Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
118,6 KB
Nội dung
Chapter 15
15-1 Given: Uncrowned, through-hardened 300 Brinell core and case, Grade 1,
N
C
= 10
9
rev of
pinion at
R = 0.999
,
N
P
= 20 teeth, N
G
= 60 teeth, Q
v
= 6, P
d
= 6 teeth/in,
shaft angle
90°,
n
p
= 900
rev/min,
J
P
= 0.249 and J
G
= 0.216
(Fig. 15-7),
F = 1.25 in, S
F
=
S
H
= 1, K
o
= 1
.
Mesh
d
P
= 20/6 = 3.333 in
d
G
= 60/6 = 10.000 in
Eq. (15-7):
v
t
= π(3.333)(900/12) = 785.3 ft/min
Eq. (15-6):
B = 0.25(12 − 6)
2/3
= 0.8255
A = 50 + 56(1 − 0.8255) = 59.77
Eq. (15-5):
K
v
=
59.77 +
√
785.3
59.77
0.8255
= 1.374
Eq. (15-8):
v
t,max
= [59.77 + (6 − 3)]
2
= 3940 ft/min
Since
785.3 < 3904, K
v
= 1.374
is valid. The size factor for bending is:
Eq. (15-10):
K
s
= 0.4867 + 0.2132/6 = 0.5222
For one gear straddle-mounted, the load-distribution factor is:
Eq. (15-11):
K
m
= 1.10 + 0.0036(1.25)
2
= 1.106
Eq. (15-15):
(K
L
)
P
= 1.6831(10
9
)
−0.0323
= 0.862
(K
L
)
G
= 1.6831(10
9
/3)
−0.0323
= 0.893
Eq. (15-14):
(C
L
)
P
= 3.4822(10
9
)
−0.0602
= 1
(C
L
)
G
= 3.4822(10
9
/3)
−0.0602
= 1.069
Eq. (15-19):
K
R
= 0.50 − 0.25 log(1 − 0.999) = 1.25
(or Table 15-3)
C
R
=
K
R
=
√
1.25 = 1.118
Bending
Fig. 15-13:
0.99
S
t
= s
at
= 44(300) + 2100 = 15 300 psi
Eq. (15-4):
(σ
all
)
P
= s
wt
=
s
at
K
L
S
F
K
T
K
R
=
15 300(0.862)
1(1)(1.25)
= 10 551 psi
Eq. (15-3):
W
t
P
=
(σ
all
)
P
FK
x
J
P
P
d
K
o
K
v
K
s
K
m
=
10 551(1.25)(1)(0.249)
6(1)(1.374)(0.5222)(1.106)
= 690 lbf
H
1
=
690(785.3)
33 000
= 16.4hp
Eq. (15-4):
(σ
all
)
G
=
15 300(0.893)
1(1)(1.25)
= 10 930 psi
shi20396_ch15.qxd 8/28/03 3:25 PM Page 390
Chapter 15 391
W
t
G
=
10 930(1.25)(1)(0.216)
6(1)(1.374)(0.5222)(1.106)
= 620 lbf
H
2
=
620(785.3)
33 000
= 14.8hp Ans.
The gear controls the bending rating.
15-2 Refer to Prob. 15-1 for the gearset specifications.
Wear
Fig. 15-12:
s
ac
= 341(300) + 23 620 = 125 920 psi
For the pinion,
C
H
= 1.
From Prob. 15-1,
C
R
= 1.118
. Thus, from Eq. (15-2):
(σ
c,all
)
P
=
s
ac
(C
L
)
P
C
H
S
H
K
T
C
R
(σ
c,all
)
P
=
125 920(1)(1)
1(1)(1.118)
= 112 630 psi
For the gear, from Eq. (15-16),
B
1
= 0.008 98(300/300) − 0.008 29 = 0.000 69
C
H
= 1 + 0.000 69(3 − 1) = 1.001 38
And Prob. 15-1,
(C
L
)
G
= 1.0685.
Equation (15-2) thus gives
(σ
c,all
)
G
=
s
ac
(C
L
)
G
C
H
S
H
K
T
C
R
(σ
c,all
)
G
=
125 920(1.0685)(1.001 38)
1(1)(1.118)
= 120 511 psi
For steel:
C
p
= 2290
psi
Eq. (15-9):
C
s
= 0.125(1.25) + 0.4375 = 0.593 75
Fig. 15-6:
I = 0.083
Eq. (15-12):
C
xc
= 2
Eq. (15-1):
W
t
P
=
(σ
c,all
)
P
C
p
2
Fd
P
I
K
o
K
v
K
m
C
s
C
xc
=
112 630
2290
2
1.25(3.333)(0.083)
1(1.374)(1.106)(0.5937)(2)
= 464 lbf
H
3
=
464(785.3)
33 000
= 11.0hp
W
t
G
=
120 511
2290
2
1.25(3.333)(0.083)
1(1.374)(1.106)(0.593 75)(2)
= 531 lbf
H
4
=
531(785.3)
33 000
= 12.6hp
shi20396_ch15.qxd 8/28/03 3:25 PM Page 391
392 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
The pinion controls wear:
H = 11.0hp Ans.
The power rating of the mesh, considering the power ratings found in Prob. 15-1, is
H = min(16.4, 14.8, 11.0, 12.6) = 11.0hp Ans.
15-3 AGMA 2003-B97 does not fully address cast iron gears, however, approximate compar-
isons can be useful. This problem is similar to Prob. 15-1, but not identical. We will orga-
nize the method. A follow-up could consist of completing Probs. 15-1 and 15-2 with
identical pinions, and cast iron gears.
Given: Uncrowned, straight teeth,
P
d
= 6 teeth/in, N
P
= 30 teeth, N
G
= 60 teeth
, ASTM
30 cast iron, material Grade 1, shaft angle 90°,
F = 1.25
,
n
P
= 900 rev/min
,
φ
n
= 20
◦
,
one gear straddle-mounted,
K
o
= 1
,
J
P
= 0.268
,
J
G
= 0.228
,
S
F
= 2
,
S
H
=
√
2.
Mesh
d
P
= 30/6 = 5.000 in
d
G
= 60/6 = 10.000 in
v
t
= π(5)(900/12) = 1178 ft/min
Set
N
L
= 10
7
cycles for the pinion. For
R = 0.99
,
Table 15-7:
s
at
= 4500 psi
Table 15-5:
s
ac
= 50 000 psi
Eq. (15-4):
s
wt
=
s
at
K
L
S
F
K
T
K
R
=
4500(1)
2(1)(1)
= 2250 psi
The velocity factor
K
v
represents stress augmentation due to mislocation of tooth profiles
along the pitch surface and the resulting “falling” of teeth into engagement. Equation (5-67)
shows that the induced bending moment in a cantilever (tooth) varies directly with
√
E
of the
tooth material. If only the material varies (cast iron vs. steel) in the same geometry, I is the
same. From the Lewis equation of Section 14-1,
σ =
M
I /c
=
K
v
W
t
P
FY
We expect the ratio
σ
CI
/σ
steel
to be
σ
CI
σ
steel
=
(K
v
)
CI
(K
v
)
steel
=
E
CI
E
steel
In the case of ASTM class 30, from Table A-24(a)
(E
CI
)
av
= (13 + 16.2)/2 = 14.7 kpsi
Then
(K
v
)
CI
=
14.7
30
(K
v
)
steel
= 0.7(K
v
)
steel
shi20396_ch15.qxd 8/28/03 3:25 PM Page 392
Chapter 15 393
Our modeling is rough, but it convinces us that
(K
v
)
CI
< (K
v
)
steel
,
but we are not sure of
the value of
(K
v
)
CI
.
We will use
K
v
for steel as a basis for a conservative rating.
Eq. (15-6):
B = 0.25(12 − 6)
2/3
= 0.8255
A = 50 + 56(1 − 0.8255) = 59.77
Eq. (15-5):
K
v
=
59.77 +
√
1178
59.77
0.8255
= 1.454
Pinion bending
(σ
all
)
P
= s
wt
= 2250 psi
From Prob. 15-1,
K
x
= 1, K
m
= 1.106
,
K
s
= 0.5222
Eq. (15-3):
W
t
P
=
(σ
all
)
P
FK
x
J
P
P
d
K
o
K
v
K
s
K
m
=
2250(1.25)(1)(0.268)
6(1)(1.454)(0.5222)(1.106)
= 149.6 lbf
H
1
=
149.6(1178)
33 000
= 5.34 hp
Gear bending
W
t
G
= W
t
P
J
G
J
P
= 149.6
0.228
0.268
= 127.3 lbf
H
2
=
127.3(1178)
33 000
= 4.54 hp
The gear controls in bending fatigue.
H = 4.54 hp Ans.
15-4 Continuing Prob. 15-3,
Table 15-5:
s
ac
= 50 000 psi
s
wt
= σ
c,all
=
50 000
√
2
= 35 355 psi
Eq. (15-1):
W
t
=
σ
c,all
C
p
2
Fd
P
I
K
o
K
v
K
m
C
s
C
xc
Fig. 15-6:
I = 0.86
From Probs. 15-1 and 15-2:
C
s
= 0.593 75, K
s
= 0.5222
,
K
m
= 1.106
,
C
xc
= 2
From Table 14-8:
C
p
= 1960
psi
Thus,
W
t
=
35 355
1960
2
1.25(5.000)(0.086)
1(1.454)(1.106)(0.59375)(2)
= 91.6 lbf
H
3
= H
4
=
91.6(1178)
33 000
= 3.27 hp
shi20396_ch15.qxd 8/28/03 3:25 PM Page 393
394 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Rating Based on results of Probs. 15-3 and 15-4,
H = min(5.34, 4.54, 3.27, 3.27) = 3.27 hp Ans.
The mesh is weakest in wear fatigue.
15-5 Uncrowned, through-hardened to 180 Brinell (core and case), Grade 1,
10
9
rev of pinion at
R = 0.999, N
p
= z
1
= 22
teeth,
N
a
= z
2
= 24
teeth,
Q
v
= 5, m
et
= 4mm,
shaft angle
90°, n
1
= 1800
rev/min,
S
F
= 1, S
H
=
S
F
=
√
1
,
J
P
= Y
J 1
= 0.23, J
G
= Y
J 2
=
0.205,
F = b = 25 mm, K
o
= K
A
= K
T
= K
θ
= 1 and C
p
= 190
√
MPa
.
Mesh
d
P
= d
e1
= mz
1
= 4(22) = 88
mm
d
G
= m
et
z
2
= 4(24) = 96
mm
Eq. (15-7):
v
et
= 5.236(10
−5
)(88)(1800) = 8.29
m/s
Eq. (15-6):
B = 0.25(12 − 5)
2/3
= 0.9148
A = 50 + 56(1 − 0.9148) = 54.77
Eq. (15-5):
K
v
=
54.77 +
√
200(8.29)
54.77
0.9148
= 1.663
Eq. (15-10):
K
s
= Y
x
= 0.4867 + 0.008 339(4) = 0.520
Eq. (15-11) with
K
mb
= 1
(both straddle-mounted),
K
m
= K
Hβ
= 1 + 5.6(10
−6
)(25
2
) = 1.0035
From Fig. 15-8,
(C
L
)
P
= (Z
NT
)
P
= 3.4822(10
9
)
−0.0602
= 1.00
(C
L
)
G
= (Z
NT
)
G
= 3.4822[10
9
(22/24)]
−0.0602
= 1.0054
Eq. (15-12):
C
xc
= Z
xc
= 2
(uncrowned)
Eq. (15-19):
K
R
= Y
Z
= 0.50 − 0.25 log (1 − 0.999) = 1.25
C
R
= Z
Z
=
Y
Z
=
√
1.25 = 1.118
From Fig. 15-10,
C
H
= Z
w
= 1
Eq. (15-9):
Z
x
= 0.004 92(25) + 0.4375 = 0.560
Wear of Pinion
Fig. 15-12:
σ
H lim
= 2.35H
B
+ 162.89
= 2.35(180) + 162.89 = 585.9MPa
Fig. 15-6:
I = Z
I
= 0.066
Eq. (15-2):
(σ
H
)
P
=
(σ
H lim
)
P
(Z
NT
)
P
Z
W
S
H
K
θ
Z
Z
=
585.9(1)(1)
√
1(1)(1.118)
= 524.1MPa
W
t
P
=
σ
H
C
p
2
bd
e1
Z
I
1000K
A
K
v
K
Hβ
Z
x
Z
xc
shi20396_ch15.qxd 8/28/03 3:25 PM Page 394
Chapter 15 395
The constant 1000 expresses
W
t
in kN
W
t
P
=
524.1
190
2
25(88)(0.066)
1000(1)(1.663)(1.0035)(0.56)(2)
= 0.591 kN
H
3
=
W
t
rn
1
9.55
=
0.591(88/2)(1800)
9.55(10)
3
= 4.90 kW
Wear of Gear
σ
H lim
= 585.9
MPa
(σ
H
)
G
=
585.9(1.0054)
√
1(1)(1.118)
= 526.9
MPa
W
t
G
= W
t
P
(σ
H
)
G
(σ
H
)
P
= 0.591
526.9
524.1
= 0.594
kN
H
4
=
W
t
rn
9.55
=
0.594(88/2)(1800)
9.55(10
3
)
= 4.93 kW
Thus in wear, the pinion controls the power rating;
H = 4.90
kW Ans.
We will rate the gear set after solving Prob. 15-6.
15-6 Refer to Prob. 15-5 for terms not defined below.
Bending of Pinion
(K
L
)
P
= (Y
NT
)
P
= 1.6831(10
9
)
−0.0323
= 0.862
(K
L
)
G
= (Y
NT
)
G
= 1.6831[10
9
(22/24)]
−0.0323
= 0.864
Fig. 15-13:
σ
F lim
= 0.30H
B
+ 14.48
= 0.30(180) + 14.48 = 68.5
MPa
Eq. (15-13):
K
x
= Y
β
= 1
From Prob. 15-5:
Y
Z
= 1.25, v
et
= 8.29
m/s
K
v
= 1.663, K
θ
= 1, Y
x
= 0.56, K
Hβ
= 1.0035
(σ
F
)
P
=
σ
F lim
Y
NT
S
F
K
θ
Y
Z
=
68.5(0.862)
1(1)(1.25)
= 47.2MPa
W
t
p
=
(σ
F
)
P
bm
et
Y
β
Y
J 1
1000K
A
K
v
Y
x
K
Hβ
=
47.2(25)(4)(1)(0.23)
1000(1)(1.663)(0.56)(1.0035)
= 1.16 kN
H
1
=
1.16(88/2)(1800)
9.55(10
3
)
= 9.62
kW
Bending of Gear
σ
F lim
= 68.5
MPa
(σ
F
)
G
=
68.5(0.864)
1(1)(1.25)
= 47.3MPa
W
t
G
=
47.3(25)(4)(1)(0.205)
1000(1)(1.663)(0.56)(1.0035)
= 1.04 kN
H
2
=
1.04(88/2)(1800)
9.55(10
3
)
= 8.62 kW
shi20396_ch15.qxd 8/28/03 3:25 PM Page 395
396 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
Rating of mesh is
H
rating
= min(9.62, 8.62, 4.90, 4.93) = 4.90 kW Ans.
with pinion wear controlling.
15-7
(a)
(S
F
)
P
=
σ
all
σ
P
= (S
F
)
G
=
σ
all
σ
G
(s
at
K
L
/K
T
K
R
)
P
(W
t
P
d
K
o
K
v
K
s
K
m
/FK
x
J )
P
=
(s
at
K
L
/K
T
K
R
)
G
(W
t
P
d
K
o
K
v
K
s
K
m
/FK
x
J )
G
All terms cancel except for
s
at
, K
L
, and
J,
(s
at
)
P
(K
L
)
P
J
P
= (s
at
)
G
(K
L
)
G
J
G
From which
(s
at
)
G
=
(s
at
)
P
(K
L
)
P
J
P
(K
L
)
G
J
G
= (s
at
)
P
J
P
J
G
m
β
G
Where
β =−0.0178
or
β =−0.0323
as appropriate. This equation is the same as
Eq. (14-44). Ans.
(b) In bending
W
t
=
σ
all
S
F
FK
x
J
P
d
K
o
K
v
K
s
K
m
11
=
s
at
S
F
K
L
K
T
K
R
FK
x
J
P
d
K
o
K
v
K
s
K
m
11
(1)
In wear
s
ac
C
L
C
U
S
H
K
T
C
R
22
= C
p
W
t
K
o
K
v
K
m
C
s
C
xc
Fd
P
I
1/2
22
Squaring and solving for
W
t
gives
W
t
=
s
2
ac
C
2
L
C
2
H
S
2
H
K
2
T
C
2
R
C
2
P
22
Fd
P
I
K
o
K
v
K
m
C
s
C
xc
22
(2)
Equating the right-hand sides of Eqs. (1) and (2) and canceling terms, and recognizing
that
C
R
=
K
R
and
P
d
d
P
= N
P
,
we obtain
(
s
ac
)
22
=
C
p
(C
L
)
22
S
2
H
S
F
(s
at
)
11
(K
L
)
11
K
x
J
11
K
T
C
s
C
xc
C
2
H
N
P
K
s
I
For equal
W
t
in bending and wear
S
2
H
S
F
=
√
S
F
2
S
F
= 1
So we get
(s
ac
)
G
=
C
p
(C
L
)
G
C
H
(s
at
)
P
(K
L
)
P
J
P
K
x
K
T
C
s
C
xc
N
P
IK
s
Ans.
shi20396_ch15.qxd 8/28/03 3:25 PM Page 396
Chapter 15 397
(c)
(S
H
)
P
= (S
H
)
G
=
σ
c,all
σ
c
P
=
σ
c,all
σ
c
G
Substituting in the right-hand equality gives
[s
ac
C
L
/(C
R
K
T
)]
P
C
p
W
t
K
o
K
v
K
m
C
s
C
xc
/(Fd
P
I )
P
=
[s
ac
C
L
C
H
/(C
R
K
T
)]
G
C
p
W
t
K
o
K
v
K
m
C
s
C
xc
/(Fd
P
I )
G
Denominators cancel leaving
(s
ac
)
P
(C
L
)
P
= (s
ac
)
G
(C
L
)
G
C
H
Solving for
(s
ac
)
P
gives, with
C
H
.
= 1
(s
ac
)
P
= (s
ac
)
G
(C
L
)
G
(C
L
)
P
C
H
.
= (s
ac
)
G
1
m
G
−0.0602
(1)
(s
ac
)
P
.
= (s
ac
)
G
m
0.0602
G
Ans.
This equation is the transpose of Eq. (14-45).
15-8
Core Case
Pinion
( H
B
)
11
( H
B
)
12
Gear
( H
B
)
21
( H
B
)
22
Given
( H
B
)
11
= 300
Brinell
Eq. (15-23):
(s
at
)
P
= 44(300) + 2100 = 15 300 psi
(s
at
)
G
(s
at
)
P
J
P
J
G
m
−0.0323
G
= 15 300
0.249
0.216
3
−0.0323
= 17 023 psi
( H
B
)
21
=
17 023 − 2100
44
= 339 Brinell
Ans.
(s
ac
)
G
=
2290
1.0685(1)
15 300(0.862)(0.249)(1)(0.593 25)(2)
20(0.086)(0.5222)
= 141 160 psi
( H
B
)
22
=
141 160 − 23 600
341
= 345 Brinell
Ans.
(s
ac
)
P
= (s
ac
)
G
m
0.0602
G
1
C
H
.
= 141 160(3
0.0602
)
1
1
= 150 811 psi
( H
B
)
12
=
150 811 − 23 600
341
= 373 Brinell
Ans.
Care Case
Pinion 300 373 Ans.
Gear 399 345
shi20396_ch15.qxd 8/28/03 3:25 PM Page 397
398 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
15-9 Pinion core
(s
at
)
P
= 44(300) + 2100 = 15 300 psi
(σ
all
)
P
=
15 300(0.862)
1(1)(1.25)
= 10 551 psi
W
t
=
10 551(1.25)(0.249)
6(1)(1.374)(0.5222)(1.106)
= 689.7 lbf
Gear core
(s
at
)
G
= 44(352) + 2100 = 17 588 psi
(σ
all
)
G
=
17 588(0.893)
1(1)(1.25)
= 12 565 psi
W
t
=
12 565(1.25)(0.216)
6(1)(1.374)(0.5222)(1.106)
= 712.5 lbf
Pinion case
(s
ac
)
P
= 341(372) + 23 620 = 150 472 psi
(σ
c,all
)
P
=
150 472(1)
1(1)(1.118)
= 134 590 psi
W
t
=
134 590
2290
2
1.25(3.333)(0.086)
1(1.374)(1.106)(0.593 75)(2)
= 685.8 lbf
Gear case
(s
ac
)
G
= 341(344) + 23 620 = 140 924 psi
(σ
c,all
)
G
=
140 924(1.0685)(1)
1(1)(1.118)
= 134 685
psi
W
t
=
134 685
2290
2
1.25(3.333)(0.086)
1(1.374)(1.106)(0.593 75)(2)
= 686.8 lbf
The rating load would be
W
t
rated
= min(689.7, 712.5, 685.8, 686.8) = 685.8
lbf
which is slightly less than intended.
Pinion core
(s
at
)
P
= 15 300 psi
(as before)
(σ
all
)
P
= 10 551
(as before)
W
t
= 689.7
(as before)
Gear core
(s
at
)
G
= 44(339) + 2100 = 17 016 psi
(σ
all
)
G
=
17 016(0.893)
1(1)(1.25)
= 12 156 psi
W
t
=
12 156(1.25)(0.216)
6(1)(1.374)(0.5222)(1.106)
= 689.3 lbf
shi20396_ch15.qxd 8/28/03 3:25 PM Page 398
Chapter 15 399
Pinion case
(s
ac
)
P
= 341(373) + 23 620 = 150 813 psi
(σ
c,all
)
P
=
150 813(1)
1(1)(1.118)
= 134 895 psi
W
t
=
134 895
2290
2
1.25(3.333)(0.086)
1(1.374)(1.106)(0.593 75)(2)
= 689.0 lbf
Gear case
(s
ac
)
G
= 341(345) + 23 620 = 141 265 psi
(σ
c,all
)
G
=
141 265(1.0685)(1)
1(1)(1.118)
= 135 010 psi
W
t
=
135 010
2290
2
1.25(3.333)(0.086)
1(1.1374)(1.106)(0.593 75)(2)
= 690.1 lbf
The equations developed within Prob. 15-7 are effective. In bevel gears, the gear tooth
is weaker than the pinion so
(C
H
)
G
= 1.
(See p. 784.) Thus the approximations in
Prob. 15-7 with
C
H
= 1
are really still exact.
15-10 The catalog rating is 5.2 hp at 1200 rev/min for a straight bevel gearset. Also given:
N
P
= 20 teeth
,
N
G
= 40 teeth
,
φ
n
= 20
◦
,
F = 0.71 in
,
J
P
= 0.241,
J
G
= 0.201
,
P
d
= 10 teeth/in,
through-hardened to 300 Brinell-General Industrial Service, and
Q
v
= 5
uncrowned.
Mesh
d
P
= 20/10 = 2.000 in, d
G
= 40/10 = 4.000 in
v
t
=
πd
P
n
P
12
=
π(2)(1200)
12
= 628.3
ft/min
K
o
= 1, S
F
= 1, S
H
= 1
Eq. (15-6):
B = 0.25(12 − 5)
2/3
= 0.9148
A = 50 + 56(1 − 0.9148) = 54.77
Eq. (15-5):
K
v
=
54.77 +
√
628.3
54.77
0.9148
= 1.412
Eq. (15-10):
K
s
= 0.4867 + 0.2132/10 = 0.508
K
mb
= 1.25
Eq. (15-11):
K
m
= 1.25 + 0.0036(0.71)
2
= 1.252
Eq. (15-15):
(K
L
)
P
= 1.6831(10
9
)
−0.0323
= 0.862
(K
L
)
G
= 1.6831(10
9
/2)
−0.0323
= 0.881
Eq. (15-14):
(C
L
)
P
= 3.4822(10
9
)
−0.0602
= 1.000
(C
L
)
G
= 3.4822(10
9
/2)
−0.0602
= 1.043
shi20396_ch15.qxd 8/28/03 3:25 PM Page 399
[...].. .shi20396_ ch15.qxd 400 8/28/03 3:25 PM Page 400 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Analyze for 109 pinion cycles at 0.999 reliability Eq (15- 19): Bending Pinion: Eq (15- 23): K R = 0.50 − 0.25 log(1 − 0.999) = 1.25 √ C R = K R = 1.25 = 1.118 (sat ) P = 44(300) + 2100 = 15 300 psi Eq (15- 4): (σall ) P = Eq (15- 3): Wt = = H1 = 15 300(0.862)... = 8.5 in Eq (15- 39): a = px /π = 0.3927/π = 0.125 in Eq (15- 40): h = 0.3683 px = 0.1446 in Eq (15- 41): h t = 0.6866 px = 0.2696 in Eq (15- 42): do = 1.5 + 2(0.125) = 1.75 in Eq (15- 43): dr = 3 − 2(0.1446) = 2.711 in Eq (15- 44): Dt = 7 + 2(0.125) = 7.25 in Eq (15- 45): Dr = 7 − 2(0.1446) = 6.711 in c = 0.1446 − 0.125 = 0.0196 in Eq (15- 46): Eq (15- 47): ( FW ) max = 2 7.25 2 2 7 − 0.125 2 − 2 = 2.646 in... 56.45(0.7563) t t Eq (15- 57): WW = WG = 966 cos φn sin λ + f cos λ cos φn cos λ − f sin λ cos 20° sin 4.764° + 0.025 cos 4.764° cos 20° cos 4.764° − 0.025 sin 4.764° = 106.4 lbf Ans shi20396_ ch15.qxd 8/28/03 3:25 PM Page 405 Chapter 15 Cs = 1190 − 477 log 7.0 = 787 (c) Eq (15- 33): Eq (15- 36): Cm = 0.0107 −562 + 56(56) + 5145 = 0.767 Eq (15- 37): Cv = 0.659 exp[−0.0011(679.8)] = 0.312 Eq (15- 38): (W t ) all... 0.948 1.795 1.979 10 .156 177 5.25 24.9 5103 16.71 38.2 36.2 1.97 3 30 80 1.75 3.60 2.40 2000 15- 19 563 2120 1038 0.0183 0.951 1.571 1.732 11.6 171 6.0 24.98 4158 19.099 38.0 36.1 1.85 3 30 50 1.75 4.10 2.25 2000 15- 20 492 2524 1284 0.034A 0.913A 1.795 1.979 10 .156 179.6 5.25 24.9 5301 16.7 1.75 3.60 2.4 2500 FAN 41.2 37.7 3.59 3 30 115 15-21 492 2524 1284 0.034A 0.913A 1.795 1.979 10 .156 179.6 5.25 24.9... 1.795 1.979 10 .156 177 5.25 24.9 5103 16.71 HW HG Hf NW NG KW Cs Cm Cv VG t WG t WW f e ( Pt ) G Pn C-to-C ts L λ σG dG 1.75 3.60 1.68 2000 1.75 3.60 2.40 2000 15- 16 px dW FG A 15- 15 1000 0.759 0.236 492 2430 1189 0.0193 0.948 1.795 1.979 10 .156 177 5.25 24.9 8565 16.71 492 2430 1189 0.0193 0.948 1.795 1.979 10 .156 177 5.25 24.9 7247 16.71 38.2 36.2 1.97 3 30 125 1.75 3.60 1.69 2000 15- 18 492 2430... 179.6 5.25 24.9 5301 16.71 1.75 3.60 2.4 2600 FAN 41.2 37.7 3.59 3 30 185 15- 22 3:25 PM 38.2 36.2 1.97 3 30 1.75 3.60 1.43 2000 15- 17 8/28/03 #1 #2 #3 #4 Parameters Selected 15- 15 to 15- 22 Problem statement values of 25 hp, 1125 rev/min, m G = 10, K a = 1.25, n d = 1.1, φn = 20°, ta = 70°F are not referenced in the table shi20396_ ch15.qxd Page 406 ... shi20396_ ch15.qxd Page 403 403 shi20396_ ch15.qxd 404 15- 14 8/28/03 3:25 PM Page 404 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design N W = 1, NG = 56, Pt = 8 teeth/in, d P = 1.5 in, Ho = 1hp, φn = 20◦ , ta = 70◦ F, K a = 1.25, n d = 1, Fe = 2 in, A = 850 in2 m G = NG /N W = 56, (a) dG = NG /Pt = 56/8 = 7.0 in px = π/8 = 0.3927 in, C = 1.5 + 7 = 8.5 in Eq (15- 39):... 000 Gear: (sat ) G = 15 300 psi 15 300(0.881) = 10 783 psi 1(1)(1.25) Eq (15- 4): (σall ) G = Eq (15- 3): Wt = 10 783(0.71)(1)(0.201) = 171.4 lbf 10(1)(1.412)(0.508)(1.252) H2 = 171.4(628.3) = 3.3 hp 33 000 Wear Pinion: (C H ) G = 1, I = 0.078, C p = 2290 psi, C xc = 2 Cs = 0.125(0.71) + 0.4375 = 0.526 25 Eq (15- 22): (sac ) P = 341(300) + 23 620 = 125 920 psi (σc, all ) P = Eq (15- 1): 125 920(1)(1) =... acceptable 1.65 (d) Eq (15- 52): Amin = 43.2(8.5) 1.7 = 1642 in2 < 1700 in2 Eq (15- 49): Hloss = 33 000(1 − 0.7563)(2.18) = 17 530 ft · lbf/min Assuming a fan exists on the worm shaft, Eq (15- 50): Eq (15- 51): hC R = ¯ 1725 + 0.13 = 0.568 ft · lbf/(min · in2 · ◦ F) 3939 ts = 70 + 17 530 = 88.2◦ F Ans 0.568(1700) 405 406 38.2 36.2 1.47 3 30 854 0.759 0.236 492 2430 1189 0.0193 0.948 1.795 1.979 10 .156 177 5.25 24.9... 0.71(2.000)(0.078) 1(1.412)(1.252)(0.526 25)(2) = 144.0 lbf H3 = 144(628.3) = 2.7 hp 33 000 shi20396_ ch15.qxd 8/28/03 3:25 PM Page 401 Chapter 15 401 Gear: (sac ) G = 125 920 psi 125 920(1.043)(1) = 117 473 psi 1(1)(1.118) (σc, all ) = 117 473 2290 Wt = 2 0.71(2.000)(0.078) = 156 .6 lbf 1(1.412)(1.252)(0.526 25)(2) 156 .6(628.3) = 3.0 hp 33 000 H4 = Rating: H = min(3.8, 3.3, 2.7, 3.0) = 2.7 hp Pinion wear . 70°F
are not referenced in the table.
Parameters
Selected 15- 15 15- 16 15- 17 15- 18 15- 19 15- 20 15- 21 15- 22
#1
p
x
1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75
#2
d
W
3.60. 1.979 1.979 1.979 1.979 1.732 1.979 1.979
C-to-C 10 .156 10 .156 10 .156 10 .156 10 .156 11.6 10 .156 10 .156
t
s
177 177 177 177 177 171 179.6 179.6
L 5.25 5.25