Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 43 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
43
Dung lượng
2,37 MB
Nội dung
DPAD - LUYỆN THI TỐN THPTQG 2022 ĐỀ TỐN ƠN TẬP GIỮA KÌ Câu (SƯU TẦM+BIÊN SOẠN: DPAD) Cho hàm số y f ( x) có bảng biến thiên bên Mệnh đề sai? Câu 2: A Hàm số nghịch biến khoảng 1;0 B Hàm số đồng biến khoảng ;3 C Hàm số nghịch biến khoảng 0;1 D Hàm số đồng biến khoảng 2; Giá trị cực tiểu đồ thị hàm số y x x A y Câu B x C x D M 0;3 Cho hàm số y f x liên tục 2;3 có bảng biến thiên hình vẽ Gọi M , m giá trị lớn giá trị nhỏ hàm số đoạn 2;3 Tính tổng S M m A S Câu C S 12 D S 16 Đồ thị hàm số sau có đường tiệm cận đứng x tiệm cận ngang y ? A y x x Câu B S 4 B y x3 3x C y x3 x2 D y 2x x 1 Tìm số giao điểm n đồ thị hai hàm số y x 3x y x A n B n C n THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D n Câu Cho hàm số y f x có bảng biến thiên hình vẽ Phương trình đường tiệm cận ngang đồ thị hàm số A x 2 Câu Cho hàm số y B y 1 C y 2 D x 1 x2 có đồ thị C Tính hệ số góc tiếp tuyến với đồ thị C điểm có hồnh x 1 độ A Câu C D Khối mười hai mặt có đỉnh? A 12 Câu B B 20 C 30 D 18 Cho hình chóp S ABCD có đáy ABCD hình vng cạnh a Biết SA ABCD SA a Thể tích khối chóp S ABCD A a 3 B a3 12 C a3 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D a3 Câu 10 Cho hàm số y f x liên tục có đồ thị hình vẽ Tập nghiệm S bất phương trình f x x là: A S 1;1 2; B S ; 1 1;2 C S 0;1 2; D S ;0 1;2 Câu 11 Cho hàm số y f x có bảng biến thiên sau Mệnh đề đúng? A Hàm số đồng biến khoảng ;1 B Hàm số đồng biến khoảng ; C Hàm số đồng biến khoảng ;1 D Hàm số đồng biến khoảng ; 1 Câu 12 Cho hàm số y f x có đồ thị hình vẽ Khoảng nghịch biến hàm số y f x A ; 0 B ; C ; THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D ; Câu 13 Cho hàm số y f x liên tục có đạo hàm f x x 1 x 2 x 3 C D y f x có điểm cực trị? A B x4 Hỏi hàm số Câu 14 Hàm số y x3 m 1 x m 1 x Hàm số đạt cực trị điểm có hoành độ x A m B m 0; m Câu 15 Giá trị lớn hàm số y x D m 0; m đoạn 1;3 : x B 12 A C m C D 14 Câu 16 Cho hàm số y f x có đồ thị hình vẽ Gọi M , m giá trị lớn nhất, giá trị nhỏ hàm số y f A Câu 17 Cho hàm số y x x2 Giá trị 2M m B C x 3x Chọn mệnh đề 2x 1 1 1 A Hàm số nghịch biến ; 4 B Hàm số nghịch biến 1; 3 2 3 C Hàm số đồng biến ; 3 2 D Hàm số đồng biến ;0 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D 2 Câu 18 Cho hàm số y x 1 , số đường tiệm cận đồ thị hàm số là: x x2 5x A B C D C y x3 3x D y x3 3x Câu 19 Đồ thị sau hàm số nào? A y x3 3x B y x3 3x Câu 20 Số giao điểm đường cong C : y x3 2x2 x 1 đường thẳng d : y 2x A B C D Câu 21 Cho lăng trụ tam giác ABC ABC có tất cạnh a Thể tích khối lăng trụ ABC ABC a3 A a3 B 12 a3 C 12 a3 D Câu 22 Cơng thức tính thể tích khối chóp có diện tích đáy B chiều cao h h B A V Bh B V Bh Câu 23 Tập xác định hàm số y cos H C V Bh 2 x là: 2 x THAM GIA NHÓM TOÁN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D V Bh A / 2 B 2;2 D 1;1 C 2;2 Câu 24 Biết đồ thị hàm số y x3 3x có hai điểm cực trị Tính khoảng cách hai điểm cực trị A B.20 C D Câu 25 Một đa diện có số cạnh 30 , số mặt 12 , đa diện có số đỉnh A 20 B 18 C 40 D 22 Câu 26 Cho hình chóp S ABCD có SA AB Khoảng cách hai đường thẳng AC SD A 14 B C 14 D Câu 27 Cho hình chóp S ABCD có đáy hình vng cạnh a , SA vng góc với mặt phẳng đáy 5a khoảng cách từ A đến mặt phẳng SBC Tính thể tích khối chóp S ABC a3 A B a3 C 2a D a3 Câu 28 Cho hình lăng trụ ABC ABC có đáy tam giác cạnh a , góc cạnh bên mặt phẳng đáy 30 Hình chiếu A xuống mặt phẳng ABC trung điểm BC Tính thể tích khối lăng trụ ABC ABC a3 A 24 a3 B Câu 29 Tìm giá trị m để hàm số y A Với m B m a3 C x2 nghịch biến 0; xm C 2 m Câu 30: Đường thẳng x 1 không tiệm cận đồ thị hàm số đây? x2 x2 x A y B y C y x 1 x 1 x 1 Câu 31 a3 D Cho hàm số y f '( x) có đồ thị hình vẽ THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D m 2 D y x 3x 2 Xét tính đơn điệu hàm số g ( x) f ( x) x x ta A Hàm số g ( x) nghịch biến ; 2 ; 1;1 ; 2; ; đồng biến 2; 1 ; 1;2 B Hàm số g ( x) đồng biến ; 2 ; 1;1 ; 2; ; nghịch biến 2; 1 ; 1;2 C Hàm số g ( x) đồng biến ;2 ; 1; ; nghịch biến 2;1 3 3 3 D Hàm số g ( x) đồng biến ; ; 0; ; nghịch biến ;0 ; ; 2 2 2 Câu 32 Cho hàm số y (m 1) x cos3x 8cos x 6cos x Tập hợp giá trị thực m để hàm số đồng biến là: A ; 2 B 10; C 10; D ; 2 Câu 33 Cho hàm số y f x xác định trị hàm số y f x 3 hàm số y f x có đồ thị hình vẽ Tìm số điểm cực y -2 x O A B C Câu 34 Gọi A, B giá trị nhỏ nhất, giá trị lớn hàm số y tất giá trị thực tham số m để A B A m 1; m 2 B m 2 D x m2 m đoạn 2;3 Tìm x 1 13 C m 2 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D m 1; m Câu 35 Cho hàm số y f x có bảng biến thiên sau: Hỏi đồ thị hàm số y có tất đường tiệm cận (tiệm cận đứng tiệm cận ngang)? f x A B C D Câu 36 Hàm số y x x có đồ thị hình vẽ bên y x O Hình đồ thị hàm số y x x ? O y y y x O x O Hình A Hình Hình B Hình y O x Hình C Hình x Hình D Hình 2x 1 hai điểm phân biệt A B cho trọng x 1 tâm G tam giác OAB thuộc đồ thị C với O 0;0 gốc tọa độ Khi giá trị thực tham số Câu 37 Cho đường thẳng d : y 3x m cắt đồ thị C : y m thuộc tập hợp sau đây? A 2;3 B 5; 2 C 3; THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D ; 5 Câu 38 Cho đồ thị hàm số y ax bx c cắt trục hoành bốn điểm phân biệt A, B, C,D hình vẽ bên Biết AB BC CD mệnh đề sau dây đúng? A a 0, b 0, c 0, 100b 9ac B a 0, b 0, c 0, 9b 100ac C a 0, b 0, c 0, 9b 100ac D a 0, b 0, c 0, 100b 9ac Câu 39 Đồ thị hàm số y ax3 bx cx d (với a , b , c , d có ước chung lớn ) có hai điểm cực trị M 2; 2 , N 0;2 Tính P a b c d A P C P B P D P Câu 40: Tìm tất giá trị thực m để đồ thị hàm số y x x 2mx m2 m có hai điểm cực trị nằm hai phía trục Ox A m ;0 1; 4 B m 0; C m 0; 1 D m 0; Câu 41: Tìm giá trị lớn hàm số f x A B x 1 x2 ? C Câu 42 Cho hình chóp S ABCD cạnh a SA ABCD , SA A 750 B 450 1;4 D Khơng tồn a Tính góc SC ABCD C 600 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D 300 Câu 43 Cho hàm số y f x Hàm số y f x có bảng biến thiên hình vẽ Bất phương trình f x m x2 2x có nghiệm với x 2; 2 A m f 2 Câu 44 Cho hàm số y A m B m f 2 C m f 2 D m f 2 2x m Tìm m để max y y 5 1;0 1;0 x 1 B m Câu 45 Cho hàm số y f x liên tục C m D m có đồ thị hình vẽ Có giá trị ngun khơng âm m để phương trình: f 3sin x 8cos2 x f m2 4m có nghiệm x A B ? C D Câu 46 Cho hàm số y f x có đạo hàm f x x x 1 x 2mx 5 Có tất giá trị nguyên tham số m để hàm số y f x có điểm cực trị? THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Hàm số đồng biến ; 2 ; 1;1 ; 2; ; nghịch biến 2; 1 ; 1;2 Câu 32 Cho hàm số y (m 1) x cos3x 8cos3 x 6cos x Tập hợp giá trị thực m để hàm số đồng biến là: A ; 2 B 10; C 10; D ; 2 Lời giải Chọn B TXĐ: y (m 1) x 3cos3x y ' m 9sin 3x Hàm số nghịch biến y ' 0, x Do m 9sin x , x sin x Câu 33 Cho hàm số y f x xác định trị hàm số y f x 3 dấu xảy hữu hạn điểm m 1 , x m 1 m 10 hàm số y f x có đồ thị hình vẽ Tìm số điểm cực y -2 x O A B C D Lời giải Chọn D Quan sát đồ thị ta có y f x có nghiệm bội lẻ x 2 có nghiệm bội chẵn x THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN x x Ta có y f x 3 x f x 3 x 2 x 1 x2 x 2 Mà x 2 nghiệp kép, nghiệm lại nghiệm đơn nên hàm số y f x 3 có ba điểm cực trị x m2 m Câu 34 Gọi A, B giá trị nhỏ nhất, giá trị lớn hàm số y đoạn 2;3 Tìm x 1 13 tất giá trị thực tham số m để A B A m 1; m 2 B m 2 C m 2 D m 1; m Lời giải Chọn A x m2 m đoạn 2;3 Ta có: x 1 m2 m m2 m m2 m , B f 2 y' x 2;3 A f 3 2 x 1 Xét hàm số y A B m 13 m m m m 13 2 m 2 Câu 35 Cho hàm số y f x có bảng biến thiên sau: Hỏi đồ thị hàm số y có tất đường tiệm cận (tiệm cận đứng tiệm cận f x ngang)? A B C D Lời giải Chọn A Ta có: lim f x lim x x 1 1 có tiệm ngang y Đồ thị hàm số y f x f x THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN lim f x lim x x 1 có tiệm ngang y Đồ thị hàm số y f x f x Xét phương trình f ( x) f x 2 1 Dựa vào bảng biến thiên, 1 có nghiệm x1 1 , x2 0;2 , x3 2; Suy đồ thị hàm số y có tiệm cận đứng x 1 , x x2 , x x3 f ( x) Vậy đồ thị hàm số có tất tiệm cận Câu 36 Hàm số y x x có đồ thị hình vẽ bên y x O Hình đồ thị hàm số y x x ? O y y y O x x O Hình Hình A Hình y Hình B Hình O x C Hình Hình D Hình Lời giải Chọn A Hàm số y x x có đồ thị C x x 1 x Ta có y x x 1 x x 1 x 2 Cách vẽ đồ thị hàm số y x x sau: ữ nguyên đồ thị C ứng với x đối xứng đồ thị C ứng với x qua trục Ox Bỏ đồ thị C ứng với x THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN x Hợp phần đồ thị đồ thị hàm số y x x cần vẽ 2x 1 hai điểm phân biệt A B cho trọng x 1 tâm G tam giác OAB thuộc đồ thị C với O 0;0 gốc tọa độ Khi giá trị thực tham số m thuộc tập hợp sau đây? Câu 37 Cho đường thẳng d : y 3x m cắt đồ thị C : y A 2;3 B 5; 2 C 3; D ; 5 Lời giải Chọn C Phương trình hồnh độ là: 2x 1 x 3x m x 1 f x 3x m 1 x m 1 m 1 m 10m 11 Để d cắt C hai điểm phân biệt ta có m 11 f 1 Khi tọa độ giao điểm A x1; 3x1 m ; B x2 ; 3x2 m với x1 ; x2 nghiệm PT (1) nên theo m 1 x1 x2 viét ta có x x m 1 x xB xO m xG A m m 1 Do G trọng tâm tam giác OAB nên G ; y y A yB yO m G 3 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN 15 325 m 1 m TM 1 m 1 G Mặt khác thuộc đồ thị C nên ta có m 1 15 325 1 m TM 2 Câu 38 Cho đồ thị hàm số y ax bx c cắt trục hoành bốn điểm phân biệt A, B, C,D hình vẽ bên Biết AB BC CD mệnh đề sau dây đúng? A a 0, b 0, c 0, 100b 9ac B a 0, b 0, c 0, 9b 100ac C a 0, b 0, c 0, 9b 100ac D a 0, b 0, c 0, 100b 9ac Lời giải Chọn C Nhìn dạng đồ thị ta thấy a , cho y có nghiệm phân biệt nên b Do loại đáp án B D Phương trình hồnh độ ax4 bx2 c Đặt t x2 , t 0 ta có at bt c 0, 1 Đồ thị hàm số cắt trục hoành bốn điểm phân biệt phương trình 1 có nghiệm dương phân biệt t1; t2 t1 t2 A t1 ;0 , B t2 ;0 , C t2 ;0 , D t1 ;0 Do AB BC CD nên t1 9t2 * b t1 t2 a Theo viét ta có ** Thế (*) vào (**) ta có c t t a b t2 10a 9b 100ac 9t 22 c a THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Câu 39 Đồ thị hàm số y ax3 bx cx d (với a , b , c , d có ước chung lớn ) có hai điểm cực trị M 2; 2 , N 0;2 Tính P a b c d A P B P C P D P Lời giải Chọn D Cách 1: Có y ax3 bx cx d y 3ax 2bx c y 2 8a 4b 2c d 2 a b 3 y 0 d Từ giả thiết ta có hệ y 12a 4b c c c d y Vậy P *Nhận xét thêm: a , b 3 , c , d thoả mãn điều kiện đồ thị có hai điểm cực trị b 3ac điều kiện a , b , c , d có ước chung lớn Cách 2: Vì đồ thị hàm số y ax3 bx cx d có hai điểm cực trị M 2; 2 , N 0;2 nên trung điểm I MN có toạ độ 1;0 tâm đối xứng đồ thị Vậy I 1;0 thuộc đồ thị hàm số, hay P f 1 Câu 40: Tìm tất giá trị thực m để đồ thị hàm số y x x 2mx m2 m có hai điểm cực trị nằm hai phía trục Ox A m ;0 1; 4 B m 0; C m 0; 1 D m 0; 1;4 Lời giải Chọn D Đồ thị hàm số cho có hai cực trị nằm hai phía trục Ox phương trình x 2 x2 2mx m2 m có nghiệm phân biệt hay phương trình x2 2mx m2 m có hai nghiệm phân biệt khác 2 , đó: THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN m 2 m0 m m m m m 5m 4m m m m Vậy m 0; 1;4 x 1 Câu 41: Tìm giá trị lớn hàm số f x A x2 B ? C D Không tồn Lời giải Chọn C Ta có f x x2 x x2 x2 x 1 1 x x 1 x2 f x x Bảng biến thiên: Vậy giá trị lớn hàm số f x x Câu 42 Cho hình chóp S ABCD cạnh a SA ABCD , SA a Tính góc SC ABCD A 750 B 450 C 600 Lời giải ChọnD THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D 300 Góc SC ABCD góc SCA Ta có AC a tan SCA SA SCA 300 AC Câu 43 Cho hàm số y f x Hàm số y f x có bảng biến thiên hình vẽ Bất phương trình f x m x2 2x có nghiệm với x 2; 2 A m f 2 B m f 2 C m f 2 D m f 2 Lời giải Chọn D Ta có: f x m x2 2x với x 2; 2 với x 2; 2 Xét g x f x x2 2x với x 2; 2 , có g x f x 2x Dựa vào bảng biến thiên f x ta thấy x 2; f x x 2; 2 2 x 2 Do g x f x 2x với x 2; 2 Hàm số g x đồng biến 2;2 liên tục 2;2 Suy ra: max g x g f Vậy m f 2 Chọn D -2;2 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Câu 44 Cho hàm số y 2x m Tìm m để max y y 5 1;0 1;0 x 1 A m B m C m D m Lời giải Chọn C Hàm số y 2x m có tập xác định D x 1 \ 1 Hàm số liên tục đoạn 1;0 Đạo hàm : y ' 2 m x 1 TH1: Nếu m 2 , y max y y không thỏa mãn yêu cầu 1;0 1;0 TH2: Nếu m 2 , hàm số cho đơn điệu đoạn 1;0 nên đạt GTLN, GTNN điểm đầu mút max y y 5 y 1 y 0 5 1;0 1;0 Câu 45 Cho hàm số y f x liên tục 2 m m 5 m 2 1 có đồ thị hình vẽ Có giá trị ngun khơng âm m để phương trình: f 3sin x 8cos2 x f m2 4m có nghiệm x A B ? C Lời giải THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D Chọn A Từ đồ thị, ta thấy hàm số nghịch biến Do đó: f 3sin x 8cos x f m2 4m 3sin x 8cos x m2 4m 3sin 2x 4cos 2x m2 4m * * có nghiệm 32 42 m2 4m m2 m m 4m 5 m Có giá trị m nguyên không âm m m Câu 46 Cho hàm số y f x có đạo hàm f x x x 1 x 2mx 5 Có tất giá trị nguyên tham số m để hàm số y f x có điểm cực trị? A B C D Lời giải Chọn C x (l ) 2 Ta có: f x x x 1 x 2mx 5 x 1 x 2mx 1 (Vì x , f x không đổi dấu) Để hàm số f x có điểm cực trị ta có trường hợp sau: + Phương trình 1 vơ nghiệm m2 m + Phương trình 1 có nghiệm kép m2 m m2 + Phương trình 1 có hai nghiệm phân biệt, có nghiệm 2m m m m m Vậy giá trị nguyên m là: m2; 1;0;1;2;3 THAM GIA NHÓM TOÁN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Câu 47 Cho hàm số f ( x) x 3x Có giá trị nguyên tham số m để đồ thị hàm số g x f x m cắt trục hoành điểm phân biệt? B A C D Lời giải Chọn C Ta có : f x x3 3x 3x x x f x 3x x x Bảng biến thiên hàm số f x sau Bảng biến thiên hàm số f x sau Để đồ thị hàm số g x f x m cắt trục hoành điểm phân biệt Phương trình g x có nghiệm phân biệt Phương trình f x m có nghiệm phân biệt Đường thẳng d : y 1 m cắt đồ thị hàm số y f x điểm phân biệt Dựa vào bảng biến thiên hàm số y f x ta có 4 m m Do m nên có giá trị nguyên m thỏa mãn, m2;4;4 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Câu 48 Có giá trị thực tham số m để giá trị lớn hàm số f x x2 x m đoạn 2;1 ? A C B Lời giải Chọn A Đặt t x2 2x , x 2;1 t 5; 1 Ta có: y t m ymax m m m m max m ; m m m m m Câu 49: Cho hàm số y f x y g x có đồ thị hình vẽ Đồ thị hàm số y f x g x đồ thị sau ? THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN D A B C D Lời giải Chọn C Cách 1: - Đồ thị hàm số y f x y g x qua gốc tọa độ nên đồ thị hàm số y f x g x qua gốc tọa độ Loại đáp án B D - Từ đồ thị hàm số y f x y g x ta có: Với x ; 0 : f x 0, g x f x g x x ;0 Chọn C Cách 2: - Đồ thị hàm số y f x y g x qua gốc tọa độ nên đồ thị hàm số y f x g x qua gốc tọa độ Loại đáp án B D - Xét x 1 f 1 0; g 1 f 1 g 1 Chọn C THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN Câu 50 Cho hình chóp S ABCD có đáy hình chữ nhật, cạnh bên SA 2a SA ABCD Gọi M , N trung điểm SB, SD Biết cosin góc mặt phẳng AMN mặt phẳng đáy ABCD a2 AMN tam giác có diện tích Tính thể tích khối chóp S ABCD a2 A B 4a 3 C a 3 D 2a 3 Lời giải Chọn D Gọi E, F trung điểm AB, AD Khi hình chiếu vng góc tam giác AMN lên mặt phẳng ABCD tam giác AEF nên THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN cos AMN , AEF S AEF S AEF S AMN a2 Ta có: S ABCD 2S ABD 2.4.S AEF a2 1 2a 3 Vậy VABCD SA.S ABCD 2a.a 3 THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN THAM GIA NHĨM TỐN DPAD ĐỂ BIẾT THÊM NHIỀU PP HAY: https://bom.to/TLoVoN ... https://bom.to/TLoVoN D 2a 3 BẢNG ĐÁP ÁN 1B 11 D 2A 12 B 3C 13 C 4D 14 C 5B 15 B 6B 16 A 7B 17 B 8B 18 C 9C 19 C 10 A 20D 21A 22A 23B 24A 25A 26D 27A 28C 29C 30C 31B 32B 33D 34A 35A 36A 37C 38C 39D 40D 41C 42D 43D 44C 45A... Câu 15 Giá trị lớn hàm số y x đoạn ? ?1; 3 : x B 12 A C D 14 Lời giải Chọn B Ta có y x 0 x x 3 L Ta có y ? ?1? ?? 12 , y 3 Vậy giá trị lớn hàm số đoạn ? ?1; 3 12 ... hồnh độ là: 2x ? ?1 x 3x m x ? ?1 f x 3x m 1? ?? x m ? ?1? ?? m ? ?1 m 10 m 11 Để d cắt C hai điểm phân biệt ta có m 11 f ? ?1? ?? Khi tọa độ