1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Đề ( có ĐA) luyện thi ĐHCĐ số 4 doc

7 342 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 7
Dung lượng 174,91 KB

Nội dung

www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 _____________________________________________________ __________ Câu I. 1) Khảo sát sỷồ biến thiên của hàm số y= xxx x 432 4 2 12 1+ . 2) Chỷỏng tỏ rằng đồ thị hàm số một trục đối xỷỏng. Từ đó tìm giao điểm của đồ thị với trục hoành. Câu II. 1) Tìm nghiệm của phỷơng trình sin 2 [(x + 1)y] = sin 2 2 (xy) + sin 2 2 [(x - 1)y] sao cho (x + 1)y, xy, (x - 1)y là số đo các góc của một tam giác. 2) Chỷỏng minh rằng với mọi tam giác ABC, bao giờ ta cũng có a) sin A 2 Ê a 2 bc , b) aA + bB + cC a+b+c 3 . Câu III. 1) Tìm giá trị nhỏ nhất của hàm số y= x+2(1+ x+1)+ x+2(1- x+1) 3333 . 2) Cho bất phỷơng trình - 4 (4 - x) (2 + x) Ê x 2 2 -2x+a-18. a) Giải bất phỷơng trình khia=6. b) Xác định a để bất phỷơng trình đ ợc nghiệm đúng với mọi x ẻ [- 2 ; 4]. www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ Câu I. 1) Bạn đọc tự giải nhé! 2) Qua khảo sát, ta dự đoán rằng trục đối xứng của đồ thị là đỷờngx=1.Thực vậy, đặt xX yY =+ = 1 thì phỷơng trình ban đầu trở thành:Y=X 4 -8X 2 +6; hàm này là hàm chẵn, do vậy đồ thị nhận trục O 1 Y làm trục đối xứng. Tìm giao với trục hoành:y=0 Y=0 X 4 -8X 2 +6=0ị X 1234,,, = 410 ị x 1234,,, =1 410 . Câu II. 1) Theo giả thiết, ta phải có:(x + 1)y + xy + (x - 1)y = (1) xy = 3 . Từ đó suy ra: (x + 1)y = 3 +y;(x-1)y= 3 -y . Vì xy = 3 nên từ (1) suy ra: 0 < 3 -y< 2 3 , (2) 0 < y+ 3 < 2 3 (3) www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ______________________________________________________________________________ (Chúý:(x+1)y> 0;(x-1)y> 0). Từ (2) và (3) suy ra: - 3 <y< 3 . (4) Cần chọn y thỏa mãn (4) sao cho: sin 3 +y =sin 3 +sin 3 -y 222 1-cos 2 3 +2y = 3 2 +1-cos 2 3 -2y -cos 2 3 +2y +cos 2 3 -2y = 3 2 2sin 2 3 . sin2y = 3 2 sin2y = 3 2 . Do (4) nên chỉ nghiệm duy nhất : y o = 6 ,vàdovậyx o =2. Vậy : nếu bài toán nghiệm thì phải x o =2,y o = /6. Thử lại, thấy thỏa mãn tất cả các điều kiện đặt ra (đề nghị tự kiểm tra). Đáp số : x o =2;y o = 6 . 2) a) a 2 =b 2 +c 2 - 2bccosA =(b - c) 2 + 2bc(1 - cosA) 2bc (1 - cosA) = 2bc.2sin 2 A 2 a 4bc sin A 2 2 2 ị sin A 2 a 2bc . www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 ________________________________________________________________________________ b) aA + bB + cC a+b+c 3 aA + bB + cC (a + b + c) - A+B+C 3 0 3(aA+bB+cC)-(a+b+c)(A+B+C) 3 0 ()abc++ (a - b)(A - B) + (b - c)(B - C) + (c - a)(C - A) 3(a + b + c) 0 . Bất đẳng thức cuối cùng đúng (vì đối diện với góc lớn hơn ta cạnh lớn hơn). Câu III. 1) Biến đổi hàm số đã cho: y= (x +1)+1+2 x +1+ 33 (x +1)+1-2 x +1 = 33 = (1 + x + 1) + (1 - x + 1) = 32 32 =1+ x+1+|1- x+1| 33 1+ x+1+1- x+1=2 33 . (Chú ý : hàm số xác định với "x -1). Vậy miny=2(khi - 1 Ê x Ê 0). 2) Điều kiện để căn bậc hai nghĩa : -2 Ê x Ê 4. Biến đổi bất phỷơng trình nh sau: -4 -x + 2x + 8 -(-x + 2x + 8) + a - 10 22 . đặt t = -x + 2x + 8 2 thì khi -2 Ê x Ê 4 sẽ 0 Ê t Ê 3. a) Bất phỷơng trình trở thành: -4t Ê -t 2 +a-10 t 2 -4t+4Ê 0 t=2. Từ đó giải phỷơng trình: -x + 2x + 8 2 =2sẽđợc:x 12, =1 5 . b)Ta cần tìm a sao cho với "t ẻ [0 ; 3] ta đều có:f(t) = t 2 -4t+10-aÊ 0 100 13 0 .() .() f f 10 0 70 a a a ô 10. _ www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 _______________________________________________________ Câu IVa. 1) Gọi AA BB (x ,y ),(x ,y ) là tọa độ các điểm A, B ; gọi 11 I(x,y)= là trung điểm của đoạn AB ta : 2 AA yx= , 2 BB yx= , 1AB 1 x(xx) 2 =+ , 22 1AB 1 y(xx) 2 =+ . Theo giả thiết : AB = 2 22222 AB AB AB (x x) (x x) 4= + = . 222 AB AB AB 4(xx)(xx)(xx)= + + = 222 2 AB AB 1 AB 1 (x x ) [1 (x x ) ] [4x 4x x ][1 4x ]= ++ = + 2 1AB AB 2 1 4 4x 4x x 4x x 14x = = + 22 1AB 1 22 11 42 4x 2x x 2x 14x 14x == ++ Mặt khác =+= + = 22 2 2 1AB AB AB 1AB 11 1 y(xx)[(xx)2xx][4x2xx] 22 2 . Vậy 222 11 11 22 11 12 1 y [4x 2x ] x 2 14x 14x =+ =+ ++ Do đó tập hợp trung điểm I của AB là đờng phơng trình 2 2 1 yx 14x =+ + 2) Không giảm tính tổng quát ta thể giả thiết rằng AB xx< .Khi đó ta thấy diện tích phần mặt phẳng bị giới hạn bởi parabol và cát tuyến AB chính là : = + = A A x 22 2 BAAB x 1 S(xx)(xx) xdx 2 22 33 BAAB BA 11 (x x)(x x) [x x] 23 = += +++ = = 22 22 BA BABA BA xx xxxx (x x ) 23 3 BA 1 (x x ) 6 = Rõ ràng BA |x x | AB = 2, đẳng thức xảy ra AB A AB// x x x 1= = , B x1= , nên 14 S.8 63 = , đẳng thức xảy ra AB x1,x1= = . Câu IVb. 1) Gọi I, J lần lợt là trung điểm của AB và CD, OK AD. Tam giác AOD vuông ở O. Do đó : _ www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 _______________________________________________________ 22 R OK KA.KD AI.DJ== = . Mặt khác, AI : DJ = 1 : 4. Từ đó AI = R/2 AB = R và CD = 4R. Do SO (ABCD) nên 22222 2222 SK SH SI SJ SO OK 4R R 5R====+ =+= SH R 5= . Mặt khác, AD = BC = AK + DJ = R5R 2R 22 =+ = Vậy 2 xq SH S(R4R5R). 55R 2 =+ + = ; 2 đáy SR(R4R)5R =+= ; 2 tp S5R(15)=+ ; 3 SABCD 10 VR 3 = 2) AD (SOK) SAD) SOK). Vậy hình chiếu của O lên (SAD) thuộc SK. Tơng tự với các mặt còn lại. Mặt khác, các tam giác SOK, SOH, SOI và SOJ đều vuông và bằng nhau nên các khoảng cách từ O đến 4 mặt bên bằng nhau. Rõ ràng, với cách lập luận nh vậy hình chiếu của điểm O' bất kì thuộc SO lên 4 mặt cũng cách đều O'. Muốn O' là tâm cầu nội tiếp hình chóp, ta vẽ đờng phân giác của n SKO , đờng này cắt SO ở O'. Bán kính mặt cầu nội tiếp bằng r = O'O = O'E. Vì SOK SEO' ta : OK SK SK EO' SO' SO OO' == hay RR5 r2Rr = R( 5 1) r 2 = J I Câu IVa. Cho paraboly=x 2 . Hai điểm A, B di động trên parabol sao cho AB = 2. 1) Tìm tập hợp trung điểm của AB. 2) Xác định vị trí của A, B sao cho diện tích của phần mặt phẳng giới hạn bởi parabol và cát tuyến AB đạt giá trị lớn nhất. Câu IVb. Trong mặt phẳng (P) cho hình thang cân ABCD ngoại tiếp đỷờng tròn tâm O bán kính R, các cạnh đáy AB và CD thỏa mãn điều kiện AB : CD=1:4.Trên đỷờng thẳng (d) vuông góc với (P) tại O, lấy điểm S sao cho OS = 2R. 1) Tính diện tích toàn phần và thể tích hình chóp S.ABCD. 2) Chỷỏng minh rằng O cách đều 4 mặt bên của hình chóp. Từ đó xác định tâm và bán kính hình cầu nội tiếp hình chóp. www.khoabang.com.vn Luyện thi trên mạng Phiên bản 1.0 _______________________________________________________________ . giả thi t : AB = 2 22222 AB AB AB (x x) (x x) 4= + = . 222 AB AB AB 4( xx)(xx)(xx)= + + = 222 2 AB AB 1 AB 1 (x x ) [1 (x x ) ] [4x 4x x ][1 4x. 3 aA + bB + cC (a + b + c) - A+B+C 3 0 3(aA+bB+cC)-(a+b+c)(A+B+C) 3 0 () abc++ (a - b)(A - B) + (b - c)(B - C) + (c - a)(C - A) 3(a + b + c) 0 . Bất

Ngày đăng: 21/01/2014, 05:20

TỪ KHÓA LIÊN QUAN

w