1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu shi20396 chương 7 pdf

31 332 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 207,4 KB

Nội dung

Chapter 7 7-1 H B = 490 Eq. (3-17): S ut = 0.495(490) = 242.6 kpsi > 212 kpsi Eq. (7-8): S  e = 107 kpsi Table 7-4: a = 1.34 , b =−0.085 Eq. (7-18): k a = 1.34(242.6) −0.085 = 0.840 Eq. (7-19): k b =  3/16 0.3  −0.107 = 1.05 Eq. (7-17): S e = k a k b S  e = 0.840(1.05)(107) = 94.4 kpsi Ans. 7-2 (a) S ut = 68 kpsi, S  e = 0.495(68) = 33.7 kpsi Ans. (b) S ut = 112 kpsi, S  e = 0.495(112) = 55.4 kpsi Ans. (c) 2024T3 has no endurance limit Ans. (d) Eq. (3-17): S  e = 107 kpsi Ans. 7-3 σ  F = σ 0 ε m = 115(0.90) 0.22 = 112.4 kpsi Eq. (7-8): S  e = 0.504(66.2) = 33.4 kpsi Eq. (7-11): b =− log(112.4/33.4) log(2 · 10 6 ) =−0.083 64 Eq. (7-9): f = 112.4 66.2 (2 · 10 3 ) −0.083 64 = 0.8991 Eq. (7-13): a = [0.8991(66.2)] 2 33.4 = 106.1 kpsi Eq. (7-12): S f = aN b = 106.1(12 500) −0.083 64 = 48.2 kpsi Ans. Eq. (7-15): N =  σ a a  1/b =  36 106.1  −1/0.083 64 = 409 530 cycles Ans. 7-4 From S f = aN b log S f = log a + b log N Substituting (1, S ut ) log S ut = log a + b log (1) From which a = S ut shi20396_ch07.qxd 8/18/03 12:35 PM Page 180 Chapter 7 181 Substituting (10 3 , fS ut ) and a = S ut log fS ut = log S ut + b log 10 3 From which b = 1 3 log f ∴ S f = S ut N (log f )/3 1 ≤ N ≤ 10 3 For 500 cycles as in Prob. 7-3 500S f ≥ 66.2(500) (log 0.8991)/3 = 60.2 kpsi Ans. 7-5 Read from graph: (10 3 , 90) and (10 6 , 50). From S = aN b log S 1 = log a + b log N 1 log S 2 = log a + b log N 2 From which log a = log S 1 log N 2 − log S 2 log N 1 log N 2 /N 1 = log 90 log 10 6 − log 50 log 10 3 log 10 6 /10 3 = 2.2095 a = 10 log a = 10 2.2095 = 162.0 b = log 50/90 3 =−0.085 09 (S f ) ax = 162 −0.085 09 10 3 ≤ N ≤ 10 6 in kpsi Ans. Check: 10 3 (S f ) ax = 162(10 3 ) −0.085 09 = 90 kpsi 10 6 (S f ) ax = 162(10 6 ) −0.085 09 = 50 kpsi The end points agree. 7-6 Eq. (7-8): S  e = 0.504(710) = 357.8MPa Table 7-4: a = 4.51, b =−0.265 Eq. (7-18): k a = 4.51(710) −0.265 = 0.792 Eq. (7-19): k b =  d 7.62  −0.107 =  32 7.62  −0.107 = 0.858 Eq. (7-17): S e = k a k b S  e = 0.792(0.858)(357.8) = 243 MPa Ans. shi20396_ch07.qxd 8/18/03 12:35 PM Page 181 182 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design 7-7 For AISI 4340 as forged steel, Eq. (7-8): S e = 107 kpsi Table 7-4: a = 39.9, b =−0.995 Eq. (7-18): k a = 39.9(260) −0.995 = 0.158 Eq. (7-19): k b =  0.75 0.30  −0.107 = 0.907 Each of the other Marin factors is unity. S e = 0.158(0.907)(107) = 15.3 kpsi For AISI 1040: S  e = 0.504(113) = 57.0 kpsi k a = 39.9(113) −0.995 = 0.362 k b = 0.907 (same as 4340) Each of the other Marin factors is unity. S e = 0.362(0.907)(57.2) = 18.7 kpsi Not only is AISI 1040 steel a contender, it has a superior endurance strength. Can you see why? 7-8 (a) For an AISI 1018 CD-machined steel, the strengths are Eq. (3-17): S ut = 440 MPa ⇒ H B = 440 3.41 = 129 S y = 370 MPa S su = 0.67(440) = 295 MPa Fig. A-15-15: r d = 2.5 20 = 0.125, D d = 25 20 = 1.25, K ts = 1.4 Fig. 7-21: q s = 0.94 Eq. (7-31): K fs = 1 + 0.94(1.4 − 1) = 1.376 For a purely reversing torque of 200 N · m τ max = K fs 16T πd 3 = 1.376(16)(200 ×10 3 N · mm) π(20 mm) 3 τ max = 175.2MPa= τ a S  e = 0.504(440) = 222 MPa The Marin factors are k a = 4.51(440) −0.265 = 0.899 k b =  20 7.62  −0.107 = 0.902 k c = 0.59, k d = 1, k e = 1 Eq. (7-17): S e = 0.899(0.902)(0.59)(222) = 106.2MPa 2.5 mm 20 mm 25 mm shi20396_ch07.qxd 8/18/03 12:35 PM Page 182 Chapter 7 183 Eq. (7-13): a = [0.9(295)] 2 106.2 = 664 Eq. (7-14): b =− 1 3 log 0.9(295) 106.2 =−0.132 65 Eq. (7-15): N =  175.2 664  1/−0.132 65 N = 23 000 cycles Ans. (b) For an operating temperature of 450°C, the temperature modification factor, from Table 7-6, is k d = 0.843 Thus S e = 0.899(0.902)(0.59)(0.843)(222) = 89.5MPa a = [0.9(295)] 2 89.5 = 788 b =− 1 3 log 0.9(295) 89.5 =−0.157 41 N =  175.2 788  1/−0.157 41 N = 14 100 cycles Ans. 7-9 f = 0.9 n = 1.5 N = 10 4 cycles For AISI 1045 HR steel, S ut = 570 MPa and S y = 310 MPa S  e = 0.504(570 MPa) = 287.3MPa Find an initial guess based on yielding: σ a = σ max = Mc I = M(b/2) b(b 3 )/12 = 6M b 3 M max = (1 kN)(800 mm) = 800 N · m σ max = S y n ⇒ 6(800 × 10 3 N ·mm) b 3 = 310 N/mm 2 1.5 b = 28.5mm Eq. (7-24): d e = 0.808b Eq. (7-19): k b =  0.808b 7.62  −0.107 = 1.2714b −0.107 k b = 0.888 F ϭ Ϯ1 kN b b 800 mm shi20396_ch07.qxd 8/18/03 12:35 PM Page 183 184 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design The remaining Marin factors are k a = 57.7(570) −0.718 = 0.606 k c = k d = k e = k f = 1 Eq. (7-17): S e = 0.606(0.888)(287.3MPa)= 154.6MPa Eq. (7-13): a = [0.9(570)] 2 154.6 = 1702 Eq. (7-14): b =− 1 3 log 0.9(570) 154.6 =−0.173 64 Eq. (7-12): S f = aN b = 1702[(10 4 ) −0.173 64 ] = 343.9MPa n = S f σ a or σ a = S f n 6(800 × 10 3 ) b 3 = 343.9 1.5 ⇒ b = 27.6mm Check values for k b , S e , etc. k b = 1.2714(27.6) −0.107 = 0.891 S e = 0.606(0.891)(287.3) = 155.1MPa a = [0.9(570)] 2 155.1 = 1697 b =− 1 3 log 0.9(570) 155.1 =−0.173 17 S f = 1697[(10 4 ) −0.173 17 ] = 344.4MPa 6(800 × 10 3 ) b 3 = 344.4 1.5 b = 27.5mm Ans. 7-10 Table A-20: S ut = 440 MPa, S y = 370 MPa S  e = 0.504(440) = 221.8MPa Table 7-4: k a = 4.51(440) −0.265 = 0.899 k b = 1(axial loading) Eq. (7-25): k c = 0.85 S e = 0.899(1)(0.85)(221.8) = 169.5MPa Table A-15-1: d/w = 12/60 = 0.2, K t = 2.5 12 F a F a 10 60 1018 shi20396_ch07.qxd 8/18/03 12:35 PM Page 184 Chapter 7 185 From Eq. (7-35) and Table 7-8 K f = K t 1 +  2/ √ r  [(K t − 1)/K t ] √ a = 2.5 1 +  2/ √ 6  [(2.5 − 1)/2.5](174/440) = 2.09 σ a = K f F a A ⇒ S e n f = 2.09F a 10(60 − 12) = 169.5 1.8 F a = 21 630 N = 21.6kN Ans. F a A = S y n y ⇒ F a 10(60 − 12) = 370 1.8 F a = 98 667 N = 98.7kN Ans. Largest force amplitude is 21.6 kN. Ans. 7-11 A priori design decisions: The design decision will be: d Material and condition: 1095 HR and from Table A-20 S ut = 120, S y = 66 kpsi . Design factor: n f = 1.6 per problem statement. Life: (1150)(3) = 3450 cycles Function: carry 10 000 lbf load Preliminaries to iterative solution: S  e = 0.504(120) = 60.5 kpsi k a = 2.70(120) −0.265 = 0.759 I c = πd 3 32 = 0.098 17d 3 M(crit.) =  6 24  (10 000)(12) = 30 000 lbf · in The critical location is in the middle of the shaft at the shoulder. From Fig. A-15-9: D/d = 1.5, r/d = 0.10, and K t = 1.68. With no direct information concerning f, use f = 0.9 . For an initial trial, set d = 2.00 in k b =  2.00 0.30  −0.107 = 0.816 S e = 0.759(0.816)(60.5) = 37.5 kpsi a = [0.9(120)] 2 37.5 = 311.0 b =− 1 3 log 0.9(120) 37.5 =−0.1531 S f = 311.0(3450) −0.1531 = 89.3 shi20396_ch07.qxd 8/18/03 12:35 PM Page 185 186 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design σ 0 = M I /c = 30 0.098 17d 3 = 305.6 d 3 = 305.6 2 3 = 38.2 kpsi r = d 10 = 2 10 = 0.2 K f = 1.68 1 +  2/ √ 0.2  [(1.68 − 1)/1.68](4/120) = 1.584 Eq. (7-37): (K f ) 10 3 = 1 − (1.584 − 1)[0.18 −0.43(10 −2 )120 + 0.45(10 −5 )120 2 ] = 1.158 Eq. (7-38): (K f ) N = K 3450 = 1.158 2 1.584 (3450) −(1/3) log(1.158/1.584) = 1.225 σ 0 = 305.6 2 3 = 38.2 kpsi σ a = (K f ) N σ 0 = 1.225(38.2) = 46.8 kpsi n f = (S f ) 3450 σ a = 89.3 46.8 = 1.91 The design is satisfactory. Reducing the diameter will reduce n, but the resulting preferred size will be d = 2.00 in. 7-12 σ  a = 172 MPa, σ  m = √ 3τ m = √ 3(103) = 178.4MPa Yield: 172 + 178.4 = S y n y = 413 n y ⇒ n y = 1.18 Ans. (a) Modified Goodman, Table 7-9 n f = 1 (172/276) + (178.4/551) = 1.06 Ans. (b) Gerber, Table 7-10 n f = 1 2  551 178.4  2  172 276     −1 +  1 +  2(178.4)(276) 551(172)  2    = 1.31 Ans. (c) ASME-Elliptic, Table 7-11 n f =  1 (172/276) 2 + (178.4/413) 2  1/2 = 1.32 Ans. shi20396_ch07.qxd 8/18/03 12:35 PM Page 186 Chapter 7 187 7-13 σ  a = 69 MPa, σ  m = √ 3(138) = 239 MPa Yield: 69 + 239 = 413 n y ⇒ n y = 1.34 Ans. (a) Modified Goodman, Table 7-9 n f = 1 (69/276) + (239/551) = 1.46 Ans. (b) Gerber, Table 7-10 n f = 1 2  551 239  2  69 276     −1 +  1 +  2(239)(276) 551(69)  2    = 1.73 Ans. (c) ASME-Elliptic, Table 7-11 n f =  1 (69/276) 2 + (239/413) 2  1/2 = 1.59 Ans. 7-14 σ  a =  σ 2 a + 3τ 2 a =  83 2 + 3(69 2 ) = 145.5MPa, σ  m = √ 3(103) = 178.4MPa Yield: 145.5 + 178.4 = 413 n y ⇒ n y = 1.28 Ans. (a) Modified Goodman, Table 7-9 n f = 1 (145.5/276) + (178.4/551) = 1.18 Ans. (b) Gerber, Table 7-10 n f = 1 2  551 178.4  2  145.5 276     −1 +  1 +  2(178.4)(276) 551(145.5)  2    = 1.47 Ans. (c) ASME-Elliptic, Table 7-11 n f =  1 (145.5/276) 2 + (178.4/413) 2  1/2 = 1.47 Ans. 7-15 σ  a = √ 3(207) = 358.5MPa, σ  m = 0 Yield: 358.5 = 413 n y ⇒ n y = 1.15 Ans. shi20396_ch07.qxd 8/18/03 12:35 PM Page 187 188 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (a) Modified Goodman, Table 7-9 n f = 1 (358.5/276) = 0.77 Ans. (b) Gerber criterion of Table 7-10 does not work; therefore use Eq. (7-50). n f σ a S e = 1 ⇒ n f = S e σ a = 276 358.5 = 0.77 Ans. (c) ASME-Elliptic, Table 7-11 n f =   1 358.5/276  2 = 0.77 Ans. Let f = 0.9 to assess the cycles to failure by fatigue Eq. (7-13): a = [0.9(551)] 2 276 = 891.0MPa Eq. (7-14): b =− 1 3 log 0.9(551) 276 =−0.084 828 Eq. (7-15): N =  358.5 891.0  −1/0.084 828 = 45 800 cycles Ans. 7-16 σ  a = √ 3(103) = 178.4MPa, σ  m = 103 MPa Yield: 178.4 + 103 = 413 n y ⇒ n y = 1.47 Ans. (a) Modified Goodman, Table 7-9 n f = 1 (178.4/276) + (103/551) = 1.20 Ans. (b) Gerber, Table 7-10 n f = 1 2  551 103  2  178.4 276     −1 +  1 +  2(103)(276) 551(178.4)  2    = 1.44 Ans. (c) ASME-Elliptic, Table 7-11 n f =  1 (178.4/276) 2 + (103/413) 2  1/2 = 1.44 Ans. 7-17 Table A-20: S ut = 64 kpsi, S y = 54 kpsi A = 0.375(1 − 0.25) = 0.2813 in 2 σ max = F max A = 3000 0.2813 (10 −3 ) = 10.67 kpsi shi20396_ch07.qxd 8/18/03 12:35 PM Page 188 Chapter 7 189 n y = 54 10.67 = 5.06 Ans. S  e = 0.504(64) = 32.3 kpsi k a = 2.70(64) −0.265 = 0.897 k b = 1, k c = 0.85 S e = 0.897(1)(0.85)(32.3) = 24.6 kpsi Table A-15-1: w = 1in,d = 1/4in , d/w = 0.25 І K t = 2.45. From Eq. (7-35) and Table 7-8 K f = 2.45 1 +  2/ √ 0.125  [(2.45 − 1)/2.45](5/64) = 1.94 σ a = K f     F max − F min 2A     = 1.94     3.000 − 0.800 2(0.2813)     = 7.59 kpsi σ m = K f F max + F min 2A = 1.94  3.000 + 0.800 2(0.2813)  = 13.1 kpsi r = σ a σ m = 7.59 13.1 = 0.579 (a) DE-Gerber, Table 7-10 S a = 0.579 2 (64 2 ) 2(24.6)   −1 +  1 +  2(24.6) 0.579(64)  2   = 18.5 kpsi S m = S a r = 18.5 0.579 = 32.0 kpsi n f = 1 2  64 13.1  2  7.59 24.6    −1 +  1 +  2(13.1)(24.6) 7.59(64)  2   = 2.44 Ans. (b) DE-Elliptic, Table 7-11 S a =  (0.579 2 )(24.6 2 )(54 2 ) 24.6 2 + (0.579 2 )(54 2 ) = 19.33 kpsi S m = S a r = 19.33 0.579 = 33.40 kpsi shi20396_ch07.qxd 8/18/03 12:35 PM Page 189 [...]... Hole: Fig A-15-1: d/w = 0 .75 /3 .75 = 0.20, K t = 2.5 Kf = 2.5 = 2. 17 √ 1 + 2/ 0 .75 /2 [(2.5 − 1)/2.5](5/64) σmax = 4 = 2. 67 kpsi 0.5(3 .75 − 0 .75 ) σmin = −16 = −10. 67 kpsi 0.5(3 .75 − 0 .75 ) σa = 2. 17 2. 67 − (−10. 67) = 14. 47 kpsi 2 σm = 2. 17 2. 67 + (−10. 67) = −8.68 kpsi 2 Since the midrange stress is negative, ny = Sy 54 = = 5.06 σmin −10. 67 Sa = Se = 24.6 kpsi Sa 24.6 = 1 .70 = σa 14. 47 Thus the design is controlled... 0. 67( 320) = 214.4 MPa Ssy = 0. 577 S y = 0. 577 (180) = 103.9 MPa Se = 0.504(320) = 161.3 MPa ka = 57. 7(320) −0 .71 8 = 0.9 17 de = 0. 370 (20) = 7. 4 mm kb = 7. 4 7. 62 −0.1 07 = 1.003 kc = 0.59 Se = 0.9 17( 1.003)(0.59)(161.3) = 87. 5 MPa shi20396_ ch 07. qxd 198 8/18/03 12:36 PM Page 198 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Modified Goodman, Table 7- 9, nf = 1 1 = = 1.36... = 1 0.30 −0.1 07 = 0. 879 Conservatism is not necessary Se = 0 .76 8[LN(1, 0.058)](0. 879 )(55 .7) [LN(1, 0.138)] ¯ Se = 37. 6 kpsi C Se = (0.0582 + 0.1382 ) 1/2 = 0.150 Se = 37. 6LN(1, 0.150) shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 205 205 Chapter 7 Fig A-15-14: D/d = 1.25, r/d = 0.125 Thus K t = 1 .70 and Eqs (7- 35), (7- 78) and Table 7- 8 give 1 .70 LN(1, 0.15) Kf = √ 1 + 2/ 0.125 [(1 .70 − 1)/(1 .70 )](3/110) =... 0.11) Table 7- 13: = 0 .78 2LN(1, 0.11) Eq (7- 23): de = 0. 37( 1.25) = 0.463 in kb = 0.463 0.30 −0.1 07 = 0.955 Se = 0 .78 2[LN(1, 0.11)](0.955)[29.3LN(1, 0.138)] ¯ Se = 0 .78 2(0.955)(29.3) = 21.9 kpsi C Se = (0.112 + 0.1382 ) 1/2 = 0.150 Table A-16: d/D = 0, a/D = 0.1, A = 0.83 ∴ K t = 2. 27 From Eqs (7- 35) and (7- 78) and Table 7- 8 2.27LN(1, 0.10) = 1 .78 3LN(1, 0.10) Kf = √ 1 + 2/ 0.125 [(2. 27 − 1)/2. 27] (5/58)... 7- 9 σm 1 σa + = Se Sut nf ⇒ 22.14T 1 22.14T + = 321.8 77 0 3 T = 3.42 N · m Ans (b) Gerber, Eq (7- 50) nσa nσm + Se Sut 2 3(22.14)T 3(22.14)T + 321.8 77 0 2 =1 =1 T 2 + 27. 74T − 134.40 = 0 T = 1 − 27. 74 + 2 27. 742 + 4(134.40) = 4.21 N · m Ans (c) To guard against yield, use T of part (b) and the inner stress 420 = 1.91 Ans ny = 52.34(4.21) 7- 25 From Prob 7- 24, Se = 321.8 MPa, S y = 420 MPa, and Sut = 77 0... −6 )(0.1046)(10−3 )( 17. 5)(10−3 ) Aeri 25(10 −Mco T (2.605)(10−3 ) = 44. 27( 106 )T = σo = −6 )(0.1046)(10−3 )(22.5)(10−3 ) Aero 25(10 For fatigue, σo is most severe as it represents a tensile stress 1 σm = σa = (44. 27) (106 )T = 22.14(106 )T 2 Se = 0.504Sut = 0.504 (77 0) = 388.1 MPa ka = 4.51 (77 0) −0.265 = 0 .77 5 de = 0.808[5(5)]1/2 = 4.04 mm kb = 4.04 7. 62 −0.1 07 = 1. 070 Se = 0 .77 5(1. 07) (388.1) = 321.8 MPa... Sut = 77 0 MPa (a) Assuming the beam is straight, 6M 6T = 48(106 )T σmax = 2 = 3 bh 5 [(10−3 ) 3 ] Goodman: 24T 1 24T + = 321.8 77 0 3 ⇒ T = 3.15 N · m Ans shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 1 97 1 97 Chapter 7 3(24)T 3(24)T + 321.8 77 0 (b) Gerber: 2 =1 T 2 + 25.59T − 114. 37 = 1 T = 1 −25.59 + 2 25.592 + 4(114. 37) = 3.88 N · m Ans (c) Using σmax = 52.34(106 )T from Prob 7- 24, ny = 420 = 2. 07 Ans 52.34(3.88)... 0.9(1 671 ) = 1504 MPa Then from Eq (7- 8), Se = 74 0 MPa; Eq (7- 18), ka = 1.58(1 671 ) −0.085 = 0.841; Eq (7- 24) de = 0.808[18(3)]1/2 = 5.938 mm; and Eq (7- 19), kb = (5.938 /7. 62) −0.1 07 = 1.0 27 shi20396_ ch 07. qxd 8/18/03 12:35 PM Page 193 193 Chapter 7 Se = 0.841(1.0 27) (74 0) = 639 MPa (σi ) a = 73 3.2 + 244.4 = 244.4 MPa 2 (σi ) m = At Inner Radius 73 3.2 − 244.4 = −488.8 MPa 2 ␴a 1504 MPa 639 244.4 Ϫ1504... σm 7. 60 (a) Table 7- 10, DE-Gerber nf = 1 2 64 7. 59 2  13.1  −1 + 24.6 1+ 2 (7. 59)(24.6) 64(13.1) 2   = 1 .79 Ans (b) Table 7- 11, DE-Elliptic nf = 7- 19 1 = 1.82 Ans (13.1/24.6) 2 + (7. 59/54) 2 Referring to the solution of Prob 7- 17, for load fluctuations of 800 to −3000 lbf σa = 1.94 0.800 − (−3.000) = 13.1 kpsi 2(0.2813) σm = 1.94 0.800 + (−3.000) = 7. 59 kpsi 2(0.2813) r= σa 13.1 = −1 .72 6 = σm 7. 59... 1.6 = 1 .78 3LN(1, 0.10) σ = Kf Z 0.159 = 17. 95LN(1, 0.10) kpsi shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 2 07 2 07 Chapter 7 σ = 17. 95 kpsi ¯ Cσ = 0.10 z=− Eq (6- 57) : ln (21.9/ 17. 95) (1 + 0.102 )/(1 + 0.152 ) ln[(1 + 0.152 )(1 + 0.102 )] = −1. 07 p f = 0.1423 Table A-10: R = 1 − p f = 1 − 0.1423 = 0.858 Ans For a completely-reversed design load Ma of 1400 lbf · in, the reliability estimate is 0.858 7- 37 For . 0.67S ut = 0. 67( 320) = 214.4MPa S sy = 0. 577 S y = 0. 577 (180) = 103.9MPa S  e = 0.504(320) = 161.3MPa k a = 57. 7(320) −0 .71 8 = 0.9 17 d e = 0. 370 (20) = 7. 4mm k b =  7. 4 7. 62  −0.1 07 =. 57. 7( 570 ) −0 .71 8 = 0.606 k c = k d = k e = k f = 1 Eq. (7- 17) : S e = 0.606(0.888)(2 87. 3MPa)= 154.6MPa Eq. (7- 13): a = [0.9( 570 )] 2 154.6 = 170 2 Eq. (7- 14): b

Ngày đăng: 22/01/2014, 15:20