Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
207,4 KB
Nội dung
Chapter 7
7-1
H
B
= 490
Eq. (3-17):
S
ut
= 0.495(490) = 242.6 kpsi > 212 kpsi
Eq. (7-8):
S
e
= 107 kpsi
Table 7-4:
a = 1.34
,
b =−0.085
Eq. (7-18):
k
a
= 1.34(242.6)
−0.085
= 0.840
Eq. (7-19):
k
b
=
3/16
0.3
−0.107
= 1.05
Eq. (7-17):
S
e
= k
a
k
b
S
e
= 0.840(1.05)(107) = 94.4 kpsi Ans.
7-2
(a)
S
ut
= 68 kpsi, S
e
= 0.495(68) = 33.7 kpsi Ans.
(b)
S
ut
= 112 kpsi, S
e
= 0.495(112) = 55.4 kpsi Ans.
(c) 2024T3 has no endurance limit Ans.
(d) Eq. (3-17):
S
e
= 107 kpsi Ans.
7-3
σ
F
= σ
0
ε
m
= 115(0.90)
0.22
= 112.4 kpsi
Eq. (7-8):
S
e
= 0.504(66.2) = 33.4 kpsi
Eq. (7-11):
b =−
log(112.4/33.4)
log(2 · 10
6
)
=−0.083 64
Eq. (7-9):
f =
112.4
66.2
(2 · 10
3
)
−0.083 64
= 0.8991
Eq. (7-13):
a =
[0.8991(66.2)]
2
33.4
= 106.1 kpsi
Eq. (7-12):
S
f
= aN
b
= 106.1(12 500)
−0.083 64
= 48.2 kpsi Ans.
Eq. (7-15):
N =
σ
a
a
1/b
=
36
106.1
−1/0.083 64
= 409 530 cycles Ans.
7-4 From
S
f
= aN
b
log S
f
= log a + b log N
Substituting
(1, S
ut
)
log S
ut
= log a + b log (1)
From which
a = S
ut
shi20396_ch07.qxd 8/18/03 12:35 PM Page 180
Chapter 7 181
Substituting
(10
3
, fS
ut
)
and
a = S
ut
log fS
ut
= log S
ut
+ b log 10
3
From which
b =
1
3
log f
∴ S
f
= S
ut
N
(log f )/3
1 ≤ N ≤ 10
3
For 500 cycles as in Prob. 7-3
500S
f
≥ 66.2(500)
(log 0.8991)/3
= 60.2 kpsi Ans.
7-5 Read from graph: (10
3
, 90) and (10
6
, 50). From
S = aN
b
log S
1
= log a + b log N
1
log S
2
= log a + b log N
2
From which
log a =
log S
1
log N
2
− log S
2
log N
1
log N
2
/N
1
=
log 90 log 10
6
− log 50 log 10
3
log 10
6
/10
3
= 2.2095
a = 10
log a
= 10
2.2095
= 162.0
b =
log 50/90
3
=−0.085 09
(S
f
)
ax
= 162
−0.085 09
10
3
≤ N ≤ 10
6
in kpsi Ans.
Check:
10
3
(S
f
)
ax
= 162(10
3
)
−0.085 09
= 90 kpsi
10
6
(S
f
)
ax
= 162(10
6
)
−0.085 09
= 50 kpsi
The end points agree.
7-6
Eq. (7-8):
S
e
= 0.504(710) = 357.8MPa
Table 7-4:
a = 4.51, b =−0.265
Eq. (7-18):
k
a
= 4.51(710)
−0.265
= 0.792
Eq. (7-19):
k
b
=
d
7.62
−0.107
=
32
7.62
−0.107
= 0.858
Eq. (7-17):
S
e
= k
a
k
b
S
e
= 0.792(0.858)(357.8) = 243 MPa Ans.
shi20396_ch07.qxd 8/18/03 12:35 PM Page 181
182 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
7-7 For AISI 4340 as forged steel,
Eq. (7-8):
S
e
= 107 kpsi
Table 7-4:
a = 39.9, b =−0.995
Eq. (7-18):
k
a
= 39.9(260)
−0.995
= 0.158
Eq. (7-19):
k
b
=
0.75
0.30
−0.107
= 0.907
Each of the other Marin factors is unity.
S
e
= 0.158(0.907)(107) = 15.3 kpsi
For AISI 1040:
S
e
= 0.504(113) = 57.0 kpsi
k
a
= 39.9(113)
−0.995
= 0.362
k
b
= 0.907 (same as 4340)
Each of the other Marin factors is unity.
S
e
= 0.362(0.907)(57.2) = 18.7 kpsi
Not only is AISI 1040 steel a contender, it has a superior endurance strength. Can you see
why?
7-8
(a) For an AISI 1018 CD-machined steel, the strengths are
Eq. (3-17):
S
ut
= 440 MPa ⇒ H
B
=
440
3.41
= 129
S
y
= 370 MPa
S
su
= 0.67(440) = 295 MPa
Fig. A-15-15:
r
d
=
2.5
20
= 0.125,
D
d
=
25
20
= 1.25, K
ts
= 1.4
Fig. 7-21:
q
s
= 0.94
Eq. (7-31):
K
fs
= 1 + 0.94(1.4 − 1) = 1.376
For a purely reversing torque of 200
N · m
τ
max
=
K
fs
16T
πd
3
=
1.376(16)(200 ×10
3
N · mm)
π(20 mm)
3
τ
max
= 175.2MPa= τ
a
S
e
= 0.504(440) = 222 MPa
The Marin factors are
k
a
= 4.51(440)
−0.265
= 0.899
k
b
=
20
7.62
−0.107
= 0.902
k
c
= 0.59, k
d
= 1, k
e
= 1
Eq. (7-17):
S
e
= 0.899(0.902)(0.59)(222) = 106.2MPa
2.5 mm
20 mm
25 mm
shi20396_ch07.qxd 8/18/03 12:35 PM Page 182
Chapter 7 183
Eq. (7-13):
a =
[0.9(295)]
2
106.2
= 664
Eq. (7-14):
b =−
1
3
log
0.9(295)
106.2
=−0.132 65
Eq. (7-15):
N =
175.2
664
1/−0.132 65
N = 23 000 cycles Ans.
(b) For an operating temperature of 450°C, the temperature modification factor, from
Table 7-6, is
k
d
= 0.843
Thus
S
e
= 0.899(0.902)(0.59)(0.843)(222) = 89.5MPa
a =
[0.9(295)]
2
89.5
= 788
b =−
1
3
log
0.9(295)
89.5
=−0.157 41
N =
175.2
788
1/−0.157 41
N = 14 100 cycles
Ans.
7-9
f = 0.9
n = 1.5
N = 10
4
cycles
For AISI 1045 HR steel,
S
ut
= 570 MPa and S
y
= 310 MPa
S
e
= 0.504(570 MPa) = 287.3MPa
Find an initial guess based on yielding:
σ
a
= σ
max
=
Mc
I
=
M(b/2)
b(b
3
)/12
=
6M
b
3
M
max
= (1 kN)(800 mm) = 800 N · m
σ
max
=
S
y
n
⇒
6(800 × 10
3
N ·mm)
b
3
=
310 N/mm
2
1.5
b = 28.5mm
Eq. (7-24):
d
e
= 0.808b
Eq. (7-19):
k
b
=
0.808b
7.62
−0.107
= 1.2714b
−0.107
k
b
= 0.888
F ϭ Ϯ1 kN
b
b
800 mm
shi20396_ch07.qxd 8/18/03 12:35 PM Page 183
184 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
The remaining Marin factors are
k
a
= 57.7(570)
−0.718
= 0.606
k
c
= k
d
= k
e
= k
f
= 1
Eq. (7-17):
S
e
= 0.606(0.888)(287.3MPa)= 154.6MPa
Eq. (7-13):
a =
[0.9(570)]
2
154.6
= 1702
Eq. (7-14):
b =−
1
3
log
0.9(570)
154.6
=−0.173 64
Eq. (7-12):
S
f
= aN
b
= 1702[(10
4
)
−0.173 64
] = 343.9MPa
n =
S
f
σ
a
or σ
a
=
S
f
n
6(800 × 10
3
)
b
3
=
343.9
1.5
⇒ b = 27.6mm
Check values for
k
b
, S
e
,
etc.
k
b
= 1.2714(27.6)
−0.107
= 0.891
S
e
= 0.606(0.891)(287.3) = 155.1MPa
a =
[0.9(570)]
2
155.1
= 1697
b =−
1
3
log
0.9(570)
155.1
=−0.173 17
S
f
= 1697[(10
4
)
−0.173 17
] = 344.4MPa
6(800 × 10
3
)
b
3
=
344.4
1.5
b = 27.5mm Ans.
7-10
Table A-20:
S
ut
= 440 MPa, S
y
= 370 MPa
S
e
= 0.504(440) = 221.8MPa
Table 7-4:
k
a
= 4.51(440)
−0.265
= 0.899
k
b
= 1(axial loading)
Eq. (7-25):
k
c
= 0.85
S
e
= 0.899(1)(0.85)(221.8) = 169.5MPa
Table A-15-1:
d/w = 12/60 = 0.2, K
t
= 2.5
12
F
a
F
a
10
60
1018
shi20396_ch07.qxd 8/18/03 12:35 PM Page 184
Chapter 7 185
From Eq. (7-35) and Table 7-8
K
f
=
K
t
1 +
2/
√
r
[(K
t
− 1)/K
t
]
√
a
=
2.5
1 +
2/
√
6
[(2.5 − 1)/2.5](174/440)
= 2.09
σ
a
= K
f
F
a
A
⇒
S
e
n
f
=
2.09F
a
10(60 − 12)
=
169.5
1.8
F
a
= 21 630 N = 21.6kN Ans.
F
a
A
=
S
y
n
y
⇒
F
a
10(60 − 12)
=
370
1.8
F
a
= 98 667 N = 98.7kN Ans.
Largest force amplitude is 21.6 kN. Ans.
7-11 A priori design decisions:
The design decision will be: d
Material and condition: 1095 HR and from Table A-20
S
ut
= 120, S
y
= 66 kpsi
.
Design factor:
n
f
= 1.6
per problem statement.
Life: (1150)(3) =
3450 cycles
Function: carry 10 000 lbf load
Preliminaries to iterative solution:
S
e
= 0.504(120) = 60.5 kpsi
k
a
= 2.70(120)
−0.265
= 0.759
I
c
=
πd
3
32
= 0.098 17d
3
M(crit.)
=
6
24
(10 000)(12) = 30 000 lbf · in
The critical location is in the middle of the shaft at the shoulder. From Fig. A-15-9: D/d =
1.5, r/d =
0.10, and K
t
= 1.68.
With no direct information concerning f, use
f = 0.9
.
For an initial trial, set
d = 2.00 in
k
b
=
2.00
0.30
−0.107
= 0.816
S
e
= 0.759(0.816)(60.5) = 37.5 kpsi
a =
[0.9(120)]
2
37.5
= 311.0
b =−
1
3
log
0.9(120)
37.5
=−0.1531
S
f
= 311.0(3450)
−0.1531
= 89.3
shi20396_ch07.qxd 8/18/03 12:35 PM Page 185
186 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
σ
0
=
M
I /c
=
30
0.098 17d
3
=
305.6
d
3
=
305.6
2
3
= 38.2 kpsi
r =
d
10
=
2
10
= 0.2
K
f
=
1.68
1 +
2/
√
0.2
[(1.68 − 1)/1.68](4/120)
= 1.584
Eq. (7-37):
(K
f
)
10
3
= 1 − (1.584 − 1)[0.18 −0.43(10
−2
)120 + 0.45(10
−5
)120
2
]
= 1.158
Eq. (7-38):
(K
f
)
N
= K
3450
=
1.158
2
1.584
(3450)
−(1/3) log(1.158/1.584)
= 1.225
σ
0
=
305.6
2
3
= 38.2 kpsi
σ
a
= (K
f
)
N
σ
0
= 1.225(38.2) = 46.8 kpsi
n
f
=
(S
f
)
3450
σ
a
=
89.3
46.8
= 1.91
The design is satisfactory. Reducing the diameter will reduce n, but the resulting preferred
size will be
d = 2.00 in.
7-12
σ
a
= 172 MPa, σ
m
=
√
3τ
m
=
√
3(103) = 178.4MPa
Yield:
172 + 178.4 =
S
y
n
y
=
413
n
y
⇒ n
y
= 1.18 Ans.
(a) Modified Goodman, Table 7-9
n
f
=
1
(172/276) + (178.4/551)
= 1.06 Ans.
(b) Gerber, Table 7-10
n
f
=
1
2
551
178.4
2
172
276
−1 +
1 +
2(178.4)(276)
551(172)
2
= 1.31 Ans.
(c) ASME-Elliptic, Table 7-11
n
f
=
1
(172/276)
2
+ (178.4/413)
2
1/2
= 1.32 Ans.
shi20396_ch07.qxd 8/18/03 12:35 PM Page 186
Chapter 7 187
7-13
σ
a
= 69 MPa, σ
m
=
√
3(138) = 239 MPa
Yield:
69 + 239 =
413
n
y
⇒ n
y
= 1.34 Ans.
(a) Modified Goodman, Table 7-9
n
f
=
1
(69/276) + (239/551)
= 1.46 Ans.
(b) Gerber, Table 7-10
n
f
=
1
2
551
239
2
69
276
−1 +
1 +
2(239)(276)
551(69)
2
= 1.73 Ans.
(c) ASME-Elliptic, Table 7-11
n
f
=
1
(69/276)
2
+ (239/413)
2
1/2
= 1.59 Ans.
7-14
σ
a
=
σ
2
a
+ 3τ
2
a
=
83
2
+ 3(69
2
) = 145.5MPa, σ
m
=
√
3(103) = 178.4MPa
Yield:
145.5 + 178.4 =
413
n
y
⇒ n
y
= 1.28 Ans.
(a) Modified Goodman, Table 7-9
n
f
=
1
(145.5/276) + (178.4/551)
= 1.18 Ans.
(b) Gerber, Table 7-10
n
f
=
1
2
551
178.4
2
145.5
276
−1 +
1 +
2(178.4)(276)
551(145.5)
2
= 1.47 Ans.
(c) ASME-Elliptic, Table 7-11
n
f
=
1
(145.5/276)
2
+ (178.4/413)
2
1/2
= 1.47 Ans.
7-15
σ
a
=
√
3(207) = 358.5MPa, σ
m
= 0
Yield:
358.5 =
413
n
y
⇒ n
y
= 1.15 Ans.
shi20396_ch07.qxd 8/18/03 12:35 PM Page 187
188 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design
(a) Modified Goodman, Table 7-9
n
f
=
1
(358.5/276)
= 0.77 Ans.
(b) Gerber criterion of Table 7-10 does not work; therefore use Eq. (7-50).
n
f
σ
a
S
e
= 1 ⇒ n
f
=
S
e
σ
a
=
276
358.5
= 0.77 Ans.
(c) ASME-Elliptic, Table 7-11
n
f
=
1
358.5/276
2
= 0.77 Ans.
Let
f = 0.9
to assess the cycles to failure by fatigue
Eq. (7-13):
a =
[0.9(551)]
2
276
= 891.0MPa
Eq. (7-14):
b =−
1
3
log
0.9(551)
276
=−0.084 828
Eq. (7-15):
N =
358.5
891.0
−1/0.084 828
= 45 800 cycles Ans.
7-16
σ
a
=
√
3(103) = 178.4MPa, σ
m
= 103 MPa
Yield:
178.4 + 103 =
413
n
y
⇒ n
y
= 1.47 Ans.
(a) Modified Goodman, Table 7-9
n
f
=
1
(178.4/276) + (103/551)
= 1.20 Ans.
(b) Gerber, Table 7-10
n
f
=
1
2
551
103
2
178.4
276
−1 +
1 +
2(103)(276)
551(178.4)
2
= 1.44 Ans.
(c) ASME-Elliptic, Table 7-11
n
f
=
1
(178.4/276)
2
+ (103/413)
2
1/2
= 1.44 Ans.
7-17 Table A-20:
S
ut
= 64 kpsi, S
y
= 54 kpsi
A = 0.375(1 − 0.25) = 0.2813 in
2
σ
max
=
F
max
A
=
3000
0.2813
(10
−3
) = 10.67 kpsi
shi20396_ch07.qxd 8/18/03 12:35 PM Page 188
Chapter 7 189
n
y
=
54
10.67
= 5.06 Ans.
S
e
= 0.504(64) = 32.3 kpsi
k
a
= 2.70(64)
−0.265
= 0.897
k
b
= 1, k
c
= 0.85
S
e
= 0.897(1)(0.85)(32.3) = 24.6 kpsi
Table A-15-1:
w = 1in,d = 1/4in
,
d/w = 0.25
І
K
t
= 2.45.
From Eq. (7-35) and
Table 7-8
K
f
=
2.45
1 +
2/
√
0.125
[(2.45 − 1)/2.45](5/64)
= 1.94
σ
a
= K
f
F
max
− F
min
2A
= 1.94
3.000 − 0.800
2(0.2813)
= 7.59 kpsi
σ
m
= K
f
F
max
+ F
min
2A
= 1.94
3.000 + 0.800
2(0.2813)
= 13.1 kpsi
r =
σ
a
σ
m
=
7.59
13.1
= 0.579
(a) DE-Gerber, Table 7-10
S
a
=
0.579
2
(64
2
)
2(24.6)
−1 +
1 +
2(24.6)
0.579(64)
2
= 18.5 kpsi
S
m
=
S
a
r
=
18.5
0.579
= 32.0 kpsi
n
f
=
1
2
64
13.1
2
7.59
24.6
−1 +
1 +
2(13.1)(24.6)
7.59(64)
2
= 2.44 Ans.
(b) DE-Elliptic, Table 7-11
S
a
=
(0.579
2
)(24.6
2
)(54
2
)
24.6
2
+ (0.579
2
)(54
2
)
= 19.33 kpsi
S
m
=
S
a
r
=
19.33
0.579
= 33.40 kpsi
shi20396_ch07.qxd 8/18/03 12:35 PM Page 189
[...]... Hole: Fig A-15-1: d/w = 0 .75 /3 .75 = 0.20, K t = 2.5 Kf = 2.5 = 2. 17 √ 1 + 2/ 0 .75 /2 [(2.5 − 1)/2.5](5/64) σmax = 4 = 2. 67 kpsi 0.5(3 .75 − 0 .75 ) σmin = −16 = −10. 67 kpsi 0.5(3 .75 − 0 .75 ) σa = 2. 17 2. 67 − (−10. 67) = 14. 47 kpsi 2 σm = 2. 17 2. 67 + (−10. 67) = −8.68 kpsi 2 Since the midrange stress is negative, ny = Sy 54 = = 5.06 σmin −10. 67 Sa = Se = 24.6 kpsi Sa 24.6 = 1 .70 = σa 14. 47 Thus the design is controlled... 0. 67( 320) = 214.4 MPa Ssy = 0. 577 S y = 0. 577 (180) = 103.9 MPa Se = 0.504(320) = 161.3 MPa ka = 57. 7(320) −0 .71 8 = 0.9 17 de = 0. 370 (20) = 7. 4 mm kb = 7. 4 7. 62 −0.1 07 = 1.003 kc = 0.59 Se = 0.9 17( 1.003)(0.59)(161.3) = 87. 5 MPa shi20396_ ch 07. qxd 198 8/18/03 12:36 PM Page 198 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Modified Goodman, Table 7- 9, nf = 1 1 = = 1.36... = 1 0.30 −0.1 07 = 0. 879 Conservatism is not necessary Se = 0 .76 8[LN(1, 0.058)](0. 879 )(55 .7) [LN(1, 0.138)] ¯ Se = 37. 6 kpsi C Se = (0.0582 + 0.1382 ) 1/2 = 0.150 Se = 37. 6LN(1, 0.150) shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 205 205 Chapter 7 Fig A-15-14: D/d = 1.25, r/d = 0.125 Thus K t = 1 .70 and Eqs (7- 35), (7- 78) and Table 7- 8 give 1 .70 LN(1, 0.15) Kf = √ 1 + 2/ 0.125 [(1 .70 − 1)/(1 .70 )](3/110) =... 0.11) Table 7- 13: = 0 .78 2LN(1, 0.11) Eq (7- 23): de = 0. 37( 1.25) = 0.463 in kb = 0.463 0.30 −0.1 07 = 0.955 Se = 0 .78 2[LN(1, 0.11)](0.955)[29.3LN(1, 0.138)] ¯ Se = 0 .78 2(0.955)(29.3) = 21.9 kpsi C Se = (0.112 + 0.1382 ) 1/2 = 0.150 Table A-16: d/D = 0, a/D = 0.1, A = 0.83 ∴ K t = 2. 27 From Eqs (7- 35) and (7- 78) and Table 7- 8 2.27LN(1, 0.10) = 1 .78 3LN(1, 0.10) Kf = √ 1 + 2/ 0.125 [(2. 27 − 1)/2. 27] (5/58)... 7- 9 σm 1 σa + = Se Sut nf ⇒ 22.14T 1 22.14T + = 321.8 77 0 3 T = 3.42 N · m Ans (b) Gerber, Eq (7- 50) nσa nσm + Se Sut 2 3(22.14)T 3(22.14)T + 321.8 77 0 2 =1 =1 T 2 + 27. 74T − 134.40 = 0 T = 1 − 27. 74 + 2 27. 742 + 4(134.40) = 4.21 N · m Ans (c) To guard against yield, use T of part (b) and the inner stress 420 = 1.91 Ans ny = 52.34(4.21) 7- 25 From Prob 7- 24, Se = 321.8 MPa, S y = 420 MPa, and Sut = 77 0... −6 )(0.1046)(10−3 )( 17. 5)(10−3 ) Aeri 25(10 −Mco T (2.605)(10−3 ) = 44. 27( 106 )T = σo = −6 )(0.1046)(10−3 )(22.5)(10−3 ) Aero 25(10 For fatigue, σo is most severe as it represents a tensile stress 1 σm = σa = (44. 27) (106 )T = 22.14(106 )T 2 Se = 0.504Sut = 0.504 (77 0) = 388.1 MPa ka = 4.51 (77 0) −0.265 = 0 .77 5 de = 0.808[5(5)]1/2 = 4.04 mm kb = 4.04 7. 62 −0.1 07 = 1. 070 Se = 0 .77 5(1. 07) (388.1) = 321.8 MPa... Sut = 77 0 MPa (a) Assuming the beam is straight, 6M 6T = 48(106 )T σmax = 2 = 3 bh 5 [(10−3 ) 3 ] Goodman: 24T 1 24T + = 321.8 77 0 3 ⇒ T = 3.15 N · m Ans shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 1 97 1 97 Chapter 7 3(24)T 3(24)T + 321.8 77 0 (b) Gerber: 2 =1 T 2 + 25.59T − 114. 37 = 1 T = 1 −25.59 + 2 25.592 + 4(114. 37) = 3.88 N · m Ans (c) Using σmax = 52.34(106 )T from Prob 7- 24, ny = 420 = 2. 07 Ans 52.34(3.88)... 0.9(1 671 ) = 1504 MPa Then from Eq (7- 8), Se = 74 0 MPa; Eq (7- 18), ka = 1.58(1 671 ) −0.085 = 0.841; Eq (7- 24) de = 0.808[18(3)]1/2 = 5.938 mm; and Eq (7- 19), kb = (5.938 /7. 62) −0.1 07 = 1.0 27 shi20396_ ch 07. qxd 8/18/03 12:35 PM Page 193 193 Chapter 7 Se = 0.841(1.0 27) (74 0) = 639 MPa (σi ) a = 73 3.2 + 244.4 = 244.4 MPa 2 (σi ) m = At Inner Radius 73 3.2 − 244.4 = −488.8 MPa 2 a 1504 MPa 639 244.4 Ϫ1504... σm 7. 60 (a) Table 7- 10, DE-Gerber nf = 1 2 64 7. 59 2 13.1 −1 + 24.6 1+ 2 (7. 59)(24.6) 64(13.1) 2 = 1 .79 Ans (b) Table 7- 11, DE-Elliptic nf = 7- 19 1 = 1.82 Ans (13.1/24.6) 2 + (7. 59/54) 2 Referring to the solution of Prob 7- 17, for load fluctuations of 800 to −3000 lbf σa = 1.94 0.800 − (−3.000) = 13.1 kpsi 2(0.2813) σm = 1.94 0.800 + (−3.000) = 7. 59 kpsi 2(0.2813) r= σa 13.1 = −1 .72 6 = σm 7. 59... 1.6 = 1 .78 3LN(1, 0.10) σ = Kf Z 0.159 = 17. 95LN(1, 0.10) kpsi shi20396_ ch 07. qxd 8/18/03 12:36 PM Page 2 07 2 07 Chapter 7 σ = 17. 95 kpsi ¯ Cσ = 0.10 z=− Eq (6- 57) : ln (21.9/ 17. 95) (1 + 0.102 )/(1 + 0.152 ) ln[(1 + 0.152 )(1 + 0.102 )] = −1. 07 p f = 0.1423 Table A-10: R = 1 − p f = 1 − 0.1423 = 0.858 Ans For a completely-reversed design load Ma of 1400 lbf · in, the reliability estimate is 0.858 7- 37 For . 0.67S
ut
= 0. 67( 320) = 214.4MPa
S
sy
= 0. 577 S
y
= 0. 577 (180) = 103.9MPa
S
e
= 0.504(320) = 161.3MPa
k
a
= 57. 7(320)
−0 .71 8
= 0.9 17
d
e
= 0. 370 (20) = 7. 4mm
k
b
=
7. 4
7. 62
−0.1 07
=. 57. 7( 570 )
−0 .71 8
= 0.606
k
c
= k
d
= k
e
= k
f
= 1
Eq. (7- 17) :
S
e
= 0.606(0.888)(2 87. 3MPa)= 154.6MPa
Eq. (7- 13):
a =
[0.9( 570 )]
2
154.6
= 170 2
Eq. (7- 14):
b