1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu và xây dựng platform cho việc quản lý các phương tiện di chuyển và phát triển các thuật toán lập lộ trình vận tải thời gian thực

55 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nghiên Cứu Và Xây Dựng Platform Cho Việc Quản Lý Các Phương Tiện Di Chuyển Và Phát Triển Các Thuật Toán Lập Lộ Trình Vận Tải Thời Gian Thực
Tác giả Nguyễn Thanh Hoàng
Người hướng dẫn TS. Phạm Quang Dũng
Trường học Trường Đại Học Bách Khoa Hà Nội
Chuyên ngành Khoa Học Máy Tính
Thể loại Luận Văn Thạc Sĩ
Năm xuất bản 2021
Thành phố Hà Nội
Định dạng
Số trang 55
Dung lượng 0,97 MB

Nội dung

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI LUẬN VĂN THẠC SĨ Nghiên cứu xây dựng platform cho việc quản lý phương tiện di chuyển phát triển thuật tốn lập lộ trình vận tải thời gian thực NGUYỄN THANH HỒNG Ngành Khoa học máy tính Giảng viên hướng dẫn: TS Phạm Quang Dũng Chữ ký GVHD Viện: Công nghệ thông tin Truyền thông HÀ NỘI, 5/2021 CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự – Hạnh phúc BẢN XÁC NHẬN CHỈNH SỬA LUẬN VĂN THẠC SĨ Họ tên tác giả luận văn : Nguyễn Thanh Hoàng Đề tài luận văn: Nghiên cứu xây dựng platform cho việc quản lý phương tiện di chuyển phát triển thuật tốn lập lộ trình vận tải thời gian thực Chuyên ngành: Khoa học máy tính Mã số SV: CA190047 Tác giả, Người hướng dẫn khoa học Hội đồng chấm luận văn xác nhận tác giả sửa chữa, bổ sung luận văn theo biên họp Hội đồng ngày 28/4 với nội dung sau: STT Yêu cầu hội đồng Nội dung chỉnh sửa, bổ sung Thêm phần giới thiệu nghiên cứu G-Tree - Bổ sung phần nghiên cứu liên quan đến G-Tree phần 3.6 Tài liệu tham khảo chưa chuẩn hóa - Sửa lại tên tác giả tài liệu tham khảo [6] Chuyển tên tác giả tất tài liệu tham khảo chuẩn viết tắt - Các hình vẽ lấy từ tài liệu tham khảo khơng trích dẫn - Thêm trích dẫn tài liệu tham khảo vào hình 2.1, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7 4.2 Nhiều hàm số, cơng thức chưa đánh số giải thích - Thêm đánh số giải thích tất công thức chương từ công thức (3.1) đến cơng thức (3.25) Sửa lỗi tả, lỗi trình bày theo ý kiến hội đồng - Sửa lại số thứ tự liệt kê trích dẫn tài liệu tham khảo theo thứ tự tăng dần trang trang - - Thêm giải thích cho hàm “propagateOnePointMove” sử dụng thuật toán Algorithm trang 33 Tăng kích cỡ phơng chữ sử dụng luận văn từ 12 lên 13 Bỏ mục dang sách bảng có bảng chương Ngày 15 tháng năm 2021 Giáo viên hướng dẫn Tác giả luận văn CHỦ TỊCH HỘI ĐỒNG ĐỀ TÀI LUẬN VĂN Mã đề tài: 19AKHDL-KH03 Theo QĐ số 1536 Hiệu trưởng trường ĐHBK Hà Nội ký ngày 19 tháng năm 2019 Họ tên học viên: Nguyễn Thanh Hoàng SHHV: CA190047 Chuyên ngành: Khoa học máy tính Lớp: 19AKHDL Người hướng dẫn: TS Phạm Quang Dũng Đơn vị: Viện Công nghệ Thông tin - Truyền thông Tên đề tài (tiếng Việt): Nghiên cứu xây dựng platform cho việc quản lý phương tiện di chuyển phát triển thuật tốn lập lộ trình vận tải thời gian thực Tên đề tài (tiếng Anh): Building a platform for managing moving vehicles and developing algorithms for real-time route scheduling Giáo viên hướng dẫn Ký ghi rõ họ tên Lời cảm ơn Lời đầu tiên, xin gửi lời cám ơn chân thành đến thầy Phạm Quang Dũng với hướng dẫn liên tục vô quý giá để tơi hồn thành luận văn cách tốt Thầy góp ý chi tiết tồn nội dung luận văn này, giúp tơi trình bày luận văn xác, rành mạch rõ ràng Ngồi ra, tơi xin gửi lời cám ơn đến bạn Tạ Duy Hoàng, người cho tơi số lời khun bổ ích để hồn thành luận văn Cuối cùng, tơi xin cám ơn gia đình ln ủng hộ động viên tơi, giúp tơi có thêm động lực tâm vượt qua khó khăn giai đoạn Tóm tắt luận văn Ngày nay, với bùng nổ thương mại điện tử thúc đẩy phát triển mạnh mẽ ngành vận tải Hàng ngày số lượng đơn hàng cần xử lý đơn vị giao vận lớn, đơn vị giao vận cần phải có hệ thống xử lý điều phối phương tiện vận chuyển phục vụ đơn hàng Trong hệ thống cần phải theo dõi vị trí đối tượng di chuyển để tính khoảng cách phương tiện di chuyển với vị trí cần xử lý đơn hàng Ngoài với số cách vận hành, hệ thống cần phải tìm k đối tượng di chuyển gần so với vị trí đơn hàng để lựa chọn phương tiện phù hợp Đã có nhiều nghiên cứu tập trung giải hai vấn đề trên, có cấu trúc liệu G-Tree cân thời gian xử lý truy vấn khả mở rộng với liệu cực lớn Ý tưởng G-Tree sử dụng phân hoạch chia nhỏ dần đồ thị mạng lưới đường thành đồ thị con, dựng cấu trúc nút tương ứng với đồ thị Trong luận văn này, nghiên cứu khai thác cấu trúc liệu G-Tree vào việc xây dựng hệ thống quản lý đối tượng chuyển động cung cấp hai truy vấn tìm đường ngắn tìm k điểm gần cách hiệu Hệ thống xây dựng áp dụng thử nghiệm vào toán điều phối thu gom đơn hàng theo thời gian thực lĩnh vực thương mại điện tử Hệ thống thử nghiệm liệu đồ thực tế tỉnh thành phố lớn Việt Nam, GTree cho thấy kết có thời gian xử lý tốt nhiều so với thuật toán cổ điển Dijkstra Với thử nghiệm mô hệ thống điều phối xe thu gom đơn hàng thời gian thực, chúng tơi so sánh việc tối ưu lộ trình sử dụng khoảng cách thực tế khoảng cách Haversine, kết cho thấy việc sử dụng khoảng cách thực tế tốt so với khoảng Haversine HỌC VIÊN Ký ghi rõ họ tên Mục lục Giới thiệu Phát biểu toán 2.1 Phát biểu toán 2.2 Các nghiên cứu liên quan 4 G-Tree 3.1 Tổng quan G-Tree 3.1.1 Ý tưởng 3.1.2 Định nghĩa 3.1.3 Xây dựng G-Tree 3.1.4 Độ phức tạp nhớ G-Tree 3.2 Single-Pair Shortest Path Query 3.3 Shortest Path Recovery 3.4 K Nearest Neighbor Query 3.5 Độ phức tạp tính tốn 3.6 Các nghiên cứu liên quan 8 11 13 15 20 23 28 28 Ứng dụng G-Tree vào hệ thống tự động điều phối xe thu gom đơn hàng theo thời gian thực 29 4.1 Tìm kiếm vị trí đồ 29 4.2 Điều phối xe 30 Kết thực nghiệm 5.1 Single-Pair Shortest Path Query 5.2 K Nearest Neighbor Query 5.3 Hệ thống tự động điều phối xe thu gom đơn hàng theo thời gian thực i 35 35 40 44 Danh sách hình vẽ 2.1 Một đồ thị mô mạng lưới đường [26] 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Graph partition [26] Một ví dụ cấu trúc G-Tree [26] Multilevel Graph Partitioning [15] Minh họa assembly-based method [26] Ví dụ assembly-based method [26] Ví dụ Shortest Path Recovery [26] Ví dụ truy vấn kNN [26] 12 17 18 21 25 4.1 4.2 4.3 Ví dụ liệu OpenStreetMap Minh họa lộ trình xe thời điểm t1 < t2 < t3 [6] Minh họa lộ trình thu gom đơn hàng 30 31 32 5.1 5.2 5.3 5.4 Thời gian khởi tạo G-Tree Thời gian truy vấn SPSP G-Tree Thời gian truy vấn Shortest Path Recovery G-Tree Thời gian truy vấn SPSP dùng G-Tree Dijkstra, thời gian truy vấn Shortest Path Recovery liệu Thời gian truy vấn kNN thay đổi α k So sánh thời gian truy vấn kNN G-Tree Dijkstra với liệu NA So sánh thời gian truy vấn kNN G-Tree Dijkstra với liệu cố định k = 10 So sánh quãng đường di chuyển sử dụng khoảng cách SPSP Haversine để tối ưu lộ trình 37 38 39 5.5 5.6 5.7 5.8 ii 40 41 42 43 45 Chương Giới thiệu Với bùng nổ ngành thương mại điện tử năm gần đây, đặc biệt năm 2020 vừa rồi, dịch Covid-19 làm thay đổi mạnh mẽ hành vi người tiêu dùng, người mua người bán đẩy mạnh chuyển sang hình thức mua sắm kinh doanh trực tuyến thay hình thức mua bán truyền thống trước Cũng thế, giao vận vốn quan trọng lại trở nên quan trọng chuỗi cung ứng Trong thực tế, đơn vị vận chuyển ngày nhận số lượng đơn hàng lên đến hàng nghìn đơn, phải quản lý hàng nghìn xe phục vụ vận chuyển đơn hàng Do cần phải có hệ thống tự động quản lý đưa định xe phục vụ đơn hàng Hiện nay, điện thoại thông minh mạng 4G trở lên phổ biến, hầu hết sở hữu smartphone để làm việc, chúng trang bị hệ thống định vị toàn cầu Nên hệ thống quản lý vận chuyển dễ dàng lấy vị trí đơn hàng xe vận chuyển theo thời gian thực Để đưa định điều phối xe, hệ thống cần biết thơng tin khoảng cách vị trí xe, vị trí lấy vị trí giao đơn hàng Ngồi ta cần tính khoảng cách địa điểm lấy hàng giao hàng để tính chi phí vận chuyển đơn hàng Như vậy, ta cần hệ thống trả lời hai loại truy vấn sau: (1) Tìm đường ngắn hai địa điểm (Single-Pair Shortest Path Query SPSP) (2) Tìm k đối tượng gần so với địa điểm cho trước (k Nearest Neighbors Query - kNN) Tùy vào loại đơn hàng với nhu cầu khách hàng, đơn vị vận chuyển có nhiều cách vận hành khác Với hình thức giao hàng ngày thực địa điểm lấy hàng giao hàng thành phố, tài xế thường thực vận chuyển đơn thời điểm, nghĩa họ đến nơi lấy hàng thẳng đến nơi giao hàng đơn hàng mà không qua địa điểm khác Và chi phí phụ thuộc vào khoảng cách hai địa điểm lấy hàng giao hàng Do hệ thống cần truy vấn (1) để tính chi phí, sử dụng truy vấn (2) để tìm tài xế gần với địa điểm lấy hàng, sau chọn người phù hợp thực đơn hàng Ngược lại, với hình thức vận chuyển liên tỉnh, để tối ưu chi phí đơn hàng thu gom đến kho khu vực nơi lấy hàng, sau phân loại vận chuyển đến kho khu vực nơi giao hàng, giao đến khách hàng Hình thức tốn VRP [21], để tạo lộ trình tối ưu gom hàng ta cần phải có khoảng cách ngắn địa điểm lấy hàng (truy vấn (1)) từ sử dụng thuật tốn heuristics để tìm lời giải có lộ trình thu gom tốt Một ý tưởng ta sử dụng Google Map cho hai truy vấn Tuy nhiên, ta sử dụng Google Map cách miễn phí người dùng Với đơn vị vận chuyển có hàng nghìn đơn hàng ngày, số truy vấn lên đến hàng triệu, để sử dụng API truy vấn cho hai truy vấn trên, họ cần phải trả phí cho Google Đương nhiên, hướng tiếp cận làm giảm lợi nhuận cơng ty Một giải pháp khác ta sử dụng khoảng cách Haversine1 để tính khoảng cách hai địa điểm Nhưng sử dụng cách cho thành phố có địa hình nhiều sơng hồ, khoảng cách tính khác xa so với di chuyển thực tế Một hướng tiếp cận khắc phục nhược điểm sử dụng liệu đồ mở OpenStreetMap2 cho hai truy vấn Dữ liệu OpenStreetMap bao gồm địa điểm đường, địa điểm có thơng tin kinh tuyến vĩ tuyến, liệu cung cấp thông tin đường tạo thành chuỗi địa điểm liên tiếp kết nối với Do đó, ta coi địa điểm đỉnh đồ thị, cạnh tương ứng hai địa điểm liên tiếp đường có trọng số khoảng cách Haversine hai địa điểm Đối với đối tượng di chuyển mạng lưới đường sử dụng liệu OpenStreetMap, vị trí đối tượng di chuyển thời điểm cập nhật theo địa điểm liệu đồ, để từ sử dụng thơng tin địa điểm đối tượng cho hai truy vấn cho tốn vận chuyển Vì hai địa điểm liên tiếp đường liệu đồ cách không xa (dưới 50 mét), mật độ địa điểm đồ dày đặc, nên sử dụng KD-Tree [3] để cập nhật vị trí đối tượng chuyển động địa điểm gần liệu đồ so với vị trí thực tế đối tượng Như coi đồ thị tĩnh khơng thay đổi ta việc xử lý truy vấn theo đồ thị Đã có nhiều nghiên cứu giải hai truy vấn Các tác giả [2, 7, 13, 14, 23, 24] nghiên cứu tốn tìm đường ngắn hai địa điểm Trong nghiên cứu [5, 11, 12, 16, 17, 19, 22] giải tốn tìm k địa điểm gần Mặc dù họ có kết tốt cho loại truy vấn, nhiên có hạn chế phương pháp với liệu thực tế Hoặc phương pháp mở rộng với liệu cực lớn, giải hai loại truy vấn Một cấu trúc liệu G-Tree Ruicheng Zhong cộng đề xuất [26] đạt việc vừa hỗ trợ hai truy vấn cách hiệu vừa có khả mở rộng cho liệu cực lớn G-Tree lấy ý tưởng từ cấu trúc liệu R-Tree [9], đó, mạng lưới đường phân hoạch thành đồ thị con, với nhớ sử dụng O(|V | log |V |) (với V tập đỉnh đồ thị), nên có khả mở rộng với liệu lớn Trong luận văn này, nghiên cứu khai thác cấu trúc lưu trữ thơng tin đồ để cung cấp truy vấn khoảng cách điểm gần cách hiệu Khoảng Một cách tính theo kinh tuyến vĩ tuyến hai địa điểm liệu đồ trực tuyến cập nhật liên tục cộng tác viên Cụ thể, luận văn khai thác cấu trúc G-Tree [26] áp dụng vào việc xây dựng hệ thống quản lý đối tượng chuyển động, cung cấp truy vấn hiệu khoảng cách tập điểm gần Hệ thống áp dụng thử nghiệm vào toán điều phối phương tiện vận chuyển thu gom đơn hàng lĩnh vực thương mại điện tử Hệ thống cài đặt thử nghiệm, đánh giá liệu đồ OpenStreetMap kịch mô việc điều phối đơn hàng sinh ngẫu nhiên Các phần luận văn trình bày sau Chương trình bày sở lý thuyết mơ hình tốn học tốn, nghiên cứu liên quan Chương trình bày cụ thể cấu trúc liệu G-Tree, cách sử dụng G-Tree cho hai truy vấn Single-Pair Shortest Path Query k Nearest Neighbors Query Chương giới thiệu hệ thống tự động điều phối xe thu gom đơn hàng theo thời gian thực có ứng dụng G-Tree vào xử lý truy vấn kNN Chương trình bày kết thực nghiệm Algorithm 4: Thuật toán điều phối xe gom đơn hàng Khởi tạo W ← / danh sách đơn hàng chưa có lộ trình; Khởi tạo DM ← / quản lý ma trận khoảng cách; XR ← VarRoutesVROnline(); TD ← TotalCostVR(XR, DM); CC ← CapacityConstraint(XR, D); while !finish() Cập nhật trạng thái xe; Thêm đơn hàng xuất vào W ; for (ti , ui , di ) ∈ W 10 if insert(ui , di ) then 11 Xóa o khỏi W ; 12 end 13 end 14 reoptimize(); 15 end 16 Function insert(u, d) 17 L ← kNNSearch(u, k); 18 for (v, dist) ∈ L 19 Thêm (u, v, dist) vào DM 20 end 21 Chọn đỉnh v tốt để chèn u vào sau, đảm bảo không vi phạm ràng buộc trọng tải CC tổng quãng đường xe TD tốt nhất; 22 if v = 0/ then 23 XR.propagateOnePointMove(u, v); 24 end 25 return v = 0; / 26 end 27 Function reoptimize() 28 start_time ← GetCurrentTime(); 29 while GetCurrentTime() − start_time < SEARCH_TIME 30 Chọn lời giải láng giềng tốt bn, đảm bảo không vi phạm ràng buộc trọng tải CC tổng quãng đường xe TD tốt tốt lời giải tại; 31 if bn = 0/ then 32 XR.propagate(nb); 33 else 34 break; 35 end 36 end 37 end 34 Chương Kết thực nghiệm Trong luận văn này, sử dụng liệu OpenStreetMap tỉnh thành phố lớn Việt Nam Dữ liệu OpenStreetMap chuyển đổi sang liệu đồ thị mô tả bảng 5.1 Thông số máy tính sử dụng thực nghiệm CPU core 2.2GHz RAM 8GB Dữ liệu Tỉnh - Thành Phố CT Cần Thơ DN Đà Nẵng HN Hà Nội HCM Hồ Chí Minh NA Nghệ An QN Quảng Ninh Số đỉnh Số cạnh 224,112 456,276 269,795 561,010 376,340 804,689 302,929 640,111 634,411 1,326,971 366,608 748,227 Bảng 5.1: Dữ liệu thực nghiệm 5.1 Single-Pair Shortest Path Query Chúng thử nghiệm đánh giá tác động f số nút GTree τ số đỉnh tối đa nút G-Tree, với f ∈ {2, 4, 8, 16, 32} τ = {32, 64, 128, 256} Đầu tiên thử nghiệm thời gian xây dựng G-Tree, kết Hình 5.1 Ta thấy với τ hầu hết thời gian tăng f tăng, thời gian xây dựng tốn vào trình xây dựng ma trận khoảng cách, nên ta suy f tăng khả cao làm cho số border tăng Tương tự, τ tăng lên gần thời gian tăng với f Thời gian dựng G-Tree τ = 256 hầu hết trường hợp lớn khác biệt nhiều so với phần lại f nhỏ Như vậy, f τ lớn thời gian xây dựng G-Tree lớn Tiếp theo thử nghiệm truy vấn Single-Pair Shortest Path Query Trong thử nghiệm này, lấy cách ngẫu nhiêu 104 cặp đỉnh (u, v) dùng G-Tree để tìm khoảng cách ngắn từ u đến v, kết Hình 5.2 Ta thấy gần khơng 35 có q nhiều khác biệt thời gian truy vấn với tham số f τ thay đổi Tuy nhiên, f tăng lên thời gian truy vấn có xu hướng giảm dần, chênh lệch thời gian truy vấn SPSP f = f = 32 lớn Điều trái ngược với Hình 5.1, thời gian xây dựng G-Tree tăng f tăng Với truy vấn Shortest Path Recovery, thử nghiệm giống với truy vấn SPSP sử dụng 104 cặp đỉnh (u, v) để truy vấn, kết Hình 5.3 Trong đó, có hai liệu HN HCM cho kết giống với truy vấn SPSP thời gian truy vấn với f không khác biệt τ thay đổi Còn liệu lại cho thời gian truy vấn Shortest Path Recovery khác biệt lớn, hầu hết cho thấy τ tăng lên thời gian truy vấn tăng lên, điều cho ta thấy τ tăng số border tăng dẫn đến tìm border b để chèn vào (v, v ) cần nhiều thời gian tìm kiếm Cuối cùng, so sánh hai truy vấn SPSP Shortest Path Recovery dùng G-Tree dùng thuật toán Dijkstra, kết Hình 5.4 Ở thử nghiệm này, truy vấn 104 cặp (u, v) thử nghiệm trên, G-Tree sử dụng f = 16 τ = 128 Vì thời gian truy vấn SPSP Shortest Path Recovery thuật tốn Dijkstra nên chúng tơi biểu diễn đường tương ứng cho hai truy vấn dùng Dijkstra Với liệu sử dụng, ta thấy thời gian thời gian truy vấn SPSP Dijkstra gấp khoảng 100 lần so với sử dụng G-Tree, cịn truy vấn Shortest Path Recovery Dijkstra lâu khoảng 20 lần so với dùng G-Tree 36 Hình 5.1: Thời gian khởi tạo G-Tree 37 Hình 5.2: Thời gian truy vấn SPSP G-Tree 38 Hình 5.3: Thời gian truy vấn Shortest Path Recovery G-Tree 39 Hình 5.4: Thời gian truy vấn SPSP dùng G-Tree Dijkstra, thời gian truy vấn Shortest Path Recovery liệu 5.2 K Nearest Neighbor Query Với truy vấn kNN thử nghiệm với G-Tree cố định f = 16 τ = 128 Tập C lấy ngẫu nhiên với tỷ lệ đối tượng chọn so với số đỉnh liệu α ∈ {0.1, 0.01, 0.001, 0.0001}, hệ số k ∈ {1, 10, 20, 50, 100, 200} Trong tất thử nghiệm lấy ngẫu nhiên 104 đỉnh làm vq để tìm k đối tượng gần so với đỉnh Đầu tiên so sánh thời gian truy vấn kNN thay đổi tham số α k, kết Hình 5.5 Ta thấy α thay đổi từ 0.1 đến 0.001 thời gian truy vấn tăng dần, nhiên α giảm đến 0.0001 thời gian truy vấn lại giảm xuống Điều cho thấy số đối tượng thưa thớt, G-Tree hiệu cắt tỉa đa số nút không chứa đối tượng Thử nghiệm thứ hai, so sánh thời gian sử dụng G-Tree Dijkstra cho truy vấn kNN với liệu NA, kết Hình 5.6 Rõ ràng, với mật độ đối tượng dày đặc, k nhỏ Dijkstra hiệu G-Tree Tuy nhiên k lớn mật độ đối tượng thưa thớt G-Tree tốt nhiều, đặc biệt với α = 0.0001 gần Dijkstra phải duyệt hết đồ thị G-Tree lại cắt tỉa đa số nút nên thời gian truy vấn khác biệt lớn Cuối cùng, cố định k = 10 so sánh G-Tree Dijkstra liệu, kết Hình 5.7 Thời gian truy vấn sử dụng Dijkstra gần tốt G-Tree với α ≥ 0.01, cịn α giảm dần giống với thử nghiệm trước, G-Tree hiệu nhiều 40 Dựa vào hai thử nghiệm trên, ta thấy G-Tree đặc biệt hiệu với truy vấn kNN số đối tượng thưa thớt đồ thị Hình 5.5: Thời gian truy vấn kNN thay đổi α k 41 Hình 5.6: So sánh thời gian truy vấn kNN G-Tree Dijkstra với liệu NA 42 Hình 5.7: So sánh thời gian truy vấn kNN G-Tree Dijkstra với liệu cố định k = 10 43 5.3 Hệ thống tự động điều phối xe thu gom đơn hàng theo thời gian thực Chúng mô hệ thống tự động điều phối xe xe di chuyển với vận tốc không đổi speed = (m/ms) bỏ qua thời gian chờ đợi lấy hàng Với liệu chọn kho v0 đỉnh gần với tâm khu vực liệu đồ liệu Số xe m = 50, trọng tải xe D = 100 (kg) Số lượng đơn hàng phục vụ 1000 với vị trí lấy ngẫu nhiên tập V , thời điểm xuất đơn hàng lấy ngẫu nhiên từ đến 105 (đơn vị ms) trọng lượng đơn hàng lấy ngẫu nhiêu từ đến 10 (kg) Hệ số k sử dụng {10, 20, 50, 100, 200, 300} so sánh sử dụng khoảng cách hai địa điểm có đơn hàng khoảng cách ngắn theo đường thực tế khoảng cách Haversine, từ khoảng cách ta tính tốn tối ưu lộ trình, hệ số SEARCH_TIME 5000 (ms) Chúng so sánh tổng quãng đường di chuyển thực tế từ lộ trình mà xe điều phối di chuyển Nhìn vào Hình 5.8 ta thấy rằng, sử dụng khoảng cách địa điểm SPSP tổng khoảng cách di chuyển tốt nhiều so với sử dụng khoảng cách Haversine Điều dễ hiểu thực tế địa điểm qua sơng ngịi xa nhiều so với khoảng cách Haversine Ngoài ta thấy k tăng lên giúp cho lộ trình tối ưu hơn, số lượng láng giềng khám phá nhiều tìm lời giải tốt Tuy nhiên hệ số k tăng lên đến 300 ta lại thấy có tồi lời giải SPSP Haversine, điều cho ta thấy thời gian tìm kiếm láng giềng nhỏ mà khơng gian tìm kiếm lại lớn làm cho khơng đủ thời gian để tìm lời giải cục tốt Do đó, ta nên chọn hệ số k vừa đủ để đảm bảo tìm lời giải tốt thời gian cho phép giảm thời gian truy vấn kNN 44 Hình 5.8: So sánh quãng đường di chuyển sử dụng khoảng cách SPSP Haversine để tối ưu lộ trình 45 Kết luận hướng phát triển Trong luận văn này, nghiên cứu khai thác cấu trúc G-Tree, cấu trúc hiệu để giải tốn tìm đường ngắn đồ thị phẳng, tốn tìm k điểm gần Chúng ứng dụng cấu trúc G-Tree vào toán điều phối thu gom đơn hàng theo thời gian thực Chúng thử nghiệm liệu đồ tỉnh thành phố lớn Việt Nam, kết cho thấy với truy vấn SPSP thời gian xử lý truy vấn dùng G-Tree vượt trội nhiều so với thuật toán cổ điển Dijkstra Còn với truy vấn kNN, G-Tree tốt Dijkstra số lượng đối tượng đồ thưa thớt k lớn Với thử nghiệm mô hệ thống điều phối xe thu gom đơn hàng theo thời gian thực, kết so sánh sử dụng khoảng cách thực tế khoảng cách Haversine địa điểm để tối ưu lộ trình cho thấy việc sử dụng khoảng cách thực tế tốt nhiều đưa lộ trình tối ưu quãng đường thực tế Ngoài ra, nhớ cần sử dụng để lưu trữ cấu trúc G-Tree đủ nhỏ để mở rộng cho liệu đồ đồ thị lớn lên đến hàng triệu đỉnh Cùng với việc tận dụng liệu đồ mở OpenStreetMap, ta dễ dàng ứng dụng G-Tree cho hệ thống quản lý điều phối vận tải thực tế Trong thực tế, điều phương tiện phục vụ đơn hàng ta cần dựa nhiều yếu tố ràng buộc vận tải khác loại phương tiện, kích thước đơn hàng, khu vực phục vụ xe, thời gian giao nhận đơn hàng Do đó, tương lai tiếp tục phát triển thêm cấu trúc liệu tích hợp G-Tree để tìm đối tượng gần theo nhiều tiêu trí khác nhau, phù hợp với cách vận hành thực tế đơn vị vận tải, tiết kiệm thời gian xử lý cho hệ thống lớn quản lý nhiều phương tiện di chuyển 46 Tài liệu tham khảo [1] Google or-tools https://developers.google.com/optimization/ [2] H Bast, S Funke, and D Matijevi´c Transit: Ultrafast shortest-path queries with linear-time preprocessing 9th DIMACS Implementation Challenge, 01 2006 [3] M Berg, O Cheong, M Kreveld, and M Overmars Kd-trees Computational Geometry - Algorithms and Applications, pages 99–101, 01 2008 [4] L Chen, G Cong, C Jensen, and D Wu Spatial keyword query processing: An experimental evaluation volume 6, pages 217–228, 01 2013 [5] H.J Cho and C.W Chung An efficient and scalable approach to cnn queries in a road network pages 865–876, 01 2005 [6] P.Q Dung, L.K Thu, N.T Hoang, P.V Dinh, and B.Q Trung A constraint-based local search for offline and online general vehicle routing International Journal on Artificial Intelligence Tools, 26, 11 2016 [7] R Geisberger, P Sanders, D Schultes, and D Delling Contraction hierarchies: Faster and simpler hierarchical routing in road networks pages 319333, 05 2008 [8] C Groăer, B Golden, and E Wasil A library of local search heuristics for the vehicle routing problem Mathematical Programming Computation, 2:79–101, 06 2010 [9] A Guttman R-trees: A dynamic index structure for spatial searching In Proceedings of the 1984 ACM SIGMOD international conference on Management of data – SIGMOD ’84, page 47, 1984 [10] P.V Hentenryck and L Michel Constraint-Based Local Search 01 2005 [11] H Hu, D Lee, and J Xu Fast nearest neighbor search on road networks volume 3896, pages 186–203, 03 2006 [12] H Hu, D.L Lee, and V.C.S Lee Distance indexing on road networks VLDB, pages 894–905, 01 2006 [13] N Jing, Y Huang, and E Rundensteiner Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation Knowledge and Data Engineering, IEEE Transactions on, 10:409 – 432, 06 1998 47 [14] S Jung and S Pramanik An efficient path computation model for hierarchically structured topographical road maps Knowledge and Data Engineering, IEEE Transactions on, 14:1029– 1046, 10 2002 [15] G Karypis and V Kumar Analysis of multilevel graph partitioning pages 29– 29, 02 1995 [16] M Kolahdouzan and C Shahabi Voronoi-based k nearest neighbor search for spatial network databases volume 30, pages 840–851, 12 2004 [17] K Lee, W.C Lee, B Zheng, and Y Tian Road: A new spatial object search framework for road networks Knowledge and Data Engineering, IEEE Transactions on, 24:1 – 1, 03 2012 [18] Z Li, L Chen, and Y Wang G*-tree: An efficient spatial index on road networks pages 268–279, 04 2019 [19] D Papadias, J Zhang, N Mamoulis, and Y Tao Query processing in spatial network databases VLDB, 29, 07 2003 [20] T Ralphs, M Guzelsoy, and A Mahajan The symphony source code (2010) https://projects.coin-or.org/SYMPHONY [21] T Ralphs, L Kopman, W Pulleyblank, and L.E Trotter On the capacitated vehicle routing problem Mathematical Programming, 94:343–359, 01 2003 [22] H Samet, J Sankaranarayanan, and H Alborzi Scalable network distance browsing in spatial databases pages 43–54, 01 2008 [23] J Sankaranarayanan, H Alborzi, and H Samet Efficient query processing on spatial networks pages 200–209, 01 2005 [24] J Sankaranarayanan, H Samet, and H Alborzi Path oracles for spatial networks PVLDB, 2:1210–1221, 08 2009 [25] B Shen, Y Zhao, G Li, W Zheng, Y Qin, B Yuan, and Y Rao V-tree: Efficient knn search on moving objects with road-network constraints pages 609–620, 04 2017 [26] R Zhong, G Li, K.L Tan, L Zhou, and Z Gong G-tree: An efficient and scalable index for spatial search on road networks IEEE Transactions on Knowledge and Data Engineering, 27:1–1, 08 2015 48 ... tài (tiếng Việt): Nghiên cứu xây dựng platform cho việc quản lý phương tiện di chuyển phát triển thuật toán lập lộ trình vận tải thời gian thực Tên đề tài (tiếng Anh): Building a platform for managing... nghiệm thời gian xây dựng G-Tree, kết Hình 5.1 Ta thấy với τ hầu hết thời gian tăng f tăng, thời gian xây dựng tốn vào trình xây dựng ma trận khoảng cách, nên ta suy f tăng khả cao làm cho số... [26] áp dụng vào việc xây dựng hệ thống quản lý đối tượng chuyển động, cung cấp truy vấn hiệu khoảng cách tập điểm gần Hệ thống áp dụng thử nghiệm vào toán điều phối phương tiện vận chuyển thu

Ngày đăng: 10/12/2021, 19:32

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
[2] H. Bast, S. Funke, and D. Matijevi´c. Transit: Ultrafast shortest-path queries with linear-time preprocessing. 9th DIMACS Implementation Challenge, 01 2006 Sách, tạp chí
Tiêu đề: 9th DIMACS Implementation Challenge
[3] M. Berg, O. Cheong, M. Kreveld, and M. Overmars. Kd-trees. Computational Geometry - Algorithms and Applications, pages 99–101, 01 2008 Sách, tạp chí
Tiêu đề: ComputationalGeometry - Algorithms and Applications
[6] P.Q. Dung, L.K. Thu, N.T. Hoang, P.V. Dinh, and B.Q. Trung. A constraint-based local search for offline and online general vehicle routing. International Journal on Artificial Intelligence Tools, 26, 11 2016 Sách, tạp chí
Tiêu đề: International Journalon Artificial Intelligence Tools
[8] C. Gro¨er, B. Golden, and E. Wasil. A library of local search heuristics for the vehicle routing problem. Mathematical Programming Computation, 2:79–101, 06 2010 Sách, tạp chí
Tiêu đề: Mathematical Programming Computation
[9] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proceed- ings of the 1984 ACM SIGMOD international conference on Management of data – SIGMOD ’84, page 47, 1984 Sách, tạp chí
Tiêu đề: Proceed-ings of the 1984 ACM SIGMOD international conference on Management of data– SIGMOD ’84
[10] P.V Hentenryck and L. Michel. Constraint-Based Local Search. 01 2005 Sách, tạp chí
Tiêu đề: Constraint-Based Local Search
[12] H. Hu, D.L. Lee, and V.C.S. Lee. Distance indexing on road networks. VLDB, pages 894–905, 01 2006 Sách, tạp chí
Tiêu đề: VLDB
[13] N. Jing, Y. Huang, and E. Rundensteiner. Hierarchical encoded path views for path query processing: An optimal model and its performance evaluation. Knowledge and Data Engineering, IEEE Transactions on, 10:409 – 432, 06 1998 Sách, tạp chí
Tiêu đề: Knowledgeand Data Engineering, IEEE Transactions on
[14] S. Jung and S. Pramanik. An efficient path computation model for hierarchi- cally structured topographical road maps. Knowledge and Data Engineering, IEEE Transactions on, 14:1029– 1046, 10 2002 Sách, tạp chí
Tiêu đề: Knowledge and Data Engineering, IEEETransactions on
[17] K. Lee, W.C. Lee, B. Zheng, and Y. Tian. Road: A new spatial object search frame- work for road networks. Knowledge and Data Engineering, IEEE Transactions on, 24:1 – 1, 03 2012 Sách, tạp chí
Tiêu đề: Knowledge and Data Engineering, IEEE Transactions on
[19] D. Papadias, J. Zhang, N. Mamoulis, and Y. Tao. Query processing in spatial network databases. VLDB, 29, 07 2003 Sách, tạp chí
Tiêu đề: VLDB
[21] T. Ralphs, L. Kopman, W. Pulleyblank, and L.E. Trotter. On the capacitated vehicle routing problem. Mathematical Programming, 94:343–359, 01 2003 Sách, tạp chí
Tiêu đề: Mathematical Programming
[24] J. Sankaranarayanan, H. Samet, and H. Alborzi. Path oracles for spatial networks.PVLDB, 2:1210–1221, 08 2009 Sách, tạp chí
Tiêu đề: PVLDB
[26] R. Zhong, G. Li, K.L. Tan, L. Zhou, and Z. Gong. G-tree: An efficient and scalable index for spatial search on road networks. IEEE Transactions on Knowledge and Data Engineering, 27:1–1, 08 2015 Sách, tạp chí
Tiêu đề: IEEE Transactions on Knowledge andData Engineering
[20] T. Ralphs, M. Guzelsoy, and A. Mahajan. The symphony source code (2010).https://projects.coin-or.org/SYMPHONY Link
[4] L. Chen, G. Cong, C. Jensen, and D. Wu. Spatial keyword query processing: An experimental evaluation. volume 6, pages 217–228, 01 2013 Khác
[5] H.J. Cho and C.W. Chung. An efficient and scalable approach to cnn queries in a road network. pages 865–876, 01 2005 Khác
[7] R. Geisberger, P. Sanders, D. Schultes, and D. Delling. Contraction hierarchies:Faster and simpler hierarchical routing in road networks. pages 319–333, 05 2008 Khác
[11] H. Hu, D. Lee, and J. Xu. Fast nearest neighbor search on road networks. volume 3896, pages 186–203, 03 2006 Khác
[15] G. Karypis and V. Kumar. Analysis of multilevel graph partitioning. pages 29– 29, 02 1995 Khác

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN