1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu shi20396 chương 6 doc

31 278 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 239,78 KB

Nội dung

Chapter 6 6-1 MSS: σ 1 − σ 3 = S y /n ⇒ n = S y σ 1 − σ 3 DE: n = S y σ  σ  =  σ 2 A − σ A σ B + σ 2 B  1/2 =  σ 2 x − σ x σ y + σ 2 y + 3τ 2 xy  1/2 (a) MSS: σ 1 = 12, σ 2 = 6, σ 3 = 0 kpsi n = 50 12 = 4.17 Ans. DE: σ  = (12 2 − 6(12) + 6 2 ) 1/2 = 10.39 kpsi, n = 50 10.39 = 4.81 Ans. (b) σ A , σ B = 12 2 ±   12 2  2 + (−8) 2 = 16, −4 kpsi σ 1 = 16, σ 2 = 0, σ 3 =−4 kpsi MSS: n = 50 16 − (−4) = 2.5 Ans. DE: σ  = (12 2 + 3(−8 2 )) 1/2 = 18.33 kpsi, n = 50 18.33 = 2.73 Ans. (c) σ A , σ B = −6 − 10 2 ±   −6 + 10 2  2 + (−5) 2 =−2.615, −13.385 kpsi σ 1 = 0, σ 2 =−2.615, σ 3 =−13.385 kpsi MSS: n = 50 0 − (−13.385) = 3.74 Ans. DE: σ  = [(−6) 2 − (−6)(−10) + (−10) 2 + 3(−5) 2 ] 1/2 = 12.29 kpsi n = 50 12.29 = 4.07 Ans. (d) σ A , σ B = 12 + 4 2 ±   12 − 4 2  2 + 1 2 = 12.123, 3.877 kpsi σ 1 = 12.123, σ 2 = 3.877, σ 3 = 0 kpsi MSS: n = 50 12.123 −0 = 4.12 Ans. DE: σ  = [12 2 − 12(4) + 4 2 + 3(1 2 )] 1/2 = 10.72 kpsi n = 50 10.72 = 4.66 Ans. ␴ B ␴ A shi20396_ch06.qxd 8/18/03 12:22 PM Page 149 150 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 6-2 S y = 50 kpsi MSS: σ 1 − σ 3 = S y /n ⇒ n = S y σ 1 − σ 3 DE:  σ 2 A − σ A σ B + σ 2 B  1/2 = S y /n ⇒ n = S y /  σ 2 A − σ A σ B + σ 2 B  1/2 (a) MSS: σ 1 = 12 kpsi, σ 3 = 0, n = 50 12 − 0 = 4.17 Ans. DE: n = 50 [12 2 − (12)(12) + 12 2 ] 1/2 = 4.17 Ans. (b) MSS: σ 1 = 12 kpsi, σ 3 = 0 , n = 50 12 = 4.17 Ans. DE: n = 50 [12 2 − (12)(6) + 6 2 ] 1/2 = 4.81 Ans. (c) MSS: σ 1 = 12 kpsi, σ 3 =−12 kpsi , n = 50 12 − (−12) = 2.08 Ans. DE: n = 50 [12 2 − (12)(−12) + (−12) 2 ] 1/3 = 2.41 Ans. (d) MSS: σ 1 = 0, σ 3 =−12 kpsi, n = 50 −(−12) = 4.17 Ans. DE: n = 50 [(−6) 2 − (−6)(−12) + (−12) 2 ] 1/2 = 4.81 6-3 S y = 390 MPa MSS: σ 1 − σ 3 = S y /n ⇒ n = S y σ 1 − σ 3 DE:  σ 2 A − σ A σ B + σ 2 B  1/2 = S y /n ⇒ n = S y /  σ 2 A − σ A σ B + σ 2 B  1/2 (a) MSS: σ 1 = 180 MPa, σ 3 = 0, n = 390 180 = 2.17 Ans. DE: n = 390 [180 2 − 180(100) + 100 2 ] 1/2 = 2.50 Ans. (b) σ A , σ B = 180 2 ±   180 2  2 + 100 2 = 224.5, −44.5MPa= σ 1 , σ 3 MSS: n = 390 224.5 − (−44.5) = 1.45 Ans. DE: n = 390 [180 2 + 3(100 2 )] 1/2 = 1.56 Ans. shi20396_ch06.qxd 8/18/03 12:22 PM Page 150 Chapter 6 151 (c) σ A , σ B =− 160 2 ±   − 160 2  2 + 100 2 = 48.06, −208.06 MPa = σ 1 , σ 3 MSS: n = 390 48.06 − (−208.06) = 1.52 Ans. DE: n = 390 [−160 2 + 3(100 2 )] 1/2 = 1.65 Ans. (d) σ A , σ B = 150, −150 MPa = σ 1 , σ 3 MSS: n = 380 150 − (−150) = 1.27 Ans. DE: n = 390 [3(150) 2 ] 1/2 = 1.50 Ans. 6-4 S y = 220 MPa (a) σ 1 = 100, σ 2 = 80, σ 3 = 0MPa MSS: n = 220 100 − 0 = 2.20 Ans. DET: σ  = [100 2 − 100(80) + 80 2 ] 1/2 = 91.65 MPa n = 220 91.65 = 2.40 Ans. (b) σ 1 = 100, σ 2 = 10, σ 3 = 0MPa MSS: n = 220 100 = 2.20 Ans. DET: σ  = [100 2 − 100(10) + 10 2 ] 1/2 = 95.39 MPa n = 220 95.39 = 2.31 Ans. (c) σ 1 = 100, σ 2 = 0, σ 3 =−80 MPa MSS: n = 220 100 − (−80) = 1.22 Ans. DE: σ  = [100 2 − 100(−80) + (−80) 2 ] 1/2 = 156.2MPa n = 220 156.2 = 1.41 Ans. (d) σ 1 = 0, σ 2 =−80, σ 3 =−100 MPa MSS: n = 220 0 − (−100) = 2.20 Ans. DE: σ  = [(−80) 2 − (−80)(−100) + (−100) 2 ] = 91.65 MPa n = 220 91.65 = 2.40 Ans. shi20396_ch06.qxd 8/18/03 12:22 PM Page 151 152 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 6-5 (a) MSS: n = OB OA = 2.23 1.08 = 2.1 DE: n = OC OA = 2.56 1.08 = 2.4 (b) MSS: n = OE OD = 1.65 1.10 = 1.5 DE: n = OF OD = 1.8 1.1 = 1.6 (c) MSS: n = OH OG = 1.68 1.05 = 1.6 DE: n = OI OG = 1.85 1.05 = 1.8 (d) MSS: n = OK OJ = 1.38 1.05 = 1.3 DE: n = OL OJ = 1.62 1.05 = 1.5 O (a) (b) (d) (c) H I G J K L F E D A B C Scale 1" ϭ 200 MPa ␴ B ␴ A shi20396_ch06.qxd 8/18/03 12:22 PM Page 152 Chapter 6 153 6-6 S y = 220 MPa (a) MSS: n = OB OA = 2.82 1.3 = 2.2 DE: n = OC OA = 3.1 1.3 = 2.4 (b) MSS: n = OE OD = 2.2 1 = 2.2 DE: n = OF OD = 2.33 1 = 2.3 (c) MSS: n = OH OG = 1.55 1.3 = 1.2 DE: n = OI OG = 1.8 1.3 = 1.4 (d) MSS: n = OK OJ = 2.82 1.3 = 2.2 DE: n = OL OJ = 3.1 1.3 = 2.4 ␴ B ␴ A O (a) (b) (c) (d) H G J K L I F E D A B C 1" ϭ 100 MPa shi20396_ch06.qxd 8/18/03 12:22 PM Page 153 154 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 6-7 S ut = 30 kpsi, S uc = 100 kpsi; σ A = 20 kpsi, σ B = 6 kpsi (a) MNS: Eq. (6-30a) n = S ut σ x = 30 20 = 1.5 Ans. BCM: Eq. (6-31a) n = 30 20 = 1.5 Ans. M1M: Eq. (6-32a) n = 30 20 = 1.5 Ans. M2M: Eq. (6-33a) n = 30 20 = 1.5 Ans. (b) σ x = 12 kpsi,τ xy =−8 kpsi σ A , σ B = 12 2 ±   12 2  2 + (−8) 2 = 16, −4 kpsi MNS: Eq. (6-30a) n = 30 16 = 1.88 Ans. BCM: Eq. (6-31b) 1 n = 16 30 − (−4) 100 ⇒ n = 1.74 Ans. M1M: Eq. (6-32a) n = 30 16 = 1.88 Ans. M2M: Eq. (6-33a) n = 30 16 = 1.88 Ans. (c) σ x =−6 kpsi, σ y =−10 kpsi,τ xy =−5 kpsi σ A , σ B = −6 − 10 2 ±   −6 + 10 2  2 + (−5) 2 =−2.61, −13.39 kpsi MNS: Eq. (6-30b) n =− 100 −13.39 = 7.47 Ans. BCM: Eq. (6-31c) n =− 100 −13.39 = 7.47 Ans. M1M: Eq. (6-32c) n =− 100 −13.39 = 7.47 Ans. M2M: Eq. (6-33c) n =− 100 −13.39 = 7.47 Ans. (d) σ x =−12 kpsi,τ xy = 8 kpsi σ A , σ B =− 12 2 ±   − 12 2  2 + 8 2 = 4, −16 kpsi MNS: Eq. (6-30b) n = −100 −16 = 6.25 Ans. shi20396_ch06.qxd 8/18/03 12:22 PM Page 154 Chapter 6 155 BCM: Eq. (6-31b) 1 n = 4 30 − (−16) 100 ⇒ n = 3.41 Ans. M1M: Eq. (6-32b) 1 n = (100 −30)4 100(30) − −16 100 ⇒ n = 3.95 Ans. M2M: Eq. (6-33b) n 4 30 +  n(−16) + 30 30 − 100  2 = 1 Reduces to n 2 − 1.1979n − 15.625 = 0 n = 1.1979 +  1.1979 2 + 4(15.625) 2 = 4.60 Ans. (c) L (d) J (b) (a) I H G K F O C D E A B 1" ϭ 20 kpsi ␴ B ␴ A shi20396_ch06.qxd 8/18/03 12:22 PM Page 155 156 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 6-8 See Prob. 6-7 for plot. (a) For all methods: n = OB OA = 1.55 1.03 = 1.5 (b) BCM: n = OD OC = 1.4 0.8 = 1.75 All other methods: n = OE OC = 1.55 0.8 = 1.9 (c) For all methods: n = OL OK = 5.2 0.68 = 7.6 (d) MNS: n = OJ OF = 5.12 0.82 = 6.2 BCM: n = OG OF = 2.85 0.82 = 3.5 M1M: n = OH OF = 3.3 0.82 = 4.0 M2M: n = OI OF = 3.82 0.82 = 4.7 6-9 Given: S y = 42 kpsi, S ut = 66.2 kpsi, ε f = 0.90. Since ε f > 0.05, the material is ductile and thus we may follow convention by setting S yc = S yt . Use DE theory for analytical solution. For σ  , use Eq. (6-13) or (6-15) for plane stress and Eq. (6-12) or (6-14) for general 3-D. (a) σ  = [9 2 − 9(−5) + (−5) 2 ] 1/2 = 12.29 kpsi n = 42 12.29 = 3.42 Ans. (b) σ  = [12 2 + 3(3 2 )] 1/2 = 13.08 kpsi n = 42 13.08 = 3.21 Ans. (c) σ  = [(−4) 2 − (−4)(−9) + (−9) 2 + 3(5 2 )] 1/2 = 11.66 kpsi n = 42 11.66 = 3.60 Ans. (d) σ  = [11 2 − (11)(4) + 4 2 + 3(1 2 )] 1/2 = 9.798 n = 42 9.798 = 4.29 Ans. shi20396_ch06.qxd 8/18/03 12:22 PM Page 156 Chapter 6 157 For graphical solution, plot load lines on DE envelope as shown. (a) σ A = 9, σ B =−5 kpsi n = OB OA = 3.5 1 = 3.5 Ans. (b) σ A , σ B = 12 2 ±   12 2  2 + 3 2 = 12.7, −0.708 kpsi n = OD OC = 4.2 1.3 = 3.23 (c) σ A , σ B = −4 − 9 2 ±   4 − 9 2  2 + 5 2 =−0.910, −12.09 kpsi n = OF OE = 4.5 1.25 = 3.6 Ans. (d) σ A , σ B = 11 + 4 2 ±   11 − 4 2  2 + 1 2 = 11.14, 3.86 kpsi n = OH OG = 5.0 1.15 = 4.35 Ans. 6-10 This heat-treated steel exhibits S yt = 235 kpsi, S yc = 275 kpsi and ε f = 0.06. The steel is ductile (ε f > 0.05) but of unequal yield strengths. The Ductile Coulomb-Mohr hypothesis (DCM) of Fig. 6-27 applies — confine its use to first and fourth quadrants. (c) (a) (b) (d) E C G H D B A O F 1 cm ϭ 10 kpsi ␴ B ␴ A shi20396_ch06.qxd 8/18/03 12:22 PM Page 157 158 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (a) σ x = 90 kpsi, σ y =−50 kpsi, σ z = 0 І σ A = 90 kpsi and σ B =−50 kpsi. For the fourth quadrant, from Eq. (6-13) n = 1 (σ A /S yt ) − (σ B /S uc ) = 1 (90/235) − (−50/275) = 1.77 Ans. (b) σ x = 120 kpsi, τ xy =−30 kpsi ccw. σ A , σ B = 127.1, −7.08 kpsi. For the fourth quadrant n = 1 (127.1/235) − (−7.08/275) = 1.76 Ans. (c) σ x =−40 kpsi, σ y =−90 kpsi, τ xy = 50 kpsi . σ A , σ B =−9.10, −120.9 kpsi. Although no solution exists for the third quadrant, use n =− S yc σ y =− 275 −120.9 = 2.27 Ans. (d) σ x = 110 kpsi, σ y = 40 kpsi, τ xy = 10 kpsi cw. σ A , σ B = 111.4, 38.6 kpsi. For the first quadrant n = S yt σ A = 235 111.4 = 2.11 Ans. Graphical Solution: (a) n = OB OA = 1.82 1.02 = 1.78 (b) n = OD OC = 2.24 1.28 = 1.75 (c) n = OF OE = 2.75 1.24 = 2.22 (d) n = OH OG = 2.46 1.18 = 2.08 O (d) (b) (a) (c) E F B D G C A H 1 in ϭ 100 kpsi ␴ B ␴ A shi20396_ch06.qxd 8/18/03 12:22 PM Page 158 [...]... = 67 6 .6 tan 20 = 2 46. 3 lbf y ROy = 193.7 lbf O ROz = 233.5 lbf 2 46. 3 lbf A C B 20" 16" 10" x RBy = 158.1 lbf 281.9 lbf O 67 6 .6 lbf A B 20" 16" z 102 .6 lbf C 10" RBz = 807.5 lbf xz plane xy plane M A = 20 193.72 + 233.52 = 60 68 lbf · in M B = 10 2 46. 32 + 67 6 .62 = 7200 lbf · in (maximum) σx = 32(7200) 73 340 = 3 πd d3 16( 3383) 17 230 = 3 πd d3 Sy 2 2 1/2 σ = σx + 3τx y = n τx y = 73 340 d3 d = 1 .66 5 in... 0.011 61 ω2 = 160 7 rad/s So the inner radius governs and n = 13 000 rev/min 6- 18 Ans For a thin-walled pressure vessel, di = 3.5 − 2(0. 065 ) = 3.37 in σt = p(di + t) 2t σt = 500(3.37 + 0. 065 ) = 13 212 psi 2(0. 065 ) σl = 500(3.37) pdi = = 64 81 psi 4t 4(0. 065 ) σr = − pi = −500 psi shi203 96_ ch 06. qxd 8/18/03 12:22 PM Page 165 165 Chapter 6 These are all principal stresses, thus, 1 σ = √ {(13 212 − 64 81) 2 + [64 81... T1 = 310 .6 N, T2 = 0.15(310 .6) = 46. 6 N (T1 + T2 ) cos 45 = 252 .6 N 107.0 N y 163 .4 N 252 .6 N 300 O A 89.2 N 400 300 150 400 z C B 252 .6 N 150 320 N 174.4 N xz plane xy plane M A = 0.3 163 .42 + 1072 = 58.59 N · m (maximum) M B = 0.15 89.22 + 174.42 = 29.38 N · m 32(58.59) 5 96. 8 = 3 πd d3 16( 33) 168 .1 = = 3 πd d3 σx = τx y σ = σx + 3τx y 2 2 1/2 5 96. 8 d3 = d = 17.5(10−3 ) m = 17.5 mm, 6- 26 2 168 .1 +3... ]1/2 Eq (6- 13) = 11 320 psi Ans (b) For a solid inner tube, p= 30(1 06 )(0.0005) (1.52 − 12 )(12 ) = 4 167 psi Ans 1 2(12 )(1.52 ) (σt ) i = − p = −4 167 psi, (σr ) i = −4 167 psi σi = [(−4 167 ) 2 − (−4 167 )(−4 167 ) + (−4 167 ) 2 ]1/2 = 4 167 psi Ans (σt ) o = 4 167 1.52 + 12 1.52 − 12 = 10 830 psi, (σr ) o = −4 167 psi σo = [10 8302 − 10 830(−4 167 ) + (−4 167 ) 2 ]1/2 = 13 410 psi Ans 6- 33 Using Eq (4 -60 ) with diametral... 17.5 mm, 6- 26 2 168 .1 +3 d3 2 1/2 66 4.0 370(1 06 ) = = d3 3.0 so use 18 mm Ans From Prob 6- 25, τmax = 5 96. 8 2d 3 2 d = 17.7(10−3 ) m = 17.7 mm, σx 2 168 .1 + d3 1/2 2 + τx y = 2 2 1/2 = Sy 2n 342.5 370(1 06 ) = d3 2(3.0) so use 18 mm Ans shi203 96_ ch 06. qxd 8/18/03 12:22 PM Page 169 169 Chapter 6 6-27 For the loading scheme shown in Figure (c), Mmax F = 2 a b + 2 4 V 4.4 = (6 + 4.5) 2 M = 23.1 N · m y For... With σx = −1 36. 2 MPa From a Mohrs circle diagram, τmax = 1 36. 2/2 = 68 .1 MPa n= 6- 28 110 = 1 .62 MPa 68 .1 Ans Based on Figure (c) and using Eq (6- 15) 2 σ = σx 1/2 = (1 36. 22 ) 1/2 = 1 36. 2 MPa n= Sy 220 = 1 .62 Ans = σ 1 36. 2 shi203 96_ ch 06. qxd 170 8/18/03 12:22 PM Page 170 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Based on Figure (d) and using Eq (6- 15) and the... speed of 1 364 0 rev/min 6- 21 TC = ( 360 − 27)(3) = 1000 lbf · in , TB = (300 − 50)(4) = 1000 lbf · in y 223 lbf A 127 lbf B 8" C 8" 350 lbf xy plane 6" D shi203 96_ ch 06. qxd 166 8/27/03 4:38 PM Page 166 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design In x y plane, M B = 223(8) = 1784 lbf · in and MC = 127 (6) = 762 lbf · in 387 lbf 8" A 8" B 6" D C 1 06 lbf 281 lbf... 2 ¯2 ¯ ro − R 2 ¯2 = 18.70(1 06 ) δ 0. 562 52 + 0.37552 0. 562 52 − 0.37552 = 48. 76( 1 06 ) δ psi σot = 48. 76( 1 06 )(0.001) = 48. 76( 103 ) psi ¯ σσot = Cδ σot = 0.0707(48. 76) (103 ) = 34.45 psi ˆ ¯ І σot = N(48 760 , 3445) psi Ans 6- 42 From Prob 6- 41, at the fit surface σot = N(48.8, 3.45) kpsi The radial stress is the fit pressure which was found to be p = 18.70(1 06 ) δ p = 18.70(1 06 )(0.001) = 18.7(103 ) psi ¯... = 35 16 psi Ans 1 2(12 )(1.52 − 0.52 ) Inner member: (σt ) i = − p Eq (4-57) R 2 + ri2 12 + 0.52 = −35 16 2 1 − 0.52 R 2 − ri2 = −5 860 psi (σr ) i = − p = −35 16 psi 2 2 σi = σ A − σ A σ B + σ B Eq (6- 13) 1/2 = [(−5 860 ) 2 − (−5 860 )(−35 16) + (−35 16) 2 ]1/2 = 5110 psi Ans Outer member: (σt ) o = 35 16 Eq (4-58) 1.52 + 12 1.52 − 12 = 9142 psi (σr ) o = − p = −35 16 psi σo = [91422 − 9142(−35 16) + (−35 16) 2... kpsi For the 3rd quadrant, there is no solution but use Eq (6- 33c) Eq (6- 33c): C A OD 3.45 = = 2.70 Ans OC 1.28 Eq (6- 33a) (b) B O (b) n = Eq (6- 33a): D G OB 4 = = 4.0 Ans (a) n = OA 1 6- 13 (d) n=− 109 = 1. 36 Ans −80 ␴A shi203 96_ ch 06. qxd 8/18/03 12:22 PM Page 161 161 Chapter 6 (d) σ A , σ B = 15, −25 kpsi n(15) −25n + 30 + 30 30 − 109 Eq (6- 33b): 2 =1 n = 1.90 Ans OB 4.25 = = 1.50 OA 2.83 OD 4.24 = . 4, − 16 kpsi MNS: Eq. (6- 30b) n = −100 − 16 = 6. 25 Ans. shi203 96_ ch 06. qxd 8/18/03 12:22 PM Page 154 Chapter 6 155 BCM: Eq. (6- 31b) 1 n = 4 30 − (− 16) 100 ⇒. lbf 20" 16& quot; 10" 2 46. 3 lbf O xz plane x z ABC R Oz = 233.5 lbf R Bz = 807.5 lbf O 102 .6 lbf 20" 16& quot; 10" 67 6 .6 lbf shi203 96_ ch 06. qxd

Ngày đăng: 22/01/2014, 15:20

TỪ KHÓA LIÊN QUAN

w