1. Trang chủ
  2. » Luận Văn - Báo Cáo

Luận văn Một số tính chất của đa thức thực và áp dụng

26 853 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 200,36 KB

Nội dung

Luận văn Một số tính chất của đa thức thực và áp dụng Đa thức và các tính chất liên quan đến nó luôn đóng vai trò quan trọng trong đại số và giải tích....

TRƯỜNG ĐẠI HỌC QUY NHƠN Dương Thị Thu Thuý MỘT SỐ TÍNH CHẤT CỦA ĐA THỨC THỰC VÀ ÁP DỤNG Luận văn thạc sỹ toán học Chuyên ngành : Phương pháp Toán cấp Mã số : 60 46 40 Người hướng dẫn khoa học : GS.TSKH. Nguyễn Văn Mậu Quy Nhơn, năm 2008 0 Mục lục Lời nói đầu 1 1 Định lý dạng Viète các tính chất liên quan 4 1.1 Một số tính chất cơ bản của đa thức . . . . . . . . . . . . . . . . . . . 4 1.2 Các định lý dạng Viète . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3 Định lý về số nghiệm thực của đa thức nguyên hàm . . . . . . . . . . . 8 2 Tính chất nghiệm của các đa thức nguyên hàm 15 2.1 Nhận xét về nguyên hàm của một số đa thức dạng đặc biệt . . . . . . . 15 2.2 Một số bài toán khảo sát số nghiệm thực của đa thức nguyên hàm . . . 19 2.3 Một số bất đẳng thức liên quan đến nguyên hàm cấp hai . . . . . . . . 20 Kết luận 23 Tài liệu tham khảo 24 1 Lời nói đầu Đa thức các tính chất liên quan đến nó luôn đóng vai trò quan trọng trong đại số giải tích. Đặc biệt, sau khi định lý cơ bản của đại số (do Gauss chứng minh) khẳng định rằng mọi đa thức trên trường số phức (khác hằng số) luôn có ít nhất một nghiệm thực hoặc phức, thì bài toán khảo sát số nghiệm thực của đa thức với hệ số thực là vấn đề được quan tâm hàng đầu của nhiều thế hệ các nhà toán học. Những kết quả đầu tiên theo hướng này là của Descartes về quy tắc dấu (thường được gọi là quy tắc dấu Descartes) để xác định số nghiệm dương của một đa thức thực dựa vào sự phân bố dấu của dãy các hệ số của đa thức đã cho. Tiếp theo là các khảo sát khác nhau về số nghiệm của đa thức trong một khoảng cho trước các công thức biểu diễn đa thức theo các tính chất của chúng. Nhờ công cụ giải tích, đặc biệt là định lý Lagrange bổ đề Rolle, việc khảo sát số nghiệm thực của các đa thức đạo hàm (đạo hàm của một đa thức thực) được tiến hành dễ dàng hơn. Đó là, khi đa thức P (x) ∈ R[x] có k nghiệm thực thì đa thức P  (x) sẽ có ít nhất k − 1 nghiệm thực. Một câu hỏi tự nhiên nảy sinh là: Khi nào thì một đa thức P (x) ∈ R[x] với k nghiệm thực cho trước sẽ cho ta một nguyên hàm (gọi là đa thức nguyên hàm) F 1 (x)= x  x 1 P (t)dt (1) có đủ k +1 nghiệm thực? Tương tự, khi nào thì một đa thức P (x) ∈ R[x] với k nghiệm thực cho trước sẽ cho một nguyên hàm cấp s (s>1) (gọi là đa thức nguyên hàm cấp s) dạng F s (x)= x  x s F s−1 (x)dt (2) có đủ k + s nghiệm thực? 2 Luận văn nhằm tập trung giải quyết các câu hỏi trên. Đó chính là các định lý đảo của định lý Lagrange đối với lớp các đa thức thực. Đặc biệt, đối với những lớp đa thức không thỏa mãn các điều kiện (1) (2), ta sẽ xét bài toán "nắn lại" đồ thị của đa thức đó bằng cách thêm một số nút nội suy để các điều kiện (1) (2) được thoả mãn. Ngoài phần mở đầu kết luận, luận văn được chia thành 2 chương Chương 1 bao gồm ba phần, trong phần đầu tác giả khái quát lại một số kiến thức bổ trợ về đa thức, đạo hàm của đa thức quy tắc dấu Descartes. Phần thứ hai là các định lý dạng Viète, nêu cách biểu diễn đa thức qua hệ nghiệm của nguyên hàm kết hợp với phương pháp nội suy đa thức theo các yếu tố hình học. Phần tiếp theo, tác giả nêu lên định lý về số nghiệm của đa thức nguyên hàm. Định lý 1.11; 1.13 chỉ ra điều kiện cần đủ để một đa thức với các nghiệm đều thực sẽ cho một nguyên hàm cũng có các nghiệm đều thực. Trên cơ sở đó trình bày điều kiện để tồn tại đa thức nguyên hàm tới cấp tuỳ ý cho trước sao cho số nghiệm thực của các nguyên hàm đó tăng lên theo từng cấp của nguyên hàm (Định lý 1.12, 1.14, 1.15, 1.16, 1.17, 1.18 1.19 ). Chương 2 bao gồm ba phần, phần đầu cũng chính là phần trọng tâm của chương này. Tác giả đưa ra nhận xét về tính chất nghiệm của các đa thức nguyên hàm có dạng đặc biệt đưa ra cách "nắn lại" đồ thị của các đa thức đó để các đa thức nhận được thoả mãn điều kiện (1) (2) (Định lý 2.1, 2.2). Phần tiếp theo, luận văn trình bày một số bài toán khảo sát số nghiệm thực của đa thức nguyên hàm. Phần cuối cùng, tác giả dựa vào các tính chất của hàm lồi, lõm để bước đầu xây dựng một số dạng bất đẳng thức đối với đa thức nguyên hàm. Luận văn được hoàn thành dưới sự hướng dẫn khoa học đầy nhiệt tâm nghiêm khắc của GS.TSKH. Nguyễn Văn Mậu. Nhân dịp này, tác giả xin được bày tỏ lòng biết ơn chân thành kính trọng sâu sắc đối với Giáo sư - người thầy đã truyền đạt nhiều kiến thức quý báu cũng như những kinh nghiệm nghiên cứu khoa học trong suốt thời gian tác giả theo học nghiên cứu đề tài. Đồng thời, tác giả cũng xin bày tỏ lòng biết ơn sâu sắc đến Ban Giám Hiệu trường Đại học Quy Nhơn, Phòng Đào tạo Đại học Sau Đại học, các anh chị, bạn bè lớp cao học Toán K8-Đại học Quy Nhơn gia đình đã tạo mọi điều kiện thuận lợi động viên tác giả trong suốt quá trình học tập, công tác thực hiện đề tài luận văn này. 3 Hệ thống các ký hiệu sử dụng trong luận văn - deg f (x) là bậc của đa thức f(x). - F 0 (x) là nguyên hàm (cấp 1) của đa thức f (x) ứng với hằng số c =0, tức là F 0 (x) thoả mãn điều kiện F 0 (0) = 0. - F c (x) là nguyên hàm (cấp 1) của đa thức f(x) ứng với hằng số c, tức là F c (x)=F 0 (x)+c với c ∈ R. - F 0,k (x) là nguyên hàm cấp k của đa thức f(x) ứng với hằng số c =0, tức là F 0,k (x) thoả mãn điều kiện F 0,k (0) = 0. - F c,k (x) là nguyên hàm cấp k của đa thức f(x) ứng với hằng số c, tức là F c,k (x)=F 0,k (x)+c với c ∈ R. - H n là tập hợp đa thức với hệ số thực P n (x) bậc n (n>0) với hệ số tự do bằng 1 (P n (0) = 1) có các nghiệm đều thực. - M k (f) là tập hợp các nguyên hàm cấp k của đa thức f (x). - R[x] là tập hợp đa thức với hệ số thực. - sign a là dấu của số thực a, tức là sign a :=          + khi a>0 0 khi a =0 − khi a<0. 4 Chương 1 Định lý dạng Viète các tính chất liên quan 1.1 Một số tính chất cơ bản của đa thức Định nghĩa 1.1. Một đa thức bậc n của ẩn x là biểu thức có dạng P n (x)=a n x n + a n−1 x n−1 + ···+ a 1 x + a 0 , trong đó các hệ số a n ,a n−1 , ,a 0 là những số thực (hoặc phức) và a n =0,n∈ N. Ta kí hiệu i.Bậc của đa thức P n (x) là deg P n (x). Do vậy deg P n (x)=n. ii. a n - hệ số bậc cao nhất (chính) của đa thức. Chú ý 1.1. Trong luận văn này ta chỉ xét các đa thức P n (x) với các hệ số của nó đều là thực gọi tắt là đa thức thực. Ký hiệu tập hợp các đa thức với hệ số thực là R[x]. Định nghĩa 1.2. Cho đa thức P n (x)=a n x n + a n−1 x n−1 + ···+ a 1 x + a 0 (a n =0), số α ∈ C được gọi là nghiệm của đa thức P n (x) nếu P n (α)=0. Nếu tồn tại k ∈ N,k>1, sao cho P n (x) . . .(x − α) k nhưng P n (x) không chia hết cho (x − α) k+1 thì α được gọi là nghiệm bội bậc k của đa thức f(x). 5 Đặc biệt, khi k =1thì α đượ c gọi là nghiệm đơn, k =2thì α được gọi là nghiệm kép. Chú ý 1.2. Nghiệm của đa thức thực còn được gọi là không điểm của đa thức đó. Định lý 1.1 (Gauss). Mọi đa thức bậc n  1 trên trường C đều có đúng n nghiệm nếu mỗi nghiệm được tính một số lần bằng bội của nó. Định lý 1.2. Mọi đa thức f(x) ∈ R[x] bậc n, với hệ số chính a n =0, đều có thể phân tích thành nhân tử dạng f(x)=a n m  j=1 (x − d i ) s  k=1 (x 2 + b k x + c k ) với d i ,b k ,c k ∈ R, 2s + m = n, b 2 k − 4c k < 0,m,n ∈ N ∗ . Hệ quả 1.1. (1) Số nghiệm phức của một đa thức với hệ số thực (nếu có) luôn luôn là số chẵn. (2) Nếu đa thức f(x) với hệ số thực chỉ có nghiệm phức thì f(x) là một đa thức bậc chẵn. (3) Nếu đa thức bậc n có k nghiệm thực k  n thì n k cùng tính chẵn lẻ. (4) Đa thức bậc lẻ với hệ số thực luôn có ít nhất một nghiệm thực. Định lý 1.3. Mỗi đa thức thực bậc n đều có không quá n nghiệm thực. Định lý 1.4 (Tính chất hàm của đa thức). Mọi đa thức P (x) ∈ R[x] đều xác định liên tục trên R. Ngoài ra, khi P n (x)=a n x n + a n−1 x n−1 + ···+ a 1 x + a 0 ,a n =0, và x → +∞ thì P (x) → sign (a n )∞. Khi x →−∞thì P(x) → (−1) n sign (a n )∞. Tiếp theo, ta xét một số tính chất của đa thức đạo hàm. Định lý 1.8. Nếu x 0 là nghiệm bội bậc s (s ∈ N,s > 1) của đa thức f(x) ∈ R[x] và x 0 cũng là nghiệm của nguyên hàm F (x) của f(x) thì x 0 là nghiệm bội bậc s +1 của đa thức nguyên hàm F (x). 6 Ta chuyển sang xét quy tắc dấu Descartes . Xét dãy số thực a 0 ,a 1 ,a 2 , Định nghĩa 1.3. Chỉ số m (m ∈ N,m 1) được gọi là vị trí (chỗ) đổi dấu của dãy nếu có a m−1 a m < 0 hoặc là a m−1 = a m−2 = ···= a m−(k−1) =0 trong đó a m−k a m < 0(m  k  2). Trong trường hợp thứ nhất thì a m−1 và a m , còn trong trường hợp thứ 2 thì a m−k và a m lập thành vị trí đổi dấu. Số lần đổi dấu (bằng số vị trí đổi dấu) của một dãy nào đó vẫn không thay đổi nếu các số hạng bằng 0 được bỏ đi còn những số hạng còn lại vẫn bảo toàn vị trí tương đối của chúng. Định nghĩa 1.4. Ta coi sự đổi dấu vị trí đổi dấu của đa thức P (x)=a n x n + a n−1 x n−1 + ···+ a 1 x + a 0 chính là sự đổi dấu vị trí đổi dấu của dãy hệ số tuỳ ý a n ,a n−1 , ,a 1 ,a 0 . Tính chất 1.7 (Quy tắc dấu Descartes). Giả sử N là số không điểm dương của đa thức f(x)=a 0 + a 1 x + a 2 x 2 + ···+ a n x n và W là số lần đổi dấu trong dãy các hệ số của nó. Ta có W  N W − N là một số chẵn. Tính chất 1.8. Cho đa thức f(x)=a 0 + a 1 x + a 2 x 2 + ···+ a n x n (a n =0)có các nghiệm đều thực, gọi W là số vị trí đổi dấu của dãy hệ số a 0 ,a 1 , ,a n và N là số không điểm dương của đa thức f( x) thì W = N. 1.2 Các định lý dạng Viète Định lý Rolle đã cho ta một thuật toán dựng các đa thức có các nghiệm đều thực từ các đa thức có các nghiệm đều thực cho trước bằng phép lấy đạo hàm. Ta đã biết rằng, mọi đa thức có các nghiệm đều thực đều được biểu diễn một cách duy 7 nhất qua hệ nghiệm của nó. Đó chính là nội dung của định lý Viète quen thuộc trong chương trình toán của bậc phổ thông. Nhận xét rằng, định lý Viète đã chỉ ra mối quan hệ giữa bộ các nghiệm của đa thức với tất cả các hệ số trong đa thức đó. Tuy nhiên, ta cũng có thể phát biểu kết quả tương tự trong trường hợp khi ta còn chưa tường minh các nghiệm của một đa thức. Điều này rất có ý nghĩa khi xét các điều kiện để một đa thức có tất cả các nghiệm đều thực. Trước hết, ta xét một số dạng đa thức có bậc thấp. Bổ đề 1.2 (Định lý dạng Viète đối với tam thức bậc hai). Tam thức bậc hai với hệ số thực f(x)=3x 2 − 2bx + c có nghiệm thực khi chỉ khi các hệ số b, c có dạng    b = α + β + γ c = αβ + βγ + γα. (1.1) trong đó α,β,γ ∈ R. Bổ đề 1.3 (Định lý dạng Viète đối với đa thức bậc 3). Đa thức bậc 3 với hệ số thực f(x)=−4x 3 +3ax 2 − 2bx + c có các nghiệm đều thực khi chỉ khi các hệ số a, b, c có dạng          a = α + β + γ + δ b = αβ + αγ + αδ + βγ + βδ + γδ c = αβγ + αβδ + αγδ + βγδ (1.2) trong đó α,β,γ,δ ∈ R. Ví dụ 1.1. Cho α =1,β= −1,γ=2,δ=4thay vào công thức (1.2) ta thu được a = −5,b=5,c= −5. Khi đó đa thức f(x)=−4x 3 +15x 2 − 10x − 5 có 3 nghiệm thực là x 1 ≈−0, 33; x 2 ≈ 1, 47; x 3 ≈ 2, 61. Nhận xét rằng, nếu ta chọn m = −6(= αβγδ) thì đa thức nguyên hàm F (x)=−x 4 +5x 3 − 5x 2 − 5x +6 có bốn nghiệm thực (x 1 = −1,x 2 =1,x 3 =2,x 4 =3). Đối với các nhị thức bậc nhất ta luôn chọn được nguyên hàm là các tam thức bậc hai có nghiệm thực, kết hợp với bổ đề 1.2 bổ đề 1.3, ta có hệ quả sau đây. 8 Hệ quả 1.3. Mọi đa thức bậc nhỏ hơn 4 có các nghiệm đều thực luôn tồn tại nguyên hàm cũng có các nghiệm đều thực. Đối với các đa thức có bậc n (n  4) thì điều kiện cần để ứng với một đa thức có các nghiệm đều thực cho ta ít nhất một nguyên hàm cũng có các nghiệm đều thực sẽ được trình bày ở mục sau. Tuy nhiên, từ hệ quả (1.2), ta có ngay điều kiện đủ cho các đa thức có bậc tuỳ ý. Định lý 1.10 (Định lý dạng Viète tổng quát). Đa thức f(x)=(n +1)x n +(−1)na 1 x n−1 +(−1) 2 (n − 1)a 2 x n−2 + ···+(−1) n a n với các hệ số a 1 ,a 2 , ,a n có dạng a k = E k (¯x),k=1, 2, ,n (1.3) luôn luôn có các nghiệm đều thực, trong đó E k (¯x) là các hàm đối xứng Viète bậc k theo các biến thực x 1 ,x 2 , ,x n+1 , 1.3 Định lý về số nghiệm thực của đa thức nguyên hàm Nhận xét rằng, ứng với mỗi đa thức f(x) ∈ R[x] cho trước luôn tồn tại vô số nguyên hàm, chúng sai khác nhau một hằng số thực. Vì vậy, tuy đa thức đã cho có các nghiệm đều thực nhưng nhìn chung các nguyên hàm của nó không có tính chất đó. Về sau, để ngắn gọn trong cách trình bày, ta gọi mỗi nguyên hàm của một đa thức là đa thức nguyên hàm. Một câu hỏi tự nhiên nảy sinh là: Với những điều kiện nào thì đa thức f(x)= m  k=1 (x − x k ) r k ,x 1  x 2  ··· x m ,r 1 + ···+ r m = n sẽ có ít nhất một nguyên hàm (đa thức nguyên hàm) của nó có các nghiệm đều thực? Đối với đa thức có bậc tuỳ ý, định lý 1.10 đã cho ta câu trả lời của điều kiện đủ. Ta dễ dàng chỉ ra điều kiện cần (bổ đề 1.2 vàbổđề1.3) cho các đa thức có bậc không [...]... nguyên hàm cấp k của f (x) thỏa mãn F0,k (0) = 0, F0,0(x) = f (x) k ≤ γ − β (1.17) 15 Chương 2 Tính chất nghiệm của các đa thức nguyên hàm 2.1 Nhận xét về nguyên hàm của một số đa thức dạng đặc biệt Nhận xét 2.1 Cho đa thức f (x) với hệ số thực (đa thức thực) bậc n có n nghiệm thực Khi đó luôn tìm được điều kiện cần đủ để tồn tại đa thức nguyên hàm F (x) của nó có các nghiệm điều thực Vậy vấn đề... tính chất của đa thức thực áp dụng " đã tập trung nghiên cứu, trình bày một số vấn đề sau: 1 Luận văn đã chứng minh điều kiện cần đủ cho những lớp đa thức f (x) ∈ R[x] với k nghiệm thực cho trước sẽ cho ta một nguyên hàm (gọi là đa thức nguyên hàm) có đủ k + 1 nghiệm thực Tương tự, cho một đa thức f (x) ∈ R[x] với k nghiệm thực cho trước sẽ cho một nguyên hàm cấp s s > 1 (gọi là đa thức nguyên... Luận văn trình bày một số dạng bài toán khảo sát tổng quát số nghiệm của đa thức nguyên hàm, từ đó chúng ta có thể áp dụng vào một số hàm cụ thễ để tạo ra một lớp bài tập cho học sinh về đa thức nguyên hàm 24 Tài liệu tham khảo [1] Nguyễn Văn Mậu, 1993, Một số phương pháp giải phương trình bất phương trình, NXB Giáo Dục [2] Nguyễn Văn Mậu, Đặng Huy Ruận, Nguyễn Thuỷ Thanh, 2000, Phép tính vi phân và. .. có số nghiệm thực cũng tăng lên theo cấp của nó? Trước hết ta xét các đa thứcsố nghiệm thực nhỏ hơn 4 Định lý 1.14 Giả sử đa thức f (x) ∈ R[x] có 1 nghiệm thực Gọi Ms (f ) là tập hợp các nguyên hàm cấp s của đa thức f (x) Khi đó, ứng với mọi số nguyên dương s đều tồn tại đa thức Fs (x) ∈ Ms (f ) có ít nhất s + 1 nghiệm thực Sau đây ta xét các đa thức có hai nghiệm thực theo phương pháp tương tự... nghiệm thực 2 Đối với các lớp đa thức dạng đặc biệt f (x) với deg f (x) = k nhưng x F1(x) = f (t)dt không có đủ k + 1 nghiệm thực, 0 thì luôn tồn tại cách bổ sung thêm vào các 0−điểm để đa thức mới g(x) có deg = n sao cho x G1 (x) = g(t)dt có đủ n + 1 nghiệm thực 0 3 Dựa các tính chất của hàm lồi, lõm để bước đầu xây dựng một số bất đẳng thức xuất phát từ nguyên hàm của một số lớp đa thức đặc biệt 4 Luận. .. của phương trình F0,2(x) = 0.) 22 Nhận xét 2.2 Đối với các đa thức f (x) ∈ R[x] có bậc bằng n có m (m < n) nghiệm thực, trong đó có một số bộ nghiệm kép khoảng cách giữa hai nghiệm kép lớn hơn hoặc bằng hai thì nội dung định lý 2.6 vẫn đúng Nhận xét 2.3 Ta có thể dựa vào định lý (2.5) (2.6) để đưa ra các bất đẳng thức tương tự 23 Kết luận Các kết quả chính của luận văn "Một số tính chất của. .. Thanh, 2000, Phép tính vi phân tích phân hàm một biến, NXB Đại học Quốc gia Hà Nội [3] Nguyễn Văn Mậu, Nguyễn Thuỷ Thanh, 2002, Giới hạn dãy số hàm số, NXB Giáo Dục [4] Nguyễn Văn Mậu, 2004 ,Đa thức đại số phân thức hữu tỷ,NXB Giáo Dục [5] Nguyễn Văn Mậu, 2006,Bất đẳng thức, định lý áp dụng, NXB Giáo Dục [6] Nguyễn Văn Mậu, 2007, Nội suy áp dụng, NXB Giáo Dục ... 1.11 1.13 đã chỉ ra tiêu chuẩn để nhận biết một đa thức có nghiệm thực cho trước có tồn tại hay không một nguyên hàm có số nghiệm thực nhiều hơn đa thức đã cho phương pháp xác định nguyên hàm đó Nhận xét rằng, phép tích phân không làm thay đổi dấu của các hạng tử trong đa thức. Như vậy khi hằng số c ∈ R của nguyên hàm Fc (x) = F0(x) − c xác định, ta có thể đánh giá được số nghiệm dương, số nghiệm... lý 1.15 Giả sử đa thức f (x) ∈ R[x] có hai nghiệm thực Gọi Ms (f ) là tập hợp các nguyên hàm cấp s của đa thức f (x) Khi đó, ứng với mọi số nguyên dương s đều tồn tại đa thức Fs (x) ∈ Ms (f ) có (s + 2) nghiệm thực Định lý 1.16 Giả sử đa thức f (x) ∈ R[x] có ba nghiệm thực Gọi Ms (f ) là tập hợp các nguyên hàm cấp s của đa thức f (x) Khi đó, ứng với mọi số nguyên dương s đều tồn tại đa thức Fs (x) ∈... < n) nghiệm thực bội m Gọi Ms (f ) là tập hợp các nguyên hàm cấp s của đa thức f (x) Khi đó, ứng với mọi số nguyên dương s đều tồn tại đa thức Fs (x) ∈ Ms (f ) có s + m nghiệm thực Định lý 1.18 Giả sử đa thức f (x) ∈ R[x] có bậc bằng n có m(m < n) nghiệm thực phân biệt Gọi Ms (f ) là tập hợp các nguyên hàm cấp s của đa thức f (x) Khi đó, để ứng với mọi số nguyên dương s đều tồn tại đa thức Fs (x) . NHƠN Dương Thị Thu Thuý MỘT SỐ TÍNH CHẤT CỦA ĐA THỨC THỰC VÀ ÁP DỤNG Luận văn thạc sỹ toán học Chuyên ngành : Phương pháp Toán sơ cấp Mã số : 60 46 40 Người. về số nghiệm thực của đa thức nguyên hàm . . . . . . . . . . . 8 2 Tính chất nghiệm của các đa thức nguyên hàm 15 2.1 Nhận xét về nguyên hàm của một số đa

Ngày đăng: 21/01/2014, 14:30

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w