1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu shi20396 chương 4 pdf

56 297 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 56
Dung lượng 511,33 KB

Nội dung

Chapter 4 4-1 1 R C R A R B R D C A B W D 1 2 3 R B R A W R B R C R A 2 1 W R A R Bx R Bx R By R By R B 2 1 1 Scale of corner magnified W A B (e) (f) (d) W A R A R B B 1 2 W A R A R B B 11 2 (a) (b) (c) shi20396_ch04.qxd 8/18/03 10:35 AM Page 50 Chapter 4 51 4-2 (a) R A = 2 sin 60 = 1.732 kN Ans. R B = 2 sin 30 = 1 kN Ans. (b) S = 0.6 m α = tan −1 0.6 0.4 + 0.6 = 30.96 ◦ R A sin 135 = 800 sin 30.96 ⇒ R A = 1100 N Ans. R O sin 14.04 = 800 sin 30.96 ⇒ R O = 377 N Ans. (c) R O = 1.2 tan 30 = 2.078 kN Ans. R A = 1.2 sin 30 = 2.4 kN Ans. (d) Step 1: Find R A and R E h = 4.5 tan 30 = 7.794 m ۗ +  M A = 0 9R E − 7.794(400 cos 30) − 4.5(400 sin 30) = 0 R E = 400 N Ans.  F x = 0 R Ax + 400 cos 30 = 0 ⇒ R Ax =−346.4N  F y = 0 R Ay + 400 − 400 sin 30 = 0 ⇒ R Ay =−200 N R A =  346.4 2 + 200 2 = 400 N Ans. D C h B y E x A 4.5 m 9 m 400 N 3 4 2 30° 60° R Ay R A R Ax R E 1.2 kN 60° R A R O 60°90° 30° 1.2 kN R A R O 45Њ Ϫ 30.96Њ ϭ 14.04Њ 135° 30.96° 30.96° 800 N R A R O O 0.4 m 45° 800 N ␣ 0.6 m A s R A R O B 60° 90° 30° 2 kN R A R B 2 1 2 kN 60° 30° R A R B shi20396_ch04.qxd 8/18/03 10:35 AM Page 51 52 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design Step 2: Find components of R C on link 4 and R D ۗ +  M C = 0 400(4.5) − (7.794 −1.9)R D = 0 ⇒ R D = 305.4N Ans.  F x = 0 ⇒ (R Cx ) 4 = 305.4N  F y = 0 ⇒ (R Cy ) 4 =−400 N Step 3: Find components of R C on link 2  F x = 0 ( R Cx ) 2 + 305.4 − 346.4 = 0 ⇒ (R Cx ) 2 = 41 N  F y = 0 ( R Cy ) 2 = 200 N 4-3 (a) ۗ +  M 0 = 0 −18(60) + 14R 2 + 8(30) − 4(40) = 0 R 2 = 71.43 lbf  F y = 0: R 1 − 40 + 30 + 71.43 − 60 = 0 R 1 =−1.43 lbf M 1 =−1.43(4) =−5.72 lbf · in M 2 =−5.72 − 41.43(4) =−171.44 lbf · in M 3 =−171.44 − 11.43(6) =−240 lbf · in M 4 =−240 + 60(4) = 0 checks! 4" 4" 6" 4" Ϫ1.43 Ϫ41.43 Ϫ11.43 60 40 lbf 60 lbf 30 lbf x x x O AB CD y R 1 R 2 M 1 M 2 M 3 M 4 O V (lbf) M (lbf• in) O C C DB A B D E 305.4 N 346.4 N 305.4 N 41 N 400 N 200 N 400 N 200 N 400 N Pin C 30° 305.4 N 400 N 400 N 200 N 41 N 305.4 N 200 N 346.4 N 305.4 N (R Cx ) 2 (R Cy ) 2 C B A 2 400 N 4 R D (R Cx ) 4 (R Cy ) 4 D C E Ans. shi20396_ch04.qxd 8/18/03 10:35 AM Page 52 Chapter 4 53 (b)  F y = 0 R 0 = 2 + 4(0.150) = 2.6 kN  M 0 = 0 M 0 = 2000(0.2) + 4000(0.150)(0.425) = 655 N · m M 1 =−655 + 2600(0.2) =−135 N · m M 2 =−135 + 600(0.150) =−45 N · m M 3 =−45 + 1 2 600(0.150) = 0 checks! (c)  M 0 = 0: 10R 2 − 6(1000) = 0 ⇒ R 2 = 600 lbf  F y = 0: R 1 − 1000 + 600 = 0 ⇒ R 1 = 400 lbf M 1 = 400(6) = 2400 lbf · ft M 2 = 2400 − 600(4) = 0 checks! (d) ۗ +  M C = 0 −10R 1 + 2(2000) + 8(1000) = 0 R 1 = 1200 lbf  F y = 0: 1200 − 1000 − 2000 + R 2 = 0 R 2 = 1800 lbf M 1 = 1200(2) = 2400 lbf · ft M 2 = 2400 + 200(6) = 3600 lbf · ft M 3 = 3600 − 1800(2) = 0 checks! 2000 lbf 1000 lbf R 1 O O M 1 M 2 M 3 R 2 6 ft 2 ft2 ft AB C y M 1200 Ϫ1800 200 x x x 6 ft 4 ft A O O O B Ϫ600 M 1 M 2 V (lbf) 1000 lbf y R 1 R 2 400 M (lbf •ft) x x x V (kN) 150 mm200 mm 150 mm 2.6 Ϫ655 M (N• m) 0.6 M 1 M 2 M 3 2 kN 4 kN/m y A O O O O BC R O M O x x x shi20396_ch04.qxd 8/18/03 10:35 AM Page 53 54 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (e) ۗ +  M B = 0 −7R 1 + 3(400) − 3(800) = 0 R 1 =−171.4 lbf  F y = 0: −171.4 − 400 + R 2 − 800 = 0 R 2 = 1371.4 lbf M 1 =−171.4(4) =−685.7 lbf · ft M 2 =−685.7 − 571.4(3) =−2400 lbf · ft M 3 =−2400 + 800(3) = 0 checks! (f) Break at A R 1 = V A = 1 2 40(8) = 160 lbf ۗ +  M D = 0 12(160) − 10R 2 + 320(5) = 0 R 2 = 352 lbf  F y = 0 −160 + 352 − 320 + R 3 = 0 R 3 = 128 lbf M 1 = 1 2 160(4) = 320 lbf · in M 2 = 320 − 1 2 160(4) = 0 checks! (hinge) M 3 = 0 − 160(2) =−320 lbf · in M 4 =−320 + 192(5) = 640 lbf · in M 5 = 640 − 128(5) = 0 checks! 40 lbf/in V (lbf) O O 160 Ϫ160 Ϫ128 192 M 320 lbf 160 lbf 352 lbf 128 lbf M 1 M 2 M 3 M 4 M 5 x x x 8" 5" 2" 5" 40 lbf/in 160 lbf O A y BD C A 320 lbf R 2 R 3 R 1 V A A O O O C M V (lbf ) 800 Ϫ171.4 Ϫ571.4 3 ft 3 ft4 ft 800 lbf400 lbf B y M 1 M 2 M 3 R 1 R 2 x x x shi20396_ch04.qxd 8/18/03 10:35 AM Page 54 Chapter 4 55 4-4 (a) q = R 1 x −1 − 40x − 4 −1 + 30x − 8 −1 + R 2 x − 14 −1 − 60x − 18 −1 V = R 1 − 40x − 4 0 + 30x − 8 0 + R 2 x − 14 0 − 60x − 18 0 (1) M = R 1 x − 40x − 4 1 + 30x − 8 1 + R 2 x − 14 1 − 60x − 18 1 (2) for x = 18 + V = 0 and M = 0 Eqs. (1) and (2) give 0 = R 1 − 40 + 30 + R 2 − 60 ⇒ R 1 + R 2 = 70 (3) 0 = R 1 (18) − 40(14) + 30(10) + 4R 2 ⇒ 9R 1 + 2R 2 = 130 (4) Solve (3) and (4) simultaneously to get R 1 =−1.43 lbf, R 2 = 71.43 lbf. Ans. From Eqs. (1) and (2), at x = 0 + , V = R 1 =−1.43 lbf, M = 0 x = 4 + : V =−1.43 − 40 =−41.43, M =−1.43x x = 8 + : V =−1.43 −40 + 30 =−11.43 M =−1.43(8) − 40(8 − 4) 1 =−171.44 x = 14 + : V =−1.43 −40 + 30 + 71.43 = 60 M =−1.43(14) − 40(14 − 4) + 30(14 − 8) =−240 . x = 18 + : V = 0, M = 0 See curves of V and M in Prob. 4-3 solution. (b) q = R 0 x −1 − M 0 x −2 − 2000x − 0.2 −1 − 4000x − 0.35 0 + 4000x − 0.5 0 V = R 0 − M 0 x −1 − 2000x − 0.2 0 − 4000x − 0.35 1 + 4000x − 0.5 1 (1) M = R 0 x − M 0 − 2000x − 0.2 1 − 2000x − 0.35 2 + 2000x − 0.5 2 (2) at x = 0.5 + m, V = M = 0 , Eqs. (1) and (2) give R 0 − 2000 − 4000(0.5 − 0.35) = 0 ⇒ R 1 = 2600 N = 2.6 kN Ans. R 0 (0.5) − M 0 − 2000(0.5 − 0.2) − 2000(0.5 − 0.35) 2 = 0 with R 0 = 2600 N, M 0 = 655 N · m Ans. With R 0 and M 0 , Eqs. (1) and (2) give the same V and M curves as Prob. 4-3 (note for V, M 0 x −1 has no physical meaning). (c) q = R 1 x −1 − 1000x − 6 −1 + R 2 x − 10 −1 V = R 1 − 1000x − 6 0 + R 2 x − 10 0 (1) M = R 1 x − 1000x − 6 1 + R 2 x − 10 1 (2) at x = 10 + ft, V = M = 0 , Eqs. (1) and (2) give R 1 − 1000 + R 2 = 0 ⇒ R 1 + R 2 = 1000 10R 1 − 1000(10 − 6) = 0 ⇒ R 1 = 400 lbf , R 2 = 1000 − 400 = 600 lbf 0 ≤ x ≤ 6: V = 400 lbf, M = 400x 6 ≤ x ≤ 10: V = 400 −1000(x − 6) 0 = 600 lbf M = 400x − 1000(x − 6) = 6000 − 600x See curves of Prob. 4-3 solution. shi20396_ch04.qxd 8/18/03 10:35 AM Page 55 56 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design (d) q = R 1 x −1 − 1000x − 2 −1 − 2000x − 8 −1 + R 2 x − 10 −1 V = R 1 − 1000x − 2 0 − 2000x − 8 0 + R 2 x − 10 0 (1) M = R 1 x − 1000x − 2 1 − 2000x − 8 1 + R 2 x − 10 1 (2) At x = 10 + , V = M = 0 from Eqs. (1) and (2) R 1 − 1000 − 2000 + R 2 = 0 ⇒ R 1 + R 2 = 3000 10R 1 − 1000(10 − 2) − 2000(10 − 8) = 0 ⇒ R 1 = 1200 lbf , R 2 = 3000 − 1200 = 1800 lbf 0 ≤ x ≤ 2: V = 1200 lbf, M = 1200x lbf ·ft 2 ≤ x ≤ 8: V = 1200 −1000 = 200 lbf M = 1200x − 1000(x − 2) = 200x + 2000 lbf · ft 8 ≤ x ≤ 10: V = 1200 − 1000 − 2000 =−1800 lbf M = 1200x − 1000(x − 2) − 2000(x −8) =−1800x + 18 000 lbf · ft Plots are the same as in Prob. 4-3. (e) q = R 1 x −1 − 400x − 4 −1 + R 2 x − 7 −1 − 800x − 10 −1 V = R 1 − 400x − 4 0 + R 2 x − 7 0 − 800x − 10 0 (1) M = R 1 x − 400x − 4 1 + R 2 x − 7 1 − 800x − 10 1 (2) at x = 10 + , V = M = 0 R 1 − 400 + R 2 − 800 = 0 ⇒ R 1 + R 2 = 1200 (3) 10R 1 − 400(6) + R 2 (3) = 0 ⇒ 10R 1 + 3R 2 = 2400 (4) Solve Eqs. (3) and (4) simultaneously: R 1 =−171.4 lbf, R 2 = 1371.4 lbf 0 ≤ x ≤ 4: V =−171.4 lbf, M =−171.4x lbf ·ft 4 ≤ x ≤ 7: V =−171.4 −400 =−571.4 lbf M =−171.4x − 400(x − 4) lbf · ft =−571.4x + 1600 7 ≤ x ≤ 10: V =−171.4 − 400 + 1371.4 = 800 lbf M =−171.4x − 400(x − 4) + 1371.4(x − 7) = 800x − 8000 lbf · ft Plots are the same as in Prob. 4-3. (f) q = R 1 x −1 − 40x 0 + 40x − 8 0 + R 2 x − 10 −1 − 320x − 15 −1 + R 3 x − 20 V = R 1 − 40x + 40x − 8 1 + R 2 x − 10 0 − 320x − 15 0 + R 3 x − 20 0 (1) M = R 1 x − 20x 2 + 20x − 8 2 + R 2 x − 10 1 − 320x − 15 1 + R 3 x − 20 1 (2) M = 0 at x = 8 in ∴ 8R 1 − 20(8) 2 = 0 ⇒ R 1 = 160 lbf at x = 20 + , V and M = 0 160 − 40(20) + 40(12) + R 2 − 320 + R 3 = 0 ⇒ R 2 + R 3 = 480 160(20) − 20(20) 2 + 20(12) 2 + 10R 2 − 320(5) = 0 ⇒ R 2 = 352 lbf R 3 = 480 − 352 = 128 lbf 0 ≤ x ≤ 8: V = 160 − 40x lbf, M = 160x −20x 2 lbf · in 8 ≤ x ≤ 10: V = 160 −40x + 40(x − 8) =−160 lbf , M = 160x − 20x 2 + 20(x −8) 2 = 1280 − 160x lbf · in shi20396_ch04.qxd 8/18/03 10:35 AM Page 56 Chapter 4 57 10 ≤ x ≤ 15: V = 160 −40x + 40(x −8) + 352 = 192 lbf M = 160x − 20x 2 + 20(x −8) + 352(x − 10) = 192x − 2240 15 ≤ x ≤ 20: V = 160 − 40x + 40(x −8) + 352 − 320 =−128 lbf M = 160x − 20x 2 − 20(x −8) + 352(x − 10) − 320(x − 15) =−128x + 2560 Plots of V and M are the same as in Prob. 4-3. 4-5 Solution depends upon the beam selected. 4-6 (a) Moment at center, x c = (l − 2a)/2 M c = w 2  l 2 (l − 2a) −  l 2  2  = wl 2  l 4 − a  At reaction, |M r |=wa 2 /2 a = 2.25, l = 10 in, w = 100 lbf/in M c = 100(10) 2  10 4 − 2.25  = 125 lbf · in M r = 100(2.25 2 ) 2 = 253.1 lbf · in Ans. (b) Minimum occurs when M c =|M r | wl 2  l 4 − a  = wa 2 2 ⇒ a 2 + al − 0.25l 2 = 0 Taking the positive root a = 1 2  −l +  l 2 + 4(0.25l 2 )  = l 2  √ 2 − 1  = 0.2071l Ans. for l = 10 in and w = 100 lbf, M min = (100/2)[(0.2071)(10)] 2 = 214.5 lbf · in 4-7 For the ith wire from bottom, from summing forces vertically (a) T i = (i + 1)W From summing moments about point a,  M a = W(l − x i ) − iWx i = 0 Giving, x i = l i + 1 WiW T i x i a shi20396_ch04.qxd 8/18/03 10:35 AM Page 57 58 Solutions Manual • Instructor’s Solution Manual to Accompany Mechanical Engineering Design So W = l 1 + 1 = l 2 x = l 2 + 1 = l 3 y = l 3 + 1 = l 4 z = l 4 + 1 = l 5 (b) With straight rigid wires, the mobile is not stable. Any perturbation can lead to all wires becoming collinear. Consider a wire of length l bent at its string support:  M a = 0  M a = iWl i + 1 cos α − ilW i + 1 cos β = 0 iWl i + 1 (cos α −cos β) = 0 Moment vanishes when α = β for any wire. Consider a ccw rotation angle β , which makes α → α +β and β → α − β M a = iWl i + 1 [cos(α +β) − cos(α − β)] = 2iWl i + 1 sin α sin β . = 2iWlβ i + 1 sin α There exists a correcting moment of opposite sense to arbitrary rotation β . An equation for an upward bend can be found by changing the sign of W . The moment will no longer be correcting. A curved, convex-upward bend of wire will produce stable equilibrium too, but the equation would change somewhat. 4-8 (a) C = 12 + 6 2 = 9 CD = 12 − 6 2 = 3 R =  3 2 + 4 2 = 5 σ 1 = 5 + 9 = 14 σ 2 = 9 − 5 = 4 2␾ s (12, 4 cw ) C R D ␶ 2 ␶ 1 ␴ 1 ␴ ␴ 2 2␾ p (6, 4 ccw ) y x ␶ cw ␶ ccw W i W il i ϩ 1 T i ␤ ␣ l i ϩ 1 shi20396_ch04.qxd 8/18/03 10:35 AM Page 58 Chapter 4 59 φ p = 1 2 tan −1  4 3  = 26.6 ◦ cw τ 1 = R = 5, φ s = 45 ◦ − 26.6 ◦ = 18.4 ◦ ccw (b) C = 9 + 16 2 = 12.5 CD = 16 − 9 2 = 3.5 R =  5 2 + 3.5 2 = 6.10 σ 1 = 6.1 + 12.5 = 18.6 φ p = 1 2 tan −1 5 3.5 = 27.5 ◦ ccw σ 2 = 12.5 − 6.1 = 6.4 τ 1 = R = 6.10 , φ s = 45 ◦ − 27.5 ◦ = 17.5 ◦ cw (c) C = 24 + 10 2 = 17 CD = 24 − 10 2 = 7 R =  7 2 + 6 2 = 9.22 σ 1 = 17 + 9.22 = 26.22 σ 2 = 17 − 9.22 = 7.78 2␾ s (24, 6 cw ) C R D ␶ 2 ␶ 1 ␴ 1 ␴ 2 2␾ p (10, 6 ccw ) y x ␴ ␶ cw ␶ ccw x 12.5 12.5 6.10 17.5Њ x 6.4 18.6 27.5Њ 2␾ s (16, 5 ccw ) C R D ␶ 2 ␶ 1 ␴ 1 ␴ 2 2␾ p (9, 5 cw ) y x ␴ ␶ cw ␶ ccw 3 5 3 3 3 18.4Њ x x 4 14 26.6Њ shi20396_ch04.qxd 8/18/03 10:35 AM Page 59 [...]... θ(deg) 0 0.125 0.225 0.325 0 .42 5 0 .47 5 0.902 5 0.889 087 0.859 043 0.811 831 0. 747 45 0 0.708 822 3.8 3.585 398 3 .41 3 717 3. 242 035 3.070 3 54 2.9 84 513 0 0.10 0.20 0.30 0 .40 0 .45 1037.9 1022.5 987.9 933.6 859.6 815.1 0 0.10 0.20 0.30 0 .40 0 .45 4. 825 4. 621 4. 553 4. 576 4. 707 4. 825 1200 1000 800 T (lbf • in) shi20396_ ch 04. qxd 600 40 0 200 0 0 0.1 0.2 0.3 ri (in) 0 .4 0.5 shi20396_ ch 04. qxd 82 8/18/03 10:36 AM... 4. 57 y φp = 4. 57 1 5 90 + tan−1 = 61.0◦ cw 2 8 x 61Њ 23 .43 τ1 = R = 9 .43 4, φs = 61◦ − 45 ◦ = 16◦ cw 14 x 16Њ 14 9 .43 4 9 + 19 = 14 2 shi20396_ ch 04. qxd 8/18/03 10:35 AM Page 61 61 Chapter 4 4-9 (a) ␶1 ␶ cw C= y (12, 7cw) R ␴2 D ␴1 ␴ 2␾p σ1 = 4 + 10.63 = 14. 63 σ2 = 4 − 10.63 = −6.63 2␾s x ␶2 ␶ ccw 12 + 4 =8 2 R = 82 + 72 = 10.63 CD = C ( 4, 7ccw) 12 − 4 =4 2 φp = 14. 63 69 .4 1 8 90 + tan−1 = 69 .4 ccw 2 7... = 45 ◦ − 13.28◦ = 31.72◦ cw 10 22.36 x 31.72Њ 10 (c) ␶1 ␶ cw 2␾s (Ϫ10, 9cw) ␴2 2␾p D ␴ ␴1 C R (18, 9ccw) y ␶ ccw −10 + 18 =4 2 10 + 18 CD = = 14 2 R = 142 + 92 = 16. 64 C= x σ1 = 4 + 16. 64 = 20. 64 σ2 = 4 − 16. 64 = −12. 64 ␶2 φp = 12. 64 1 14 90 + tan−1 = 73.63◦ cw 2 9 x 73.63Њ 20. 64 τ1 = R = 16. 64, φs = 73.63◦ − 45 ◦ = 28.63◦ cw 4 x 28.63Њ 4 16. 64 shi20396_ ch 04. qxd 8/18/03 10:35 AM Page 65 65 Chapter 4. .. 8/18/03 10:36 AM Page 85 85 Chapter 4 (τmax ) rd = Round: 16 T 16T 3. 545 T = = 3 3/2 π d π(4A/π) ( A) 3/2 (τmax ) sq 4. 8 = 1.3 54 = (τmax ) rd 3. 545 Square stress is 1.3 54 times the round stress 4- 45 s= √ A, d= Ans 4A/π Square: Eq (4- 44) with b = c, β = 0. 141 θsq = Tl Tl = 4G 0. 141 c 0. 141 ( A) 4/ 2 G Round: θrd = Tl Tl 6.2832T l = = JG ( A) 4/ 2 G (π/32) (4A/π) 4/ 2 G θsq 1/0. 141 = 1.129 = θrd 6.2832 Square has... ji = 0 WT = 1 04. 4, W1 = W2 = W3 = W4 = 1 04. 4 = 26.1 kip 4 (1200 − 238) 2 M1 = (1 04. 4) = 20 128 kip · in 4( 1200) 47 6 = 238 in, Wheel 1: d1 = 2 Wheel 2: i−1 d2 = 238 − 84 = 1 54 in (1200 − 1 54) 2 M2 = (1 04. 4) − 26.1( 84) = 21 605 kip · in = Mmax 4( 1200) Check if all of the wheels are on the rail 84" 77" 84" 315" xmax 600" 600" (b) xmax = 600 − 77 = 523 in (c) See above sketch (d) inner axles 4- 23 (a) D c1... psi 2 (2)(1) Ans shi20396_ ch 04. qxd 8/18/03 10:36 AM Page 77 77 Chapter 4 4-26 Mmax = wl 2 8 ⇒ σmax = wl 2 c 8I ⇒ w= 8σ I cl 2 (a) l = 12(12) = 144 in, I = (1/12)(1.5)(9.5) 3 = 107.2 in4 w= 8(1200)(107.2) = 10 .4 lbf/in 4. 75( 144 2 ) Ans (b) l = 48 in, I = (π/ 64) ( 24 − 1.2 54 ) = 0.6656 in4 w= 8(12)(103 )(0.6656) = 27.7 lbf/in 1 (48 ) 2 Ans 8(12)(103 )(2.051) = 57.0 lbf/in 1.5 (48 ) 2 Ans l = 48 in, I = (1/12)(2)(33... A-17, select 1 3 /4 in τstart = 16(2)(12 605) = 23.96(103 ) psi = 23.96 kpsi 3) π(1.75 (b) design activity 4- 43 ω = 2πn/60 = 2π(8)/60 = 0.8378 rad/s T = dC = 1000 H = = 11 94 N · m ω 0.8378 16T πτ 1/3 = From Table A-17, select 45 mm 4- 44 s= √ A, d = 16(11 94) π(75)(106 ) 1/3 = 4. 328(10−2 ) m = 43 .3 mm Ans 4A/π Square: Eq (4- 43) with b = c 4. 8T c3 4. 8T (τmax ) sq = ( A) 3/2 τmax = shi20396_ ch 04. qxd 8/18/03... ⇒ 150(106 ) = 4. 023(1 04 ) 150(106 ) 1/3 4. 023(1 04 ) 540 0(d/2) = (π/32)[d 4 − (0.75d) 4 ] d3 = 6 .45 (10−2 ) m = 64. 5 mm From Table A-17, the next preferred size is d = 80 mm; ID = 60 mm π (0.0 84 − 0.0 64 ) = 2. 749 (10−6 ) mm4 32 540 0(0.030) = 58.9(106 ) Pa = 58.9 MPa τi = 2. 749 (10−6 ) Ans J= (b) Ans 4- 42 63 025(1) 63 025H = = 12 605 lbf · in n 5 16T 16T 1/3 16(12 605) τ= ⇒ dC = = 3 πτ π( 14 000) πdC T =... MPa 30 − 10 = 10 MPa τ1/2 = 2 Ans 10 + 20 = 15 MPa τ2/3 = 2 30 + 20 = 25 MPa τmax = τ1/3 = 2 4- 19 ␶ (MPa) ␶1/3 ␶2/3 ␶1/2 Ϫ20 10 Ans From Eq (4- 15) σ 3 − (1 + 4 + 4) σ 2 + [1 (4) + 1 (4) + 4( 4) − 22 − ( 4) 2 − (−2) 2 ]σ −[1 (4) (4) + 2(2)( 4) (−2) − 1( 4) 2 − 4( −2) 2 − 4( 2) 2 ] = 0 σ 3 − 9σ 2 = 0 30 ␴ (MPa) shi20396_ ch 04. qxd 70 8/18/03 10:36 AM Page 70 Solutions Manual • Instructor’s Solution Manual to Accompany... 2 Am = (1 − 0.05) 2 − 4 rm − rm = 0.952 − (4 − π)rm 4 L m = 4( 1 − 0.05 − 2rm + 2πrm /4) = 4[ 0.95 − (2 − π/2)rm ] T = 2Am tτ = 2(0.05)(11 500) Am = 1150Am Eq (4- 45): Eq (4- 46): θ(deg) = θ1 l T L m l 180 T L m (40 ) 180 180 = = π 4G A2 t π 4( 11.5)(106 ) A2 (0.05) π m m = 9.9 645 (10 4 ) T Lm A2 m Equations can then be put into a spreadsheet resulting in: ri 0 0.10 0.20 0.30 0 .40 0 .45 rm Am Lm ri T(lbf · . R 1 =−1 .43 lbf, M = 0 x = 4 + : V =−1 .43 − 40 = 41 .43 , M =−1 .43 x x = 8 + : V =−1 .43 40 + 30 =−11 .43 M =−1 .43 (8) − 40 (8 − 4) 1 =−171 .44 x = 14 + : V =−1 .43 40 . in) O C C DB A B D E 305 .4 N 346 .4 N 305 .4 N 41 N 40 0 N 200 N 40 0 N 200 N 40 0 N Pin C 30° 305 .4 N 40 0 N 40 0 N 200 N 41 N 305 .4 N 200 N 346 .4 N 305 .4 N (R Cx ) 2 (R Cy ) 2 C B A 2 40 0

Ngày đăng: 22/01/2014, 15:20

TỪ KHÓA LIÊN QUAN

w