Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 179 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
179
Dung lượng
24,35 MB
Nội dung
TR B GIÁO D C VÀ ÀO T O NG I H C BÁCH KHOA HÀ N I Lê Ng c Trúc PHÂN TÍCH VÀ XU T PH NG PHÁP I U KHI N TAY MÁY CÔNG NGHI P TRONG TÌNH TR NG T N TH T C CH CH P HÀNH K THU T LU N ÁN TI N S I U KHI N VÀ T Hà N i ậ 2021 NG HÓA TR B GIÁO D C VÀ ÀO T O NG I H C BÁCH KHOA HÀ N I Lê Ng c Trúc PHÂN TÍCH VÀ XU T PH NG PHÁP I U KHI N TAY MÁY CƠNG NGHI P TRONG TÌNH TR NG T N TH T C CH CH P HÀNH Ngành : K thu t u n t đ ng hóa Mã s : 9520216 K THU T LU N ÁN TI N S I U KHI N VÀ T NG HÓA NG IH NG D N KHOA H C: GS.TSKH Nguy n Phùng Quang Hà N i ậ 2021 L I CAM OAN Tôi xin cam đoan r ng đơy lƠ cơng trình nghiên c u c a b n thân d i s h ng d n c a ng i h ng d n khoa h c Tài li u tham kh o lu n án đ c trích d n đ y đ Các k t qu nghiên c u c a lu n án trung th c vƠ ch a t ng đ c tác gi khác công b Hà N i, ngày tháng 10 n m 2021 Ng i h ng d n khoa h c Tác gi lu n án GS.TSKH Nguy n Phùng Quang Lê Ng c Trúc i L IC M N L i đ u tiên, xin chân thành c m n sơu s c đ n s h ng d n t n tình c a Th y GS.TSKH Nguy n Phùng Quang su t trình th c hi n lu n án t giai đo n hình thƠnh Ủ t ng c a đ tài đ n xây d ng k ho ch t ng b c th c hi n đ hồn thành lu n án Tơi xin đ c c m n Vi n K thu t i u n T đ ng hóa ( i h c Bách khoa Hà N i) đư t o u ki n thu n l i cho có mơi tr ng nghiên c u c i m nghiêm túc c s v t ch t c n thi t đ th c hi n lu n án Và quan tr ng h n c lƠ đư có nh ng đóng góp trao đ i sâu s c thi t th c v n i dung nghiên c u c a trình th c hi n lu n án Tơi xin đ c g i l i c m n đ n th y cô giáo B môn T đ ng hóa cơng nghi p, B mơn i u n t đ ng (Vi n i n, i h c Bách khoa Hà N i) đư có nh ng h ng d n chuyên môn h t s c c n thi t giá tr Tôi xin chân thành c m n Ban lưnh đ o tr ng i h c S ph m K thu t H ng Yên, Ban lưnh đ o Khoa C khí ng l c, th y đ ng nghi p Khoa C khí ng l c đư t o u ki n giúp đ r t nhi u th i gian làm nghiên c u sinh Tôi xin đ c c m n anh/ch /em nghiên c u sinh c a Vi n K thu t i u n T đ ng hóa, Vi n i n ( i h c Bách khoa Hà N i) đư đ ng viên, khích l , vƠ giúp đ tơi r t nhi u su t trình nghiên c u Tôi xin c m n nh ng ng i b n thân thi t v i ch ng trình ANOT đư giúp tơi có thêm ngh l c giai đo n quan tr ng c a lu n án Cu i cùng, tơi dành tình c m l i c m n chơn thƠnh nh t đ n gia đình tơi, đ c bi t v tơi, EYVTTJ, đư ng h , chia s c v tinh th n l n v t ch t đ có th hồn thành đ c lu n án Tác gi lu n án Lê Ng c Trúc ii M CL C L I CAM OAN i L I C M N ii DANH M C CÁC KÝ HI U VÀ CH VI T T T vi DANH M C CÁC B NG xiv DANH M C CÁC HÌNH V , M TH xv U 1 S c n thi t c a đ tài 2 M c tiêu nghiên c u it Ph ng ph m vi nghiên c u ng pháp nghiên c u ụ ngh a khoa h c th c ti n c a đ tài Nh ng đóng góp c a lu n án B c c c a lu n án T NG QUAN 1.1 Gi i thi u v robot công nghi p 1.2 Các c u hình c b n c a robot công nghi p 1.3 Các thành ph n c a robot công nghi p 1.4 C ch ch p hành 1.5 V n đ t n th t c ch ch p hành kh n ng u n 1.5.1 Các d ng t n th t c ch ch p hành 1.5.2 Tình hình nghiên c u v t n th t c ch ch p hành tay máy robot 12 1.5.3 Phân tích kh n ng u n tay máy cơng nghi p tình tr ng t n th t c ch ch p hành 14 1.5.3.1 Phơn tích đ ng h c c a m t ki u tay máy cơng nghi p có kh p quay n hình b t n th t m t c ch ch p hành 14 1.5.3.2 Các kh n ng u n tay máy công nghi p n hình b t n th t c ch ch p hành 24 1.6 xu t h 1.6.1 H ng nghiên c u c a lu n án 27 ng nghiên c u c a lu n án 27 1.6.2 D ki n đóng góp m i 28 1.7 K t lu n ch ng 28 iii MỌ HÌNH NG L C H C C A TAY MÁY ROBOT 29 2.1 Gi i thi u 29 2.2 V n t c t nh ti n v n t c quay c a khâu 29 2.3 Ph ng trình Euler-Lagrange 32 2.4 Mơ hình đ ng l c h c d ng toán h c 33 2.5 Mơ hình bán v t lý cho tay máy robot 38 2.5.1 Gi i thi u 38 2.5.2 Mơ hình CAD 3D c a tay máy robot 39 2.5.3 Ph ng pháp dùng m ng v t lỦ đ mơ hình hóa h th ng v t lý 41 2.5.3.1 Ph ng pháp dùng Simulink truy n th ng 41 2.5.3.2 Ph ng pháp dùng m ng v t lý 41 2.5.4 Mơ hình bán v t lỦ ch a xét t i ma sát kh p 42 2.5.4.1 Mô ph ng đáp ng đ ng l c h c 43 2.5.4.2 Mô ph ng mô hình robot có vịng u n 46 2.5.5 Mơ hình bán v t lý có ma sát kh p 49 2.6 K t lu n ch T N TH T C 3.1 nh h ng 52 CH CH P HÀNH VÀ PH NG PHÁP I U KHI N 54 ng c a t n th t c ch ch p hành d ng suy gi m mô men 54 3.1.1 Gi i thi u 54 3.1.2 ng xét theo qu đ o kh p 56 3.1.2.1 nh h ng c a t n th t m t c ch ch p hành d ng PDT 58 3.1.2.2 nh h ng c a t n th t m t c ch ch p hành d ng BDT 59 3.1.2.3 nh h ng c a t n th t m t c ch ch p hành d ng BDTR 61 3.1.3 3.2 Ph nh h nh h ng xét theo qu đ o m công tác 63 3.1.3.1 nh h ng c a t n th t m t c ch ch p hành d ng PDT 63 3.1.3.2 nh h ng c a t n th t m t c ch ch p hành d ng BDT 66 3.1.3.3 nh h ng c a t n th t m t c ch ch p hành d ng BDTR 69 ng pháp u n có t n th t c ch ch p hành 72 3.2.1 Gi i thi u 72 3.2.2 Khái quát v lý thuy t u n tr t 73 3.2.3 Khái quát v lý thuy t u n thích nghi 77 3.2.4 Mơ hình h th ng có t n th t c ch ch p hành d ng PDT 80 iv 3.2.5 Thi t k b u n tr t thích nghi có t n th t c ch ch p hành d ng PDT 81 3.2.6 Áp d ng cho tay máy robot 2-DOF 85 3.2.7 Áp d ng cho robot công nghi p 6-DOF 89 3.3 K t lu n ch ng 97 K T QU MÔ PH NG VÀ TH C NGHI M CHO M T D NG TAY MÁY ROBOT 99 4.1 Gi i thi u robot Serpent 99 4.2 ng h c 99 4.2.1 ng h c thu n 101 4.2.2 ng h c ng c 102 4.3 Mơ hình đ ng l c h c 104 4.3.1 Mơ hình tốn h c 104 4.3.2 Mơ hình bán v t lý 105 4.4 L p qu đ o chuy n đ ng 107 4.5 Các k t qu mô ph ng th c nghi m 112 4.5.1 K t qu mô ph ng 112 4.5.2 K t qu th c nghi m 125 4.6 K t lu n ch ng 136 K T LU N VÀ KI N NGH 137 DANH M C CÁC CÔNG TRỊNH Ã CÔNG B C A LU N ÁN 140 TÀI LI U THAM KH O 141 PH L C PL1 v DANH M C CÁC KÝ HI U VÀ CH VI T T T Danh m c ký hi u nv Ký hi u m/s2 m m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m/s2 m A B 1, C ụ ngh a Tốn t tích Kronecker Ký hi u cho d ng vector hình h c Ký hi u đ o hàm c p m t c a bi n ắ ” theo th i gian Ký hi u đ o hàm c p hai c a bi n ắ ” theo th i gian Ma tr n đ n v có chi u Gia t c t nh ti n d c theo đo n AB dài c a pháp n chung gi a tr c kh p tr c kh p đo d c tr c (tham s D-H) Gia t c t nh ti n l n nh t m t qu đ o t ng quát Gia t c t nh ti n l n nh t d c theo đo n AB Gia t c t nh ti n l n nh t d c theo đo n OA Gia t c t nh ti n d c theo đo n OA Gia t c t nh ti n d c tr c ( , , ) Gia t c t nh ti n l n nh t d c tr c ( , , ) Vector gia t c t nh ti n c a khâu EE h t a đ c s v i thành ph n d c tr c , , H s d ng th c a đa th c thu đ c sau khai tri n bi n tr t thƠnh đa th c Các thành ph n c a vector h t a đ c s Vector ch h ng tr c c a EE Vector tham s đ c c l ng b i b c l ng i m đ u mút c a qu đ o m làm vi c M t m tùy ý khâu Ma tr n đ ng chéo tính theo vector Kho ng bão hòa hàm sat() Vector tham s đ c c p nh t b i lu t thích nghi i m đ u mút c a qu đ o m làm vi c Ma tr n tham s ch a thành ph n b t đ nh Ma tr n giá tr nh n d ng đ c c a Ma tr n sai l ch gi a Bi u di n cho hàm Bi u di n cho hàm Các ma tr n đ ng chéo v i h s d ng V trí m tr ng tâm c a khâu ng giao gi a mi n gi i h n m t c u (tâm m làm vi c , bán kính ) Ma tr n Coriolis/ly tâm vi C C m rad rad m rad m/s2 m/s2 kg.m2 kg.m2 kg.m2 Nm/(rad/s) Ma tr n C v i giá tr nh n d ng đ c Ma tr n Coriolis/ly tâm c a robot 2-DOF dài c a pháp n chung gi a tr c tr c đo d c tr c (tham s D-H) Vùng không gian làm vi c đ y đ c a robot Vùng không gian làm vi c b h n ch c a robot c ch ch p hành th b bó c ng Ph n t h ng s d ng c t , hàng Sai l ch bám gi a kh p đ t th vƠ đáp ng kh p Vector sai l ch bám gi a kh p đ t vƠ đáp ng kh p Vector c t th c a ma tr n đ n v Vector sai l ch v trí v i thành ph n , , Vector sai l ch gi a Sai l ch góc c a vector Hàm phi n h affine SISO Hàm phi n th h affine MIMO c l ng c a hàm h affine MIMO Vector tham s ch a thành ph n b t đ nh Vector giá tr nh n d ng đ c c a Vector sai l ch gi a H ng s d ng th Gia t c tr ng tr ng Vector thành ph n tr ng l c Vector v i giá tr nh n d ng đ c Vector thành ph n tr ng l c c a robot 2-DOF Vector gia t c tr ng tr ng xét h t a đ c s Hàm phi n h affine SISO Hàm phi n h affine MIMO c l ng c a hàm h affine MIMO Ph n t th c a vector Vector thay th cho tích Vector hàm phi n Ma tr n hàm [ ] h affine MIMO Ma tr n hàm [ ] h affine MIMO Mơ men qn tính c a khâu theo tr c Ma tr n tensor quán tính c a khâu xét h t a đ th Ma tr n tensor quán tính c a khâu xét h t a đ c s Ma tr n Jacobi quay ng v i vector Ma tr n Jacobi quay ng v i vector Ma tr n Jacobi t nh ti n ng v i vector H s khu ch đ i c a b u n SMC cho h SISO H s ma sát nh t kh p vii J m J M M M kg m m O m m m m m m m m J rad rad rad/s rad/s2 rad rad rad rad rad rad/s rad/s2 rad rad m Vector tham s c a b u n SMC T ng đ ng n ng c a tay máy robot Ma tr n đ ng chéo tính theo vector Ma tr n đ ng chéo ch a tham s Ma tr n đ ng chéo ch a tham s Các ma tr n tham s c a b u n Các ma tr n tham s c a b u n Chi u dài c a khâu Hàm Lagrange S đ u vào c a h phi n affine MIMO Kh i l ng c a khâu Ma tr n quán tính t ng quát c a tay máy robot Ma tr n v i giá tr nh n d ng đ c Ma tr n quán tính t ng quát c a robot 2-DOF S b c t Các thành ph n c a vector h t a đ c s Vector ch h ng tr c c a EE Các thành ph n c a vector h t a đ c s Vector ch h ng tr c c a EE V trí ban đ u c a EE G c h t a đ th i dài gi a m làm vi c chi u lên Các t a đ c a vector h t a đ c s Vector đ dài gi a m Vector đ dài gi a m Vector v trí m làm vi c c a EE h t a đ c s Vector đ i s c a vector h t a đ c s Vector đ i s c a vector V trí tâm m t c u ch h ng (tâm c tay) T ng th n ng c a tay máy robot Góc quay c a kh p đ c t o b i đ ng c c a kh p Bi n góc kh p V n t c bi n góc kh p Gia t c bi n góc kh p Qu đ o mong mu n c a bi n góc kh p Qu đ o tham chi u c a bi n góc kh p áp ng góc kh p c a mơ hình tốn h c áp ng góc kh p c a mơ hình bán v t lý Vector bi n góc kh p Vector v n t c bi n góc kh p Vector gia t c bi n góc kh p Vector qu đ o mong mu n c a góc kh p Vector qu đ o tham chi u c a góc kh p Vector đ dài gi a m viii TÀI LI U THAM KH O [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] OSHA (2020), ắOSHA Technical Manual, Section IV, Chapter 4: Industrial Robots and Robot System Safety,” Occupational Safety and Health Administration, USA ANSI (2012), ắANSI/RIA R15.06-2012 Industrial Robots and Robot Systems Safety Requirements,” American National Standards Institute, USA IFR (2020), ắWorld Robotics: Industrial Robots,” International Federation of Robotics, Frankfurt, Germany ISO (2012), ắISO 8373:2012 Robots and robotic devices - Vocabulary,” International Organization for Standardization L Notash (2011), ắA methodology for actuator failure recovery in parallel manipulators,” Mechanism and Machine Theory, vol , no 4, pp 454ậ465, Elsevier Ltd L Notash and L Huang (2003), ắOn the design of fault tolerant parallel manipulators,” Mechanism and Machine Theory, vol 38, no 1, pp 85ậ101, Elsevier Z Liu, J Liu, and W He (2017), ắPartial differential equation boundary control of a flexible manipulator with input saturation,” International Journal of Systems Science, vol 48, no 1, pp 53ậ62 Y Yang, D Yue, and X Xie (201 ), ắAdaptive fault-tolerant tracking control of a class of uncertain nonlinear systems with actuator faults,” 201 35th Chinese Control Conference (CCC), pp 556ậ561, IEEE, Jul , Chengdu, China W Wang and C Wen (2010), ắAdaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance,” Automatica, vol , pp 2082ậ2091 W Wang and C Wen (2011), ắAdaptive compensation for infinite number of actuator failures or faults,” Automatica, vol 47, pp 2197ậ2210, Elsevier Ltd S Petsch and D Burschka (2013), ắAnalysis of manipulator structures under joint-failure with respect to efficient control in task-specific contexts,” 2013 IEEE International Conference on Robotics and Automation, pp 1963ậ1969, IEEE, May 6th, Karlsruhe, Germany K.M Ben-Gharbia, A.A Maciejewski, and R.G Roberts (2013), ắKinematic Design of Redundant Robotic Manipulators for Spatial Positioning that are Optimally Fault Tolerant,” IEEE Transactions on Robotics, vol 29, no 5, pp 1300ậ1307 R.C Hoover, R.G Roberts, A.A MacIejewski, et al (2015), ắDesigning a Failure-Tolerant Workspace for Kinematically Redundant Robots,” IEEE Transactions on Automation Science and Engineering, vol 12, no 4, pp 1421ậ1432 K.M Ben-Gharbia, A.A MacIejewski, and R.G Roberts (201 ), ắKinematic 141 [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] Design of Manipulators with Seven Revolute Joints Optimized for Fault Tolerance,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol 46, no 10, pp 1364ậ1373 C.L Lewis and A.A Maciejewski (1997), ắFault tolerant operation of kinematically redundant manipulators for locked joint failures,” IEEE Transactions on Robotics and Automation, vol 13, no 4, pp 622ậ629 P.S Naik, A.A Maciejewski, R.G Roberts, et al (2013), ắAn example of computing the failure-tolerant workspace area for a planar kinematically redundant robot,” 2013 IEEE International Conference on Automation Science and Engineering (CASE), pp 306ậ311, IEEE, Aug 17th, Madison, WI, USA J.D English and A.A Maciejewski (1998), ắFault tolerance for kinematically redundant manipulators: Anticipating free-swinging joint failures,” IEEE Transactions on Robotics and Automation, vol 14, no 4, pp 566ậ575 R.S Jamisola, A.A Maciejewski, and R.G Roberts (2006), ắFailure-tolerant path planning for kinematically redundant manipulators anticipating lockedjoint failures,” IEEE Transactions on Robotics, vol 22, no 4, pp 03ậ612 J.D English and A.A Maciejewski (2000), ắMeasuring and reducing the Euclidean-space effects of robotic joint failures,” IEEE Transactions on Robotics and Automation, vol 16, no 1, pp 20ậ28 H Abdi and S Nahavandi (2012), ắWell-conditioned configurations of faulttolerant manipulators,” Robotics and Autonomous Systems, vol 60, no 2, pp 242ậ251, Elsevier B.V Zhao Jing and Li Qian (2008), ắAn analytical algorithm with minimum joint velocity jump for redundant robots in the presence of locked-joint failures,” 2008 IEEE International Conference on Robotics and Automation, pp 1987ậ 1992, IEEE, May 19th, Pasadena, CA, USA Q Jia, T Li, G Chen, et al (2014), ắVelocity jump reduction for manipulator with single joint failure,” 2014 International Conference on Multisensor Fusion and Information Integration for Intelligent Systems (MFI), pp 1ậ6, IEEE, Sep 28th, Beijing, China Z Jing, L Yu, J Yi, et al (2009), ắOn Path Errors of Redundant Robots in Fault Tolerant Operations for Locked Joint Failures,” International Conference on Advanced Robotics, pp 1ậ6, IEEE, Jun 22nd, Munich, Germany H Abdi and S Nahavandi (2010), ắJoint velocity redistribution for fault tolerant manipulators,” 2010 IEEE Conference on Robotics, Automation and Mechatronics, pp 492ậ497, IEEE, Jun 28th, Singapore H Abdi, S Nahavandi, and Z Najdovski (2010), ắOn the effort of task completion for partially-failed manipulators,” 2010 8th IEEE International Conference on Industrial Informatics, pp 201ậ206, IEEE, Jul 13th, Osaka, Japan V Nazari and L Notash (201 ), ắFailure recovery of manipulators under joint velocity limits using constrained optimization and partitioned Jacobian matrix,” Mechanism and Machine Theory, vol 99, pp 58ậ71, Elsevier Ltd Y She, W Xu, H Su, et al (201 ), ắFault-tolerant analysis and control of 142 [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] SSRMS-type manipulators with single-joint failure,” Acta Astronautica, vol 120, pp 270ậ286, Elsevier X.Z Lai, C.Z Pan, M Wu, et al (2012), ắUnified control of n-link underactuated manipulator with single passive joint: A reduced order approach,” Mechanism and Machine Theory, vol , pp 170ậ185, Elsevier Ltd J.-H Shin and J.-J Lee (1999), ắFault detection and robust fault recovery control for robot manipulators with actuator failures,” 1999 IEEE International Conference on Robotics and Automation, pp 861ậ866, IEEE, May 10th, Detroit, MI, USA J Shin, C Lee, and J Lee (1999), ắRobust fault-tolerant control framework for robot manipulators with free-swinging joint failures: fault detection, identification and accommodation,” Proceedings of the 1999 IEEERSJ International Conference on Intelligent Robots and Systems, vol 1, pp 185ậ 190 W Wei (2011), ắAdaptive backstepping control of uncertain systems with actuator failures and subsystem interactions,” Doctor Dessertation, School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore Min-Soeng Kim, Sang-Keon Oh, Jin-Ho Shin, et al (2001), ắRobust model reference adaptive control of underactuated robot manipulators,” 2001 IEEE International Symposium on Industrial Electronics Proceedings, vol 3, pp 1579ậ1584, IEEE, Pusan A.A.G Siqueira and M.H Terra (2004), ắNonl near an Markov an ả∞ controls of underactuated manipulators,” IEEE Transactions on Control Systems Technology, vol 12, no 6, pp 811ậ826 X.D.L W Wang and J.Q Yi (2007), ắStructure design of two types of sliding-mode controllers for a class of under-actuated mechanical systems,” IET Control Theory Appl., vol 1, no D Pucci, F Romano, and F Nori (2015), ắCollocated Adaptive Control of Underactuated Mechanical Systems,” IEEE Transactions on Robotics, vol 31, no 6, pp 1527ậ1536 G Liu (2001), ắControl of robot manipulators with consideration of actuator performance degradation and failures,” 2001 IEEE International Conference on Robotics & Automation, pp 2566ậ2571, IEEE, May 21st, Seoul, Korea X Jin (201 ), ắAdaptive finite-time tracking control for joint position constrained robot manipulators with actuator faults,” 201 American Control Conference (ACC), pp 6018ậ6023, IEEE, Jul 6th, Boston, MA, USA J.-X Zhang and G.-H Yang (2017), ắRobust Adaptive Fault-Tolerant Control for a Class of Unknown Nonlinear Systems,” IEEE Transactions on Industrial Electronics, vol 64, no 1, pp 585ậ594 Y Yang and D Yue (2018), ắAdaptive decentralized fault-tolerant tracking control of a class of uncertain large-scale nonlinear systems with actuator faults,” Transactions of the Institute of Measurement and Control, vol 40, no 3, pp 831ậ842 (2017), ắProduct specification IRB 2400 (Document ID: 3HAC042195143 [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] 001),” ABB Robotics Z Hasan and J.S Thomas (1999), ắChapter 33 Kinematic Redundancy,” Progress in Brain Research, vol 123, pp 379ậ387, Elsevier S Chiaverini, G Oriolo, and I.D Walker (2008), ắKinematically Redundant Manipulators,” Springer Handbook of Robotics, pp 245ậ268, Springer, Berlin, Heidelberg, Germany S.-H Cha, T.A Lasky, and S.A Velinsky (200 ), ắKinematic Redundancy Resolution for Serial-Parallel Manipulators via Local Optimization Including Joint Constraints,” Mechanics Based Design of Structures and Machines, vol 34, no 2, pp 213ậ239 J Angeles (2007), ắFundamentals of Robotic Mechanical Systems: Theory, Methods and Algorithms,” 3rd Ed., Springer Science+Business Media LLC, New York, NY, USA R.M Murray, Z Li, and S.S Sastry (1994), ắA Mathematical Introduction to Robotic Manipulation,” CRC Press, Boca Raton, FL, USA M.W Spong, S Hutchinson, and V M (2005), ắRobot Modeling and Control,” 1st Ed., John Wiley & Sons, Hoboken, NJ, USA E Dombre and W Khalil, Eds (2007), ắModeling, Performance Analysis and Control of Robot Manipulators,” ISTE Ltd, London, UK L Sciavicco and B Siciliano (2000), ắModelling and Control of Robot Manipulators,” 2nd Ed., Springer-Verlag London, London, UK B Siciliano, L Sciavicco, L Villani, et al (2009), ắRobotics: Modelling, Planning and Control,” Springer-Verlag London Ltd, London, UK N.Q Hoang and V.D Vuong (2017), ắSliding mode control for a planar parallel robot driven by electric motors in a task space,” Journal of Computer Science and Cybernetics, vol 33, no 4, pp 325ậ337 N Van Khang, N.Q Hoang, N.D Sang, et al (2015), ắA comparison study of some control methods for delta spatial parallel robot,” Journal of Computer Science and Cybernetics, vol 31, no 1, pp 71ậ81 N.T Hi p and P.T Cát (2008), ắ u n rôbôt theo n yên lý tr t s d ng m n n ron,” T p chí Tin h c vƠ u n h c, vol 24, no 3, pp 236ậ246 P.T Cát (2008), ắ u n rôb t N b c t có nhi u tham s b t đ nh tron khơn an Các,” T p chí Tin h c vƠ u n h c, vol 24, no 4, pp 333ậ341 N.V Khang and T.Q Trung (2014), ắ u n chuy n đ ng robot hai chân pha m t chân tr theo ph n pháp tr t s d ng m n n ron,” T p chí Tin h c vƠ u n h c, vol 30, no 1, pp 70ậ80 S.R Ploen (1999), ắA skew-symmetric form of the recursive Newton-Euler algorithm for the control of multibody systems,” Proceedings of the 1999 American Control Conference, vol 6, pp 3770ậ3773, IEEE, Jun 2nd, San Diego, CA, USA Hong-Chin Lin, Tsung-Chieh Lin, and K.H Yae (1995), ắOn the skewsymmetric property of the Newton-Euler formulation for open-chain robot manipulators,” Proceedings of 1995 American Control Conference - ACC’95, vol 3, pp 2322ậ2326, IEEE, Jun 21st, Seattle, WA, USA 144 [57] M Bjerkeng and K.Y Pettersen (2012), ắA new Coriolis matrix factorization,” 2012 IEEE International Conference on Robotics and Automation, pp 4974ậ4979, IEEE, May , Saint Paul, MN, USA [58] M Becke and T Schlegl (2012), ắExtended Newton-Euler based centrifugal/coriolis matrix factorization for geared serial robot manipulators with ideal joints,” Proceedings of 15th International Conference Mechatronika, pp 1ậ7, IEEE, Dec 5th, Prague, Czech Republic [59] P Sánchez-Sánchez and M.A Arteaga-Pérez (2012), ắSimplied Methodology for Obtaining the Dynamic Model of Robot Manipulators,” International Journal of Advanced Robotic Systems, vol 9, no 5, pp 1ậ12, IntechOpen Limited [60] F.L Lewis, D.M Dawson, and C.T Abdallah (2004), ắRobot Manipulator Control: Theory and Practice,” 2nd Ed., Marcel Dekker, New York, NY, USA [61] N Van Khang (2010), ắConsistent definition of partial derivatives of matrix functions in dynamics of mechanical systems,” Mechanism and Machine Theory, vol 45, no 7, pp 981ậ988, Elsevier Ltd [62] N Van Khang (2011), ắKronecker product and a new matrix form of Lagrangian equations with multipliers for constrained multibody systems,” Mechanics Research Communications, vol 38, no 4, pp 294ậ299, Elsevier Ltd [63] J Brewer (1978), ắKronecker products and matrix calculus in system theory,” IEEE Transactions on Circuits and Systems, vol 25, no 9, pp 772ậ781, IEEE [64] A J Laub (2005), ắMatrix Analysis for Scientists and Engineers,” SIAM, Philadelphia, PA, USA [65] F Zhang (2011), ắMatrix Theory,” 2nd Ed., Springer New York, New York, NY, USA [66] J.J Craig (2005), ắIntroduction to Robotics: Mechanics and Control,” 3rd Ed., Pearson Prentice Hall, Upper Saddle River, NJ, USA [67] H Goldstein (1980), ắClassical Mechanics,” 2nd Ed., Addison-Wesley [68] T.R Kane and D.A Levinson (1985), ắDynamics: Theory and Applications,” McGraw Hill [69] P.E Nikravesh (1988), ắComputer-aided analysis of mechanical systems,” Prentice-Hall, Englewood Cliffs, NJ, USA [70] E.J Haug (1989), ắComputer-Aided Kinematics and Dynamics of Mechanical Systems Vol 1: Basic Methods,” Allyn & Bacon, Boston, MA, USA [71] W Schiehlen and P Eberhard (2014), ắApplied Dynamics,” Springer International Publishing, Cham, Zug, Switzerland [72] H Josephs and R Huston (2002), ắDynamics of Mechanical Systems,” CRC Press, Boca Raton, FL, USA [73] A.A Shabana (2005), ắDynamics of Multibody Systems,” 3rd Ed., Cambridge University Press, New York, NY, USA [74] V.D Tourassis and C.P Neuman (1985), ắProperties and structure of dynamic robot models for control engineering applications,” Mechanism and Machine Theory, vol 20, no 1, pp 27ậ40 145 [75] N.V Khang (2017), ắ ng l c h c h nhi u v t (Dynamics of Multibody Systems),” 2nd Ed., NXB Khoa h c k thu t, Hà N i, Vi t Nam [76] F.L Lewis, J.M Fitzgerald, I.D Walker, et al (1999), ắChapter 14 Robotics,” Mechanical Engineering Handbook, CRC Press LLC [77] S Arimoto and F Miyazaki (1983), ắStability and robustness of PID feedback control for robot manipulators of sensory capability,” The first international symposium of robotics research, pp 783ậ799, MIT Press, Cambridge, MA, USA [78] J.J Craig (1989), ắIntroduction to Robotics: Mechanics and Control,” 2nd Ed., Addison-Wesley Longman, New York, NY, USA [79] M.W Spong and M Vidyasagar (1989), ắRobot Dynamics and Control,” John Wiley & Sons [80] K Kozlowski (1998), ắModelling and Identification in Robotics,” Springer London, London [81] B Siciliano and K.P Valavanis, Eds (1998), ắControl Problems in Robotics and Automation,” vol 230, no 1, Springer Berlin Heidelberg, Berlin, Heidelberg [82] J Angeles (2003), ắFundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms,” [83] (2018), ắProduct specification IRB 120 (Document ID: 3HAC035960-001),” ABB Robotics [84] ắIRB 120 CAD Models,” ABB Robotics, [Online] Available: https://new.abb.com/products/robotics/industrial-robots/irb-120/irb-120-cad [85] B Armstrong and C.C de Wit (199 ), ắFriction Modeling and Compensation,” The Control Handbook, pp 1369ậ1382, CRC Press, Boca Raton, FL, USA [86] B Siciliano and O Khatib, Eds (201 ), ắSpringer Handbook of Robotics,” Springer International Publishing, Cham, Zug, Switzerland [87] A.A Awelewa, K.C Mbanisi, S.O Majekodunmi, et al (2013), ắDevelopment of a Prototype Robot Manipulator for Industrial Pick-andPlace Operations,” International Journal of Mechanical & Mechatronics Engineering, vol 13, no 05, pp 20ậ28, IJENS [88] R Alizade (2019), ắStructural Synthesis of Robot Manipulators by Using Screw with Variable Pitch,” Universal Journal of Mechanical Engineering, vol 7, no 2, pp 50ậ63 [89] J Ghommam, N Derbel, and Q Zhu, Eds (2020), ắNew Trends in Robot Control,” Springer Singapore, Singapore [90] T.-M Wang, Y Tao, and H Liu (2018), ắCurrent Researches and Future Development Trend of Intelligent Robot: A Review,” International Journal of Automation and Computing, vol 15, no 5, pp 525ậ546, Springer [91] A.A Jaber and R Bicker (2018), ắDevelopment of a Condition Monitoring Algorithm for Industrial Robots based on Artificial Intelligence and Signal Processing Techniques,” International Journal of Electrical and Computer Engineering (IJECE), vol 8, no 2, pp 996ậ1009 [92] J.D English and A.A Maciejewski (2001), ắFailure Tolerance through Active Braking: A Kinematic Approach,” The International Journal of 146 Robotics Research, vol 20, no 4, pp 287ậ299, Sage Publications, Inc [93] H Abdi, S Nahavandi, Y Frayman, et al (2012), ắOptimal mapping of joint faults into healthy joint velocity space for fault-tolerant redundant manipulators,” Robotica, vol 30, no 4, pp 35ậ648, Cambridge University Press [94] Y She, W Xu, Z Wang, et al (2013), ắInverse kinematics of SSRMS-type manipulators with single joint locked failure,” 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp 7ậ12, IEEE, Dec 12th, Shenzhen, China [95] W Xu, Y She, and Y Xu (2014), ắAnalytical and semi-analytical inverse kinematics of SSRMS-type manipulators with single joint locked failure,” Acta Astronautica, vol 105, no 1, pp 201ậ217, Elsevier [96] Z Mu, L Han, W Xu, et al (201 ), ắKinematic analysis and fault-tolerant trajectory planning of space manipulator under a single joint failure,” Robotics and Biomimetics, vol 3, no 16 [97] Z Mu, B Zhang, W Xu, et al (201 ), ắFault tolerance kinematics and trajectory planning of a 6-DOF space manipulator under a single joint failure,” 201 IEEE International Conference on Real-time Computing and Robotics (RCAR), pp 483ậ488, IEEE, Jun 6th, Angkor Wat, Cambodia [98] M.M Polycarpou (2001), ắFault accommodation of a class of multivariable nonlinear dynamical systems using a learning approach,” IEEE Transactions on Automatic Control, vol 46, no 5, pp 736ậ742 [99] L Xing, C Wen, Z Liu, et al (2017), ắAdaptive compensation for actuator failures with event-triggered input,” Automatica, vol 85, pp 129ậ136, Elsevier Ltd [100] Q Yang, S.S Ge, and Y Sun (2015), ắAdaptive actuator fault tolerant control for uncertain nonlinear systems with multiple actuators,” Automatica, vol 60, pp 92ậ99, Elsevier Ltd [101] A Freddi, S Longhi, A Monteriù, et al (2018), ắFault Tolerant Control Scheme for Robotic Manipulators Affected by Torque Faults,” IFACPapersOnLine, vol 51, no 24, pp 886ậ893, Elsevier B.V [102] Y Zeng, Y.-R Xing, H.-J Ma, et al (2015), ắAdaptive fault diagnosis for robot manipulators with multiple actuator and sensor faults,” 27th Chinese Control and Decision Conference (CCDC), pp 6569ậ6574, IEEE, May 23rd, Qingdao, China [103] H.-J Ma and G.-H Yang (201 ), ắSimultaneous fault diagnosis for robot manipulators with actuator and sensor faults,” Information Sciences, vol 366, pp 12ậ30, Elsevier Inc [104] K.O Omali, M.N Kabbaj, and M Benbrahim (2020), ắActuator fault detection and isolation for robot manipulator using higher order sliding mode observers,” Indonesian Journal of Electrical Engineering and Computer Science, vol 17, no 3, pp 1150ậ1156 [105] S.J Yoo (2012), ắActuator fault detection and adaptive accommodation control of flexible-joint robots,” IET Control Theory & Applications, vol , no 10, pp 1497ậ1507 [106] V Sathish, S Ramaswamy, and S Butail (201 ), ắTraining data selection 147 criteria for detecting failures in industrial robots,” IFAC-PapersOnLine, vol 49, no 1, pp 385ậ390, Elsevier B.V [107] F Caccavale, P Cilibrizzi, F Pierri, et al (2009), ắActuators fault diagnosis for robot manipulators with uncertain model,” Control Engineering Practice, vol 17, no 1, pp 146ậ157 [108] R Muradore and P Fiorini (2012), ắA PLS-based statistical approach for fault detection and isolation of robotic manipulators,” IEEE Transactions on Industrial Electronics, vol 59, no 8, pp 3167ậ3175 [109] M.L McIntyre, W.E Dixon, D.M Dawson, et al (2005), ắFault identification for robot manipulators,” IEEE Transactions on Robotics, vol 21, no 5, pp 1028ậ1034 [110] A De Luca and R Mattone (2005), ắAn identification scheme for robot actuator faults,” 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pp 2613ậ2617, IEEE, Dec , Edmonton, Alta., Canada [111] F Caccavale, A Marino, G Muscio, et al (2013), ắDiscrete-time framework for fault diagnosis in robotic manipulators,” IEEE Transactions on Control Systems Technology, vol 21, no 5, pp 1858ậ1873 [112] R Lei and L Chen (2019), ắAdaptive fault-tolerant control based on boundary estimation for space robot under joint actuator faults and uncertain parameters,” Defence Technology, vol 15, no , pp 4ậ971, Elsevier Ltd [113] J Baek, M Jin, and S Han (201 ), ắA New Adaptive Sliding-Mode Control Scheme for Application to Robot Manipulators,” IEEE Transactions on Industrial Electronics, vol 63, no 6, pp 3628ậ3637 [114] L Zhang, Y Wang, Y Hou, et al (2019), ắFixed-time sliding mode control for uncertain robot manipulators,” IEEE Access, vol 7, pp 149750ậ149763, IEEE [115] Bing Xiao and S Yin (201 ), ắAn fast reconstruction approach for actuator fault in robot manipulators,” 201 14th International Workshop on Variable Structure Systems (VSS), pp 414ậ419, IEEE, Jun , Nanjing, China [116] J.E Slotine and W Li (1991), ắApplied Nonlinear Control,” Prentice Hall, Englewood Cliffs, NJ, USA [117] A.F Filippov (19 0), ắDifferential equations with discontinuous right-hand side,” Matematicheskii Sbornik (N.S.), vol 51(93), no 1, pp 99ậ128 [118] P.H Hammond, Ed (19 ), ắTheory of Self-Adaptive Control Systems,” Springer US, Boston, MA, USA [119] D Sworder, Ed (19 ), ắOptimal Adaptive Control Systems,” Elsevier Science, New York, NY, USA [120] R Monopoli (1974), ắModel reference adaptive control with an augmented error signal,” IEEE Transactions on Automatic Control, vol 19, no 5, pp 474ậ484 [121] M.L Tatnall (1977), ắModel Reference Adaptive Control Systems: Background and Development,” Measurement and Control, vol 10, no 12, pp 475ậ487 [122] I.D Landau (1979), ắAdaptive Control,” Marcel Dekker, New York, NY, USA 148 [123] K.S Narendra and R V Monopoli, Eds (1980), ắApplications of Adaptive Control,” Elsevier (imprint: Academic Press), New York, NY, USA [124] K.S Narendra and A.M Annaswamy (1989), ắStable Adaptive Systems,” Prentice-Hall, Englewood Cliffs, NJ, USA [125] S.S SASTRY (1984), ắModel-Reference Adaptive Control—Stability, Parameter Convergence, and Robustness,” IMA Journal of Mathematical Control and Information, vol 1, no 1, pp 27ậ66 [126] S Sastry and M Bodson (1989), ắAdaptive Control: Stability, Convergence, and Robustness,” Prentice-Hall, Englewood Cliffs, NJ, USA [127] P V Kokotovíc, Ed (1991), ắLecture Notes in Control and Information Sciences: Foundations of Adaptive Control,” Springer-Verlag, Berlin, Heidelberg, Germany [128] K.J Åström, U Borisson, L Ljung, et al (1977), ắTheory and applications of self-tuning regulators,” Automatica, vol 13, no 5, pp 457ậ476 [129] K.J Åström and B Wittenmark (1995), ắAdaptive Control,” 2nd Ed., Addison-Wesley, New York, NY, USA [130] M Krstic, I Kanellakopoulos, and P Kokotovic (1995), ắNonlinear and Adaptive Control Design,” 1st Ed., John Wiley & Sons Inc., New York, NY, USA [131] I.D Landau, R Lozano, M M’Saad, et al (2011), ắAdaptive Control,” 2nd Ed., Springer London, London, UK [132] Z Ding (2013), ắNonlinear and Adaptive Control Systems,” IET, London, UK [133] V V Chalam (2017), ắAdaptive Control Systems,” Routledge, Boca Raton, FL, USA [134] B Wei (2018), ắAdaptive Control Design and Stability Analysis of Robotic Manipulators,” Actuators, vol 7, no 4, p 89 [135] N.T Nguyen (2018), ắModel-Reference Adaptive Control,” Springer International Publishing, Cham [136] A.M Lyapunov (1892), ắThe General Problem of the Stability of Motion,” Univ Kharkov, Gostekhizdat, Moscow [137] J.P LaSalle (19 0), ắSome Extens ons of L ap nov’s Secon Metho ,” IRE Transactions on Circuit Theory, vol 7, no 4, pp 520ậ527 [138] J.P LaSalle (19 8), ắStability theory for ordinary differential equations,” Journal of Differential Equations, vol 4, no 1, pp 57ậ65 [139] T Yoshizawa (19 ), ắStab l ty Theory by Lyap nov’s Secon Method,” The Mathematical Society of Japan [140] R.R Gupta and V.V Chalam (1979), ắLyapunov Redesign of Model Reference Adaptive Control Systems (Part I),” IETE Journal of Research, vol 25, no 11, pp 456ậ458 [141] C.A Desoer and M Vidyasagar (1975), ắFeedback Systems: Input–Output Properties,” Elsevier (imprint: Academic Press), New York, NY, USA [142] E.D Sontag (1989), ắSmooth stabilization implies coprime factorization,” IEEE Transactions on Automatic Control, vol 34, no 4, pp 435ậ443 [143] E.D Sontag (1990), ắFurther facts about input to state stabilization,” IEEE Transactions on Automatic Control, vol 35, no 4, pp 473ậ476 149 [144] V.M Popov (1959), ắCriterii de Stabilitate Pentru Sistemele Neliniare de Reglare Automata Bazate pe Utilizarea Transformatei Laplace,” Stud Cerc Energetica (in Romanian), vol 9, no 1, pp 119ậ135 [145] V.M Popov (19 4), ắHyperstability of Automatic Control Systems with Several Nonlinear Elements,” Revue Roumaine des Sciences Techniques, vol 9, no 1, pp 35ậ45 [146] V.M Popov (19 ), ắHyperstability of Automatic Control Systems,” Editura Academiei Republicii Socialiste Romania, Bucharest (in Romanian) [147] C.I Byrnes, A Isidori, and J.C Willems (1991), ắPassivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems,” IEEE Transactions on Automatic Control, vol , no 11, pp 1228ậ 1240 [148] L Praly, G Bastin, J.-B Pomet, et al (1991), ắAdaptive stabilization of nonlinear systems,” Foundations of Adaptive Control Lecture Notes in Control and Information Sciences vol 160, pp 347ậ433, Springer-Verlag, Berlin, Heidelberg, Germany [149] S Dubowsky and D.T DesForges (1979), ắThe Application of ModelReferenced Adaptive Control to Robotic Manipulators,” Journal of Dynamic Systems, Measurement, and Control, vol 101, no 3, pp 193ậ200 [150] R Horowitz and M Tomizuka (198 ), ắAn Adaptive Control Scheme for Mechanical Manipulators—Compensation of Nonlinearity and Decoupling Control,” Journal of Dynamic Systems, Measurement, and Control, vol 108, no 2, pp 127ậ135 [151] A.J Koivo and T.H Guo (1983), ắAdaptive Linear Controller for Robotic Manipulators,” IEEE Transactions on Automatic Control, vol 28, no 2, pp 162ậ171 [152] G Leininger (1983), ắAdaptive control of manipulators using self-tuning methods,” 1st ISRR, Bretton Woods, NH, USA [153] C Lee and M Chung (1984), ắAn adaptive control strategy for mechanical manipulators,” IEEE Transactions on Automatic Control, vol 29, no 9, pp 837ậ840 [154] J.J Craig, P Hsu, and S.S Sastry (1987), ắAdaptive Control of Mechanical Manipulators,” The International Journal of Robotics Research, vol , no 2, pp 16ậ28 [155] J.J Craig (1988), ắAdaptive Control of Mechanical Manipulators,” Addison Wesley Publishing Company, Reading, MA, USA [156] (2020), ắDS1104 R&D Controller Board,” dSpace GmbH, [Online] Available: www.dspace.com/en/inc/home/products/hw/singbord/ds1104.cfm [157] (2020), ắConnector and LED Panels,” dSpace GmbH, [Online] Available: www.dspace.com/en/inc/home/products/hw/singbord/conledpanels.cfm [158] (2020), ắServo Amplifiers & Motors,” Mitsubishi Electric Corp., [Online] Available: www.mitsubishielectric.com/fa/vn_vi/products/drv/servo/ [159] (201 ), ắIEEE Recommended Practice for Excitation System Models for Power System Stability Studies,” IEEE Std 421.5-2016, Piscataway, NJ, USA 150 PH L C Trong ph n Ph l c này, tác gi s trình bày chi ti t trình áp d ng k t qu m c 2.4 vào xây d ng mơ hình đ ng l c h c cho robot IRB 120 c a hãng ABB có b c t t ng ng v i kh p quay d ng b n l D a theo h t a đ kh p đ c mô t Hình 2.2 tham s D-H đ c th hi n B ng 2.1, ma tr n phép bi n đ i thu n nh t d dƠng đ c tính c1 -s1 s2 c2 a s2 c s a 2c2 s c1 , T21 2 T10 0 -1 d1 0 0 c4 s4 c3 s3 a 3c3 s c4 s c3 a 3s3 T32 , T43 d4 1 0 0 0 0 c6 s6 0 c5 s5 s c 0 s c5 T54 , T65 6 (A.1) 0 d6 1 0 0 0 1 Trong kỦ hi u , , , l n l t bi u th cho , , , ,( ) T ma tr n (A.1), ta có th tính đ c ma tr n t đ n gi n l c vi c trình bày nhi u k t qu trung gian có tính ch t t ng t nhau, tác gi ch đ a k t qu cho ma tr n nh sau: T6 (1,1) c1 c4c5c6 s4 s6 s23 s5c23c1c6 s1 c5c6 s4 c4 s6 T60 (2,1) s1 c4c5c6 s4 s6 s23 s1s5c23c6 c1 c5c6 s4 c4 s6 T60 (3,1) c4c5c6c23 c6 s5 s23 c23s4 s6 T60 (1, 2) c1 c4c5 s6 c6 s4 s23 s5c23c1s6 s1 c5s4 s6 c4c6 T60 (2, 2) s1 c4c5 s6 c6 s4 s23 s1s5c23s6 c1 c5 s4 s6 c4c6 T60 (3, 2) c4c5c23s6 c6c23s4 s5 s6 s23 T60 (1,3) c1c4 s5 s23 c1c5c23 s1s4 s5 T60 (2,3) c4 s1s5 s23 c1s4 s5 c5c23s1 T60 (3,3) c4c23s5 c5 s23 T60 (1, 4) c1 c5d d c23 c1 c4 d s5 a s23 s1s4 s5d c1a s2 T60 (2, 4) s1 c5d d c23 s1 c4d s5 a s23 s4 s5c1d s1a s2 T60 (3, 4) c4 d s5 a c23 c5d d s23 a 2c2 d1 Ti p theo, trích xu t ma tr n quay , , t ma tr n , , (A.2) Sau PL1 thay ma tr n quay vƠo (2.10) đ tính ma tr n tích có h ng T có th tìm vector v n t c quay theo (2.1) nh sau: c23q1c4 s4 q3 q2 c23q1 c2 q1 s23q1 q4 q1 , s2 q1 , q2 q3 , s q q 23 c23q1s4 c4 q3 q2 (c23c4c5 s23s5 )q1 q2 s4c5 q3s4c5 q4 s5 c q s q c q c q (c c s 23s 1c 4)q 2 q4 s s3 4 q s5s q c 23 23 5 5 v i ph n t 6 x q1 (c4c5c6 s4 s6 )c23 c6 s23s5 c5c6 s4 c4 s6 q2 , , (A.3) c5c6 s4 c4 s6 q3 c6 s5q4 s6q5 6 y q1 (c4c5 s6 c6 s4 )c23 s6 s23s5 c5 s4 s6 c4c6 q2 c5 s4 s6 c4c6 q3 s6 s5q4 c6q5 Thay 6 z q1 c23s5c4 s23c5 q2 s5 s4 q3s5 s4 q4c5 q6 (A.4) , , (A.3) (A.4) vào (2.26) có th tìm ma tr n Jacobi quay 0 0 c2 0 0 0 s2 0 0 J R1 0 0 , J R2 0 0 q 0 0 0 0 0 c c s s 0 23 4 1 1 0 , J R4 s23 0 0 J R3 c s c c 0 0 q 0 0 0 23 4 c c c s s c5 s4 c5 s4 s5 0 23 23 J R5 c23s4 c4 c4 1 0 (A.5) q s c c c s s s s s c 0 23 23 5 v i ph n t J R6 (1,1) (c6c4c5 s4 s6 )c23 s5 s23c6 J R6 (1,3) c6 s4c5 s6c4 J R6 (1,5) s6 0 1 q 0 c 23 q s 23 J R6 (2,1) s5 s23s6 ( s6c4c5 c6 s4 )c23 J R6 (2,3) s4 s6c5 c6c4 J R6 (2,5) c6 J R6 (1, 2) c6 s4c5 s6c4 J R6 (1, 4) s5c6 J R6 (1,6) J R6 (3, 2) s5 s4 J R6 (3, 4) c5 J R6 (3,6) J R6 (3,1) s5c4c23 c5 s23 J R6 (2, 2) s4 s6c5 c6c4 J R6 (3,3) s5 s4 J R6 (3,5) J R6 (2, 4) s5 s6 J R6 (2,6) T vector v trí m tr ng tâm c a khâu xét h t a đ th ,( ), tìm vector v trí theo (2.14) pC0 (A.6) a xC s2 yC 2c2 c1 s1zC c1xC1 s1zC1 c1zC1 s1xC1 , pC0 a xC s2 yC 2c2 s1 c1zC y d s y a x c d C1 C2 C2 PL2 c1 a xC s23 a 2c1s2 c1c23 zC s1 yC s1 a xC s23 a s1s2 s1c23 zC c1 yC (A.7) a3 xC c23 a 2c2 s23 zC d1 vector , , v i ph n t l n l t pC0 (1,1) c1 c4 xC s4 zC a s23 c1 d yC c23 c1a s2 s1 c4 zC s4 xC pC0 pC0 (2,1) s1 c4 xC s4 zC a s23 s1 d yC c23 s1a s2 c1 c4 zC s4 xC pC0 (3,1) c4 xC s4 zC a3 c23 d yC s23 a 2c2 d1 (A.8) pC0 (1,1) c5 xC s5 zC c4 s4 yC a3 c1s23 c1 c5 zC s5 xC d c23 c1a s2 c4 yC s4 c5 xC s5 zC s1 pC0 (2,1) s1 c5 xC s5 zC c4 s4 yC a3 s23 s1 c5 zC s5 xC d c23 s1a s2 c4 yC s4 c5 xC s5 zC c1 pC0 (3,1) ((c5 xC s5 zC )c4 s4 yC a )c23 (c5 zC s5 xC d ) s23 a 2c2 d1 (A.9) pC0 (1,1) c1 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 a3 s23 d6 zC c5 c6 xC s6 yC s5 d c1c23 c1a s2 s1 c6 yC s6 xC c4 s4 c6 xC s6 yC c5 s5 d6 zC pC0 (2,1) s1 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 a3 s23 s1 d6 zC c5 c6 xC s6 yC s5 d c23 s1a s2 c6 yC s6 xC c4 s4 c6 xC s6 yC c5 s5 d6 zC c1 pC0 (3,1) c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 c23 (A.10) d6 zC c5 c6 xC s6 yC s5 d s23 a 2c2 d1 Thay (A.7)-(A.10) vào (2.25) tính đ c ma tr n Jacobi t nh ti n vƠ theo k t qu chi ti t cho ma tr n J T06 (1,1) s1 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 a3 s23 s1 d6 zC c5 c6 xC s6 yC s5 d c23 s1a s2 J T0 (2,1) c1 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 a3 s23 c6 yC s6 xC c4 s4 c6 xC s6 yC c5 s5 d6 zC c1 d6 zC c5 c6 xC s6 yC s5 d c1c23 c1a s2 s1 c6 yC s6 xC c4 s4 c6 xC s6 yC c5 s5 d6 zC J T06 (3,1) PL3 c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 c1c23 J T06 (1, 2) d6 zC c5 c6 xC s6 yC s5 d c1s23 a 2c1c2 J T06 (2, 2) c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 s1c23 d6 zC c5 c6 xC s6 yC s5 d s1s23 a s1c2 J T06 (3, 2) c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 s23 d6 zC c5 c6 xC s6 yC s5 d c23 a s2 c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 c1c23 J T06 (1,3) d6 zC c5 c6 xC s6 yC s5 d c1s23 J T06 (2,3) c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 s1c23 d6 zC c5 c6 xC s6 yC s5 d s1s23 J T06 (3,3) c6 xC s6 yC c5 s5 d6 zC c4 c6s4 yC s4s6 xC a3 s23 d6 zC c5 c6 xC s6 yC s5 d c23 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 s1 J T0 (2, 4) s1 c6 yC s6 xC c4 c6 xC s6 yC c5 s5 d6 zC s4 s23 c6 xC s6 yC c5 s5 d6 zC c4 c6 yC s6 xC s4 c1 J T0 (3, 4) c23 c6 xC s6 yC c5 s5 d6 zC s4 c6 yC s6 xC c4 J T06 (1, 4) c1 c6 yC s6 xC c4 c6 xC s6 yC c5 s5 d6 zC s4 s23 6 J T06 (1,5) c1 c6 xC s6 yC c5 s5 d6 zC c23 c1c4 s23 s1s4 d6 zC c5 c6 xC s6 yC s5 J T06 (2,5) s1 c6 xC s6 yC c5 s5 d6 zC c23 d6 zC c5 c6 xC s6 yC s5 c4 s1s23 c1s4 J T06 (3,5) d6 zC c5 c6 xC s6 yC s5 c4c23 s23 c6 xC s6 yC c5 s5 d6 zC J T06 (1,6) c1 c4c5 yC s4 xC c6 s6 c4c5 xC s4 yC s23 s5c1 c6 yC s6 xC c23 c5 s4 yC c4 xC s1c6 s1s6 c5 s4 xC c4 yC J T06 (2,6) s1 c4c5 yC s4 xC c6 s6 c4c5 xC s4 yC s23 s1s5 c6 yC s6 xC c23 c5 s4 yC c4 xC c1c6 c1s6 c5 s4 xC c4 yC PL4 J T06 (3,6) c4c5 yC s4 xC c6 s6 c4c5 xC s4 yC c23 c6 yC s6 xC s5 s23 (A.11) , Thay ma tr n , I vào (2.30) s tìm đ c ma tr n quán tính t ng quát M d a vƠo tính đ c ma tr n C theo d ng th c (2.54) l n l t M mi (JT0i )T JT0i JTRi I i J Ri i 1 (A.12) T M M M (A.13) C 16 q q 16 q 16 q q q B ng cách s d ng ph n m m tính tốn cho bi n symbolic (Maple), ta có th tính đ c ma tr n M theo (A.12) ma tr n C theo (A.13) T ng th n ng c a robot IRB 120 đ c tính sau thay k t qu (A.7)-(A.10) vào (2.18) Và vector thành ph n tr ng l c mơ hình đ ng l c h c s thu đ c b i (2.47) v i ph n t g (1) g (2) x C 6c6 m6 yC s6 m6 m5 xC c5 d zC m6 zC 5m5 s5 xC 4m4 c4 yC m6c6 xC s6 m6 m4 zC m5 yC s4 a 3m6 a 3m5 a 3m4 m3 a xC gs23 d6 zC m6 zC 5m5 c5 s5 xC 6c6m6 yC 6s6m6 m5 xC d m6 d m5 d yC m4 zC 3m3 gc23 a m6 a m5 a m4 m2 m3 a xC m2 gs2 c2 m2 gyC g (3) x C 6c6 m6 yC s6 m6 m5 xC c5 d zC m6 zC 5m5 s5 xC 4m4 c4 c6 m6 yC m6 s6 xC m4 zC m5 yC s4 a3m6 a3m5 a3m4 m3 a3 xC gs23 d6 zC m6 zC 5m5 c5 s5 c6m6 xC yC 6s6m6 m5 xC d m6 d m5 d yC m4 zC 3m3 gc23 g (4) c6 m6 xC yC s6 m6 m5 xC c5 d6 zC m6 zC 5m5 s5 xC m4 gc23s4 c6 m6 yC m6 s6 xC m4 zC m5 yC gc23c4 d6 zC m6 zC5m5 c5 s5 c6m6 xC yC 6s6m6 m5 xC5 gc23c4 c6m6 xC yC s6 m6 m5 xC c5 d6 zC m6 zC 5m5 s5 gs23 g (5) g (6) c4c5 yC s4 xC c6 s6 c4c5 xC s4 yC m6 gc23 c6 yC s6 xC m6 gs23s5 (A.14) PL5 ... ch n h ng đ tƠi ? ?Phân tích đ xu t ph n pháp u n tay máy cơng nghi p tình tr ng t n th t h ch p hành? ?? Ph ng h ng nghiên c u d a vào m t d ng tay máy đó, xây d ng mơ hình tay máy ho t đ ng bình... 1.5.2 Tình hình nghiên c u v t n th t c ch ch p hành tay máy robot 12 1.5.3 Phân tích kh n ng u n tay máy công nghi p tình tr ng t n th t c ch ch p hành 14 1.5.3.1 Phơn tích đ ng... tích kh n ng u n tay máy cơng nghi p tình tr ng t n th t c ch ch p hành 1.5.3.1 Phân tích đ ng h c c a m t ki u tay máy cơng nghi p có kh p quay n hình b t n th t m t c ch ch p hành Trong tr ng h