV= PV – C = 30722,9-30000 = 722,8USD BÀI 7: Giả sử tuổi 25 bạn lên kế hoạch tiết kiệm tiền cho bạn, năm bạn gửi k triệu đồng bạn gửi tiết kiệm ngân hàng với lãi suất 6%/năm (không thay đổi), bạn hưu tuổi 65 Hỏi k để bạn có tỷ đồng tiết kiệm cho hưu? Giải • Kí hiệu S(t) lượng tiền bạn có thời điểm t(năm) • Khi S(t + ∆ t) = S(t) +r∆ tS(t) + k ∆ t Trong r ∆ tS(t) số tiền lãi sinh sau khoảng thời gian ∆ t k ∆ t số tiền bạn nộp thêm vào • Khi S (t+ ∆ t)−S (t ) =rS (t)+k ∆t • Cho ∆ t → ta S'(t) = rS(t) + k • Giải phương trình vi phân với điều kiện ban đầu S(0) = ta k k S(t )= e rt − r r BÀI 8: Giả sử bạn lên kế hoạch gửi tiết kiệm So triệu đồng ngân hàng với lãi suất 7%/năm Hỏi sau 10 năm số tiền bạn có ? Giải • Kí hiệu S(t) lượng tiền bạn có thời điểm t(năm) • Khi S(t +∆ t) = S(t) + r∆ tS(t), r∆ tS(t) số tiền lãi sinh sau khoảng thời gian ∆ t • Khi S (t+ ∆ t)−S (t) =r S( t) ∆t • Cho ∆ t → ta S'(t) = rS(t) • Giải phương trình vi phân với điều kiện ban đầu S(0) = So ta S(t) = Soe rt BÀI 9: Một doanh nghiệp có hàm doanh thu biên chi phí biên cho bởi: ´ MC=180+ 0.3 x ² ´ MR=540 – 0.6 x ² Biết TFC = 65$, tìm mức sản lượng để lợi nhuận doanh nghiệp thu nhiều Giải ´ (x )dx=180 x +0,1 x 3+ A C (x)=∫ MC Ta có: TFC =C(x )=65=¿ A=65  C (x)=180 x +0,1 x3 +65 ´ ( x) dx=540 x−0,2 x3 + B R( x )=∫ MR Ta có: R(0)=0=¿ B=0  R( x )=540 x−0,2 x3 P ( x ) =R ( x ) −C ( x )=360 x−0,3 x3 −65 P '( x )=360−0,9 x Cho P' (x)=0  360 −0,9 x 2=0 x=20( nhận)  [ x=−20 ( loại ) P' ' ( x )=−1,8 x  P ' '(20)=−36 cho π đạt giá trị lớn Đạo hàm cấp 1: π(Q)’ = -3Q2 + 150Q +312 Suy π(Q)’ =  Q = -2 (loại) hay Q = 52 Mặt khác π(Q)”= -6Q + 150 Xét Q = 52, ta có π(52)” = -162 < Vậy π(Q) đạt cực đại Q = 52 Bài 2: Cho hàm tổng chi phí TC(Q)=0,1Q2 + 0,3Q + 100, (Q ≥ 0) a) Tìm hàm chi phí biên MC(Q) b) Tính chi phí biên mức sản lượng Q0=120 giải thích ý nghĩa kết nhận Giải: a) Hàm chi phí biên MC(Q) = 0,2Q + 0,3, (Q ≥ 0) b) Tại mức sản lượng Q0 = 120, ta có MC(120) = 24,3 Ý nghĩa: Tại mức sản lượng 120 ta tăng Q lên đơn vị chi phí tăng lên 24,3 đơn vị Bài 3: Cho hàm cầu loại sản phẩm QD = 1000 – 5P Tính hệ số co dãn cầu theo giá mức giá 120 đơn vị nêu ý nghĩa Giải: Đạo hàm sản lượng Q theo mức giá P Q’(P)= -5 Áp dụng công thức hệ số co dãn cầu theo giá, ta có P −5 P ED = Q’(P) Q = 1000−5 P Tại mức giá P = 120, ta có ED= -1,5, nghĩa bán với đơn giá P = 120, ta tăng giá lên 1%, lượng cầu giảm khoảng 1,5% Bài 4: Cho hàm sản xuất Q = 120L2 – L3, L > Hãy xác định mức sử dụng lao động để sản lượng tối đa Giải: Đạo hàm cấp 1: Q’(P)= 240L – 3L2 Giải phương trình: Q’(L) = 240L – 3L2 =  L = 80 (nhận) hay L = 0(loại) Hàm số có điểm dừng: L = 80 Đạo hàm cấp 2: Q”(L) = 240 – 6L, L = 80 Xét L = 80, ta có Q”(80) = -240 < Vậy lao động L = 80 lượng sản lượng cực đại, với Qmax = 256000 Bài 5: Cho hàm sản phẩm biên lao động MPL = 40L0,5 Tìm hàm sản xuất ngắn hạn Q = f(L), biết Q(100) = 4000 Giải: Áp dụng công thức, ta có: 80 1,5 0,5 Q(L) = ∫ MPLdL=40∫ L dL= L +C Từ giả thiết: Q(100) = 4000  C = 80 1,5 68000 Vậy Q(L) = L − −68000 Bài 6: Cho hàm chi phí cận biên mức sản lượng Q là: MC(Q) = 8e0,3Q chi phí cố định FC = 50 Tìm hàm tổng chi phí Giải: Áp dụng cơng thức, ta có: TC(Q) = ∫ MC ( Q ) dQ=8 ∫ e 0,2Q dQ=40 e 0,2Q + C Từ chi phí cố định: FC = 50  C = 10 Vậy TC(Q) = 40 e0,2 Q +10 ... ĐỘNG) Ví dụ Ngày 5/3 /20 16, giả sử Ông Bách gửi 10 triệu đồng vào tài khoản tiết kiệm lãi suất 5 ,24 % năm Tính số tiền Ơng Bách sở hữu vào ngày 5/3 /20 20 (Giả sử lãi suất không đổi suốt năm) Giải Ta... vào ngày 5/3 /20 16: V 0 =10 triệu đồng +) Ngày đáo hạn 5/3 /20 20: t = năm +) Lãi suất: r = 5 ,24 % /năm Áp dụng cơng thức, ta có lượng vốn đầu tư năm Lượng tiền Ông Bách nhận vào gày 5/3 /20 20, V =10. .. K −0,6 L−0,6 >0 10 | 10 L11 L 12 =(0+ 80 L 12 +80 L21)−(64 L11 +0+ 100 L 22 )=80(L 12 + L21 )−64 L11 + 100 L 22 >0 L21 L 22 | Nên M cực đại hàm sản xuất (K = 16; L = 20 ) kết hợp đầu vào cần tìm https://drive.google.com/file/d/1woP3E8-SOnJmSHiPjwK_tAr1C6EF2X _2/ view

Ngày đăng: 10/01/2022, 23:19

TỪ KHÓA LIÊN QUAN

w