1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu OFDM - chuong 3 doc

22 278 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 648,68 KB

Nội dung

Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 40 Chương 3: VẤN ĐỀ ĐỒNG BỘ TRONG HỆ THỐNG OFDM 3.1 Giới thiệu chương. Ở trong chương này, chúng ta sẽ đi tìm về các nội dung chính của vấn đề đồng bộ trong hệ thống OFDM. Cụ thể là tìm hiểu về các lỗi gây nên sự mất đồng bộ, vấn đề nhận biết khung; ước lượng và sửa chữa khoảng dịch tần số; điều chỉnh sai số lấy mẫu. Ở đây sẽ khảo sát các lo ại đồng bộ ứng với các lỗi đó là: Đồng bộ symbol, đồng bộ tần số lấy mẫu, đồng bộ tần số sóng mang và xét sự ảnh hưởng của sai lỗi đồng bộ đến hiệu suất hệ thống. 3.2 Sự đồng bộ trong hệ thống OFDM. Hệ thống OFDM yêu cầu khắt khe về vấn đề đồng bộ vì sự sai lệch về t ần số, ảnh hưởng của hiệu ứng Doppler khi di chuyển và lệch pha sẽ gây ra nhiễu giao thoa tần số (ISI). Trong bất kỳ một hệ thống OFDM nào, hiệu suất cao phụ thuộc vào tính đồng bộ hóa giữa máy phát và máy thu, làm mất tính chính xác định thời dẫn đến nhiễu ISI và ICI khi mất độ chính xác tần số. Các hệ thống sử dụng OFDM dễ bị ảnh hưởng bởi lỗi do đồng bộ, đặ c biệt là đồng bộ tần số do làm mất tính trực giao giữa các sóng mang phụ. Để giải điều chế và nhận biết tín hiệu OFDM chính xác yêu cầu các sóng mang phụ phải có tính trực giao. Khi các đồng hồ tần số lấy mẫu ở phía phát và phía thu chính xác thì hai yếu tố chính ảnh hưởng đến sự mất đồng bộ là khoảng dịch tần số sóng mang và khoảng thời gian symbol. Khoảng dịch tần số sóng mang gây nên nhi ễu ICI, còn độ dịch khoảng thời gian symbol gây nên nhiễu ISI. Trong hệ thống OFDM, nhiễu ICI tác động đến sự mất đồng bộ lớn hơn nhiễu ISI nên tần số sóng mang yêu cầu độ chính xác nhiều hơn khoảng thời gian symbol. Quá trình đồng bộ có 3 bước: Nhận biết khung, ước lượng khoảng dịch tần số (pha), bám đuổi pha (Hình 3.1) Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 41 Hình 3.1: Quá trình đồng bộ trong OFDM Quá trình nhận biết khung được thực hiện bằng cách sử dụng chuỗi PN vi phân miền thời gian. Để ước lượng khoảng dịch tần số, cần sử dụng mối tương quan trong miền thời gian của các symbol pilot kề nhau ước lượng phần thực của khoảng tần số offset, còn phần ảo được thực hiện bằng cách sử dụng chuỗi PN vi phân miền t ần số. Sự dịch pha do ước lượng khoảng dịch tần số cũng như nhiễu pha được tối ưu bằng cách dùng khóa pha số (DPLL). Trong quá trình điều chế và truyền tín hiệu trên các kênh thường bị ảnh hưởng bởi nhiễu. Do quá trình điều chế và xuyên nhiễu kênh nên các tham số tần số sóng mang và khoảng thời gian symbol không còn chính xác. Do đó, cần phải ước lượng và đồng bộ chúng. Như vậy, ở phía thu ngoài vi ệc giải quyết sự giải mã dữ liệu (ở bên ngoài) còn phải giải quyết vấn đề đồng bộ hóa (ở bên trong). 3.2.1 Nhận biết khung. Nhận biết khung nhằm tìm ra ranh giới giữa các symbol OFDM. Đa số các sơ đồ định thời hiện có sử dụng sự tương quan giữa những phần tín hiệu OFDM được lặp lại để tạo ra một sự định thời ổn định. Những sơ đồ đó không thể cho vị trí định thời chính xác, đặc biệt là khi SNR thấp. Để nhận biết khung, chúng ta sử dụng chuỗi PN miền thời gian được mã hóa vi phân. Nhờ đặc điểm tự tương quan, chuỗi PN cho phép tìm ra vị trí định thời chính xác. Chuỗi PN được phát như là một phần của phần của đầu gói OFDM. Tại phía thu, các mẫu tín hiệu thu được sẽ có liên quan với chuỗi đã biế t. Khi chuỗi PN phát đồng bộ với chuỗi PN thu có thể suy ra ranh giới giữa các symbol OFDM bằng việc quan sát đỉnh tương quan. Trong kênh đa đường, nhiều đỉnh tương quan PN được quan sát phụ thuộc vào trễ đa đường (được đo trong chu kỳ lấy mẫu tín hiệu). Đỉnh tương quan lớn Nhận biết khung Ước lượng khoảng dịch tần số FFT Bám đuổi pha Ước lượng kênh Giải mã Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 42 nhất xuất hiện tại đỉnh năng lượng của trễ đa đường. Vị trí của đỉnh tương quan lớn nhất này dùng để định vị ranh giới symbol OFDM. Do nhận biết khung được thực hiện trước khi ước lượng khoảng dịch tần số sẽ phá vỡ đỉnh tương quan của chuỗi PN. Điều này dẫn đến sự phân phối đỉnh tương quan giống dạ ng hình sine. Khi không có ước lượng khoảng dịch tần số, điều chế vi phân được sử dụng, nghĩa là chuỗi PN có thể được điều chế vi phân trên những mẫu tín hiệu lân cận. Tại phía thu, tín hiệu được giải mã vi phân và được tính tương quan với chuỗi PN đã biết. Giải thuật nhận biết đỉnh sử dụng một bộ đệm có kích thước cố định để lưu kết quả tính toán tạm thời là các giá trị metric định thời kết quả |M(g)|. Sự nhận biết khung thành công khi phần tử trung tâm của bộ đệm lớn nhất và tỉ lệ của giá trị phần tử trung tâm và trung bình bộ đệm vượt quá ngưỡng nhất định. Để xác định mức ngưỡng này, sự mô phỏng được thực hiện qua kênh AWGN, đối với chuỗi có chiều dài là 63, bộ đệm metric cũng ch ọn theo kích thước là 63. Hình 3.2 cho thấy xác suất nhận biết mất mát và nhận biết sai lệch tại các mức ngưỡng khác nhau. Hình 3.2[4]: Xác suất nhận biết mất mát và nhận biết sai tại các mức ngưỡng PAPR khác nhau Đường cong nhận biết sai tạo ra từ sự tích lũy nhiễu trong module nhận biết khung và sau đó đo đỉnh tương quan (PAPR) của bộ metric định thời. Các đường cong nhận biết trượt tạo ra từ phép đo PAPR của bộ đệm metric định thời khi chuỗi PN được phát đi. Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 43 Ngưỡng tối ưu của SNR là điểm phát giao giữa đường cong nhận biết sai và đường cong nhận biết trượt của SNR mong muốn. Một chuỗi PN dài hơn có thể được sử dụng để tăng khoảng trống giữa các đường nhận biết sai và các đường nhận biết trượt và để giảm xác suất lỗi tại ngưỡng tối ưu. 3.2.2 Ước lượng khoảng dịch tần số . Khoảng dịch tần số gây ra do sự sai khác tần số sóng mang giữa phía phát và phía thu. Khoảng dịch tần số là vấn đề quan trọng trong hệ thống OFDM đa sóng mang so với hệ thống đơn sóng mang. Để BER giảm không đáng kể, độ lớn khoảng dịch tần số phải trong khoảng 1% của khoảng cách sóng mang. Điều này sẽ không khả thi khi hệ thống OFDM sử dụng các bộ dao động tinh thể th ạch anh chất lượng thấp mà không áp dụng bất kỳ kỹ thuật bù khoảng dịch tần số nào. Ước lượng khoảng dịch tần số sử dụng hai symbol dẫn đường OFDM, với symbol thứ hai bằng symbol thứ nhất dịch sang trái T g (T g là độ dài tiền tố lặp CP). Các tín hiệu cách nhau khoảng thời gian T (độ dài symbol FFT) thì giống hệt nhau ngoại trừ thừa số pha )(2 Tfj C e Δ π do khoảng dịch tần số. Khoảng dịch tần số được phân thành phần thập phân và phần nguyên: ρ +=Δ ATf c (3.1) Ở đây phần nguyên A và phần thập phân ρ є (-1/2, 1/2). Phần thập phân được ước lượng bằng cách tính tương quan giữa các mẫu tín hiệu cách nhau một khoảng thời gian T. Phần nguyên được tìm bằng cách sử dụng chuỗi PN được mã hóa vi phân qua các sóng mang phụ lân cận của hai symbol dẫn đường. 3.2.2.1 Ước lượng phần thập phân. Khi không có nhiễu ISI, các mẫu tín hiệu thu được tín hiệu như sau: )()()( )(2 lz.elsly N l TΔfπj C += (3.2) Trong đó, l : số mẫu (miền thời gian) y(l) : mẫu tín hiệu thu Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 44 N : tổng số sóng mang phụ z(l) : mẫu nhiễu Và tín hiệu s(l) được biểu diễn như sau: N l πkj N l ekCkU N ls 2 1 0 )()( 1 )( ∑ − = = (3.3) Trong đó, k : chỉ số sóng mang phụ U(k) : dữ liệu điều chế trên sóng mang phụ C(k) : đáp ứng tần số sóng mang phụ Tính tương quan giữa các mẫu cách nhau khoảng T (tức N mẫu) ta có: ∑ − = ∗ += 1 0 )()( N l Nl.ylyJ (3.4) Và phần thập phân của khoảng dịch tần số được ước lượng như sau: [ ] ∗ ∧ = Jarg 2 1 π ρ (3.5) Nếu SNR cao và bỏ qua mọi xuyên nhiễu như (3.4). J có thể được triển khai sắp xếp lại thành phần tín hiệu và phần nhiễu Gaussian. Định nghĩa phần lỗi ước lượng phần thập phân: = ρ ε ρρ − ∧ (3.6) Độ lệch chuNn được tính như sau: SNRN E π ε ρ 2 1 ][ 2 = (3.7) Hình 3.3 so sánh độ lệch chuNn của lỗi ước lượng FOE giữa mô phỏng và tính toán tại các giá trị SN R khác nhau. Sự mô phỏng trong kênh AWGN tại tần số sóng mang f c = 2.24 GHz, với tần số sóng mang phụ N= 64, chu kỳ lấy mẫu T s =50ns, và độ sai lệch dao động nội thạch anh là 100 ppm. Khoảng dịch tần số là Δf c .T = 0,7808 với phần nguyên là A = 1, và phần thập phân là ρ = -0,2192. Sự khác nhau giữa hai đường cong tại SN R thấp là do bỏ qua xuyên nhiễu ở trong (3.4). Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 45 Hình 3.3: Độ lệch chuẩn ước lượng phần thập phân CFO tại các giá trị SNR khác nhau Từ (3.6) ta có thể tính xấp xỉ để giảm SN R do khoảng dịch tần số trong hệ OFDM, kết hợp kết quả đó với (3.7) và giả thuyết ước lượng phần nguyên luôn đúng. Sự giảm SN R sau khi ước lượng và bù khoảng tần số được tính như sau: 10 1 10ln12 10 )( xdBD = (3.8) Điều này là không đáng kể trong hệ thống có N lớn. 3.2.2.2 Ước lượng phần nguyên Đối với ước lượng phần nguyên, 2N mẫu tín hiệu liên tiếp của ký hiệu FOE dài là phần thập phân đầu tiên được bù: )()(' 2 lyely N l j ∧ − = ρπ )2,0[ Nl ∈ Giả sử sự ước lượng phần ước lượng thập phân là hoàn hảo, các mẫu tín hiệu được bù có thể được tách thành hai ký hiệu FFT: [] 11 )1(' ,),0(' zsNyyy +=−= [] 22 )12(' ,),(' zsNyNyy +=−= Vector ρ có các thành phần: Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 46 N l Aj els π 2 ).( , ),0[ Nl ∈ Vì hai ký hiệu FFT có cùng vector tín hiệu, một ký hiệu FFT mới có thể được tạo ra bằng cách cộng chúng với nhau để tăng SN R lên gần 3dB, tức là: 2121 2 zzsyyy ++=+= Sử dụng y/2 và nhiễu cùng tỷ lệ theo đó.FFT cho y/2: ∑ − = − ⎥ ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎢ ⎣ ⎡ += 1 0 22 )().( 1 )( N l N l nj N l Aj elzels N nY ππ = { U(k) C(k)} ),mod( NAnk −= + Z(n) Một chuỗi PN được mã hóa vi phân qua các sóng mang phụ lân cận để ước lượng xoay quanh phần nguyên A. Giải mã vi phân các Y(n) rồi tính tương quan giữa kết quả với các phiên bản xoay vòng của chuỗi PN ta sẽ tìm được một đỉnh biên độ duy nhất xác định A. 3.2.3 Bám đuổi lỗi thặng dư FOE Xét một hệ thống OFDM với một chu kỳ kí hiệu: T D = T g +T hoặc N D =N g +N biểu diễn số mẫu tín hiệu. Thừa số pha của khoảng dịch tần số trong N mẫu tín hiệu FFT của ký hiệu OFDM được biểu diễn: ))((2))(2( N l N N mAj N l N N mTfj DD C ee +++Δ = ρππ (3.9) Trong đó, m : chỉ số symbol, l : chỉ số mẫu Cho FOE đúng, khi đó thừa số pha sau khi bù khoảng dịch tần số là: N l j N N mj N l N N mj eee DD ρρρ πεπεπε 22)(2 . −−+− = (3.10) Giá trị số hạng N N mj D e ρ πε 2− trong (3.10) gây ra lỗi pha tín hiệu, còn số hạng N l j e ρ πε 2− gây ra nhiễu ICI. Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 47 Vì thừa số là không đổi trên toàn bộ symbol nên nó có thể được bù trong miền tần số sau bộ FFT. Tín hiệu FFT được biểu diễn: ),(),(),(),( 2 kmZkmCkmUekmY N N mj D += − ρ πε (3.11) k : chỉ số sóng mang phụ đã bỏ qua ICI Lỗi pha ( N N m D ρ πε 2− ) tăng tuyến tính trên các symbol. Có thể bám đuổi lỗi pha bằng cách dùng vòng khóa pha số DPLL. Hàm truyền đạt của DPLL là: 22 2 )1(2)1( )1(2 )( nn nn zz z zH ωηω ωηω +−+− +− = (3.12) Trong đó, η : hệ số tắt dần n ω : tần số của DPLL DPLL bậc hai thường sử dụng thay cho DPLL bậc một vì do yêu cầu lỗi trạng thái là ổn định đối với đầu vào tuyến tính, tức là ( N N m D ρ πε 2− ). Miền ổn định cho DPLL là: ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ +< << > 1 4 20 1 2 n n n ω ηω ω η hoặc ⎩ ⎨ ⎧ << ≤ ηω η 20 1 n (3.13) Điều này phải thỏa mãn khi chọn các tham số DPLL. Để thực hiện tách sóng pha, phải ước lượng hệ số lỗi pha. Vì hệ số lỗi pha là chung cho các sóng mang phụ nên được ước lượng sử dụng J. ∑ − = ∗∗ = 1 0 ),(),(),( N k kmYkmCkmUJ (3.14) Để tính J phải biết cả dữ liệu U(m,k) và các đáp ứng kênh C(m,k). Tách sóng pha được thực hiện: )(][arg)( mJme ∧ Φ−= (3.15) Trong đó, Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 48 e(m) : giá trị ra của bộ tách sóng () m ∧ Φ : giá trị ra của DPLL arg[J] : ước lượng nhiễu và có độ lệch chuNn là SNRN2 1 Hình 3.4: Bám đuổi pha DPLL Hình (3.4) cho thấy kết quả mô phỏng của hệ thống sử dụng DPLL với SN R là 3dB và lỗi FOE là ρ ε = - 0.017. Đường ô vuông biểu thị lỗi pha không được bám đuổi. Pha được giới hạn trong đoạn [- π, π]. Đường tròn biểu thị lỗi pha sau DPLL, gần như không đáng kể. DPLL có n ω = 6,25x10 -2 và 25,1 = η . 3.3 Đồng bộ ký tự trong OFDM Việc đồng bộ ký tự phải xác định được thời điểm ký tự bắt đầu. Với việc sử dụng tiền tố lặp (CP) thì việc thực hiện đồng bộ trở nên dễ dàng hơn nhiều. Hai yếu tố được chú ý khi thực hiện đồng bộ ký tự là lỗi thời gian và nhiễu pha sóng mang. • Có hai loại lỗi thờ i gian đó là lỗi định thời trong lấy mẫu symbol OFDM do sự trôi nhịp (Clock drift) và lỗi định thời do symbol tự sinh ra do sự sai lệch thời gian của thời điểm bắt đầu ký tự thu. Sự mất đồng bộ do lấy mẫu có thể Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn 49 khắc phục nhờ sử dụng đồng hồ lấy mẫu có độ chính xác cao. Do đó, vấn đề lúc này là lỗi định thời symbol. N ếu lỗi định thời symbol đủ nhỏ sao cho đáp ứng xung của kênh vẫn còn nằm trong khoảng của thành phần CP trong tín hiệu OFDM thì nó sẽ không gây ảnh hưởng đến chất lượng hệ thống. Trong trường hợp lỗi này lớn hơn khoảng thời gian của CP sẽ xảy ra nhiễu ISI. Khi đó sự đồng bộ được yêu cầu chặt chẽ hơn. • N hiễu pha sóng mang là hiện tượng xoay pha của các sóng mang do sự không ổn định của bộ tạo dao động bên phát hay bên thu. Có hai phương pháp chính để đồng bộ symbol. Đó là phương pháp đồng bộ dựa vào tín hiệu pilot và phương pháp dựa vào CP. N goài ra, còn có một phương pháp đó là đồng bộ khung symbol trên mã đồng bộ khung. 3.3.1 Đồng bộ tín hiệu d ựa vào tín hiệu Pilot Phương pháp đã được sử dụng cho các hệ thống thông tin OFDM/FM, nghĩa là các hệ thống OFDM được truyền dưới dạng điều tần. Máy phát sẽ sử dụng mã hóa một số các kênh phụ với tần số và biên độ biết trước. Sau này thì phương pháp này được điều chỉnh để có thể sử dụng cho truyền dẫn tín hiệu OFDM điều chế biên độ. Thuậ t toán đồng bộ gồm 3 bước: N hận biết công suất (Power Detection), đồng bộ "thô" (Coarse Synchronization) và đồng bộ "tinh" (Fine Synchronization). N hiệm vụ của việc nhận biết công suất là xác định xem tín hiệu truyền có phải là OFDM hay không bằng cách đo công suất thu và so sánh với mức ngưỡng. Trong bước đồng bộ "thô", tín hiệu sẽ được đồng bộ lúc đầu với độ chính xác thấp bằng một nửa khoảng thời gian lấy m ẫu. Mặc dù độ chính xác trong bước này không cao nhưng nó sẽ làm đơn giản thuật toán dò tìm đồng bộ trong bước tiếp theo. Để thực hiện được sự đồng bộ "thô", người ta tính tương quan giữa tín hiệu thu được với bản sao của tín hiệu phát (được xác định trước) rồi tìm đỉnh tương quan. Tần số ước lượng của các điểm phải gấp khoảng 4 lần tốc độ tín hiệ u để đảm bảo tính chính xác trong ước lượng đỉnh tương quan. [...]... vào tín hiệu OFDM theo một trật tự hợp lý Thông thường symbol pilot được chèn vào phần đầu tiên của gói OFDM (Hình 3. 5) a) k ênh fading phẳng tần số b)Kênh fading chon lọc tần số Hình 3. 5: Pilot trong gói OFDM 3. 3.2 Đồng bộ ký tự dựa vào CP Xét hai tín hiệu thu cách nhau N bước: d(m) = r (m) – r (m + N), Với N là sóng mang phụ N bằng số điểm lấy mẫu tương ứng với phần có ích của symbol OFDM, chúng phải... FSC cho đồng bộ khung symbol và vùng dữ liệu cho truyền dẫn symbol OFDM (Hình 3. 6) Hình 3. 6: Một kiểu cấu trúc khung symbol OFDM Có thể biểu diễn tín hiệu khung OFDM như sau: S frame (t ) = S FSC (t ) + S data ( t − T FSC ) (3. 16) Trong đó, TFSC : Khoảng thời gian symbol FSC Tại phía phát, chuỗi các mẫu ở dạng số được phát gồm có chuỗi CA(n) của FSC và các mẫu dữ liệu không có GI đã qua FFT là: ⎧ s (... đầu của symbol OFDM) thì khi cửa sổ này trùng với thành phần CP của symbol OFDM sẽ có một cực tiểu về công 50 Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn suất trung bình của các mẫu d(m) trong cửa sổ này Do đó, có thể ước lượng được thời điểm bắt đầu của symbol OFDM, và đồng bộ thời gian được thực hiện 3. 3 .3 Đồng bộ khung ký tự dựa trên mã đồng bộ khung (FSC) Đồng bộ khung ký tự nhằm... theo, lỗi thời gian âm cho biết máy thu nhận được khoảng bảo vệ 59 Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn Hình 3. 11: SNR hiệu dụng của tín hiệu OFDM với lỗi offset thời gian 3. 5.2 Ảnh hưởng của lỗi đồng bộ tần số OFDM nhạy với offset thời gian nên dễ ảnh hưởng tới chỉ tiêu kỹ thuật Việc điều chế tín hiệu OFDM có offset thời gian có thể dẫn tới tỉ lệ lỗi bit cao Điều này do mất... trên để đồng bộ khung symbol như trong Hình 3. 7, chúng ta có thể thu được công suất mà không phụ thuộc vào khoảng dịch tần số và pha như sau; ~ 2 ~ 2 y (i ) + y (i ) = s I (i ) + s Q (i ) 2 I 2 Q (3. 19) 3. 3 .3. 2 Xác định mức ngưỡng Th1 Theo phép phân tích, chúng ta sẽ thu được một mức ngưỡng tối ưu Th1 trong môi trường AWGN để xác định '0' và '1' từ công thức (3. 19) Để thu được một mức ngưỡng tối ưu trong... kiểu FSC Hình 3. 8: Ngưỡng tối ưu Th1 với giá trị SNR 53 Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn Các ngưỡng Th1 có thể được viết: Th 1 = 4 σ η ⎧ − 1 P / σ η2 ⎫ 2 )⎬ ⎨ I 0 (e 2P ⎩ (3. 20) ⎭ I 0−1 (.) : Hàm ngược của Bessel bậc 0: I 0 (.) , σ η2 : Phương sai của các biến ngẫu nhiên Gaussian trong các kênh I và Q P : Giá trị biên độ được định nghĩa trong tín hiệu Hình 3. 8 so sánh giữa... tạo ra tín hiệu 3 mức C A (n) Ví dụ: Cho C(n) = {1, 0, 0, 1, 1, 1, 0, 1} thì C A (n) = {1, 0, 0, -1 , 1, -1 , 0, 1} Bằng cách này, ta có thể duy trì số giá trị '1' và '-1 ' bằng nhau tại phía phát để hạn chế khoảng dịch DC và duy trì một mức cố định cho dải động Cấu trúc đồng bộ khung symbol OFDM gồm: Bộ nhận biết công suất, bộ nhận biết bit '0'/ '1' , thanh ghi dịch CL, bộ cộng Modulo -2 được giảm bớt,... quả được so sánh với ngưỡng Th2 của bộ nhận biết đỉnh để dò tìm FSC 3. 3 .3. 3 Xác định mức ngưỡng Th2 N ếu giá trị đỉnh chính xác của đầu ra bộ nhận biết đỉnh là nhỏ hơn ngưỡng Th2 mà đã thiết lập cho bộ nhận biết đỉnh, FSC không được phát hiện Đây gọi là sự nhận biết trượt PM N ếu thiết lập Th2 thấp, tương quan đầu ra của các vùng dữ liệu khác có thể ở trên Th2 và được xem như là FSC, gọi là xác suất... đáp ứng nhiễu Tín hiệu CP với chiều dài L (Hình 3. 9), tín hiệu ở phía thu sẽ là: y m (i ) = e j 2πεi / N u (i ) + n (i ) 2 ⎧σ s2 + σ n ⎪ Đối với I = {− L + 1, , 0}, i ∈ I hàm E y m (i ) y (i + l ) = ⎨ 2 − j 2πε ⎪σ s e ⎩ { ∗ m } l=0 l=N 56 Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn n = − L + 1 n = N −1 n=0 Hình 3. 9: CP trong một symbol OFDM ∧ Hàm ước lượng: ε = − 0 1 ∠y , với y = 2π... ước lượng: 57 Chương 3: Vấn đề đồng bộ trong hệ thống OFDMwww.4tech.com.vn ⎧ ⎪ ∧ 1 ⎪ tan − 1 ⎨ ε = 2π ⎪ ⎪ ⎩ ⎫ ( k )] ⎪ ⎪ k=0 ⎬ N −1 ∗ ∑0 Re[ Y 2 ( k ) Y 1 ( k )] ⎪ ⎪ k= ⎭ N −1 ∑ Im[ Y 2 ( k ) Y ∗ 1 S =[s[0],…, s[N −1]]T CP n=N 1 − n=2N−1 n = N −1 S Hình 3. 10: Tín hiệu OFDM Giá trị chỉ thỏa mãn ước lượng khi ε ≤ 0 ,5 , khi ε > 0 , 5 phải được thực hiện tại một giả định ban đầu 3. 5 Ảnh hưởng của lỗi . và vùng dữ liệu cho truyền dẫn symbol OFDM (Hình 3. 6). Hình 3. 6: Một kiểu cấu trúc khung symbol OFDM Có thể biểu diễn tín hiệu khung OFDM như sau:. đoạn [- π, π]. Đường tròn biểu thị lỗi pha sau DPLL, gần như không đáng kể. DPLL có n ω = 6,25x10 -2 và 25,1 = η . 3. 3 Đồng bộ ký tự trong OFDM

Ngày đăng: 21/01/2014, 02:20

TỪ KHÓA LIÊN QUAN