1. Trang chủ
  2. » Trung học cơ sở - phổ thông

DE THI LOP 10 ( CO LOI GIAI) - môn toán

57 1K 7

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 57
Dung lượng 1,96 MB

Nội dung

www.facebook.com/hocthemtoan

Giáo án ôn tập Toán 9 Luyện thi vào lớp 10 thpt Môn toán ( Thời gian 150) đề 1 B ài I ( 1,5 điểm) : Cho biểu thức x xx A 24 44 2 + = 1) Với giá trị nào của x thì biểu thức A nghĩa? 2) Tính giá trị của biểu thức A khi : x = 1,999 B ài II ( 1,5 điểm) : Giải hệ phơng trình = + = 5 2 34 1 2 11 yx yx B ài III ( 2 điểm) : Tìm các giá rị của a để ptrình : ( ) 032)3( 222 =++ axaxaa Nhận x=2 là nghiệm .Tìm nghiệm còn lại của ptrình ? B ài IV ( 4 điểm): Cho tam giác ABC vuông ở đỉnh A .Trên cạnh AB lấy điểm D không trùng với đỉnh Avà đỉnh B . Đ ờng tròn đơng kính BD cắt cạnh BC tại E . Đờng thẳng AE cắt đtròn đờng kính BD tại điểm thứ hai là G . Đơng thẳng CD cắt đtròn đờng kính BD tại điểm thứ hai là F . Gọi S là giao điểm của các đờng thẳng AC và BF . Chứng minh : 1) Đờng thẳng AC song song với đờng thẳng FO. 2) SA.SC = SB.SF 3) Tia ES là phân giác của góc AEF. B ài V ( 1 điểm): Giải phơng trình : x 2 + x + 12 301 =+ x đề thi số 2 B ài I ( 2 điểm) : Cho A = + + + 1 1 .1 1 a aa a aa Với a 0 , a 1 a) Rút gọn A. b) Với a 0 , a 1 . Tìm a sao cho A = - a 2 . B ài II ( 2 điểm) : Trên hệ trục toạ độ Oxy cho các điểm : M(2;1) và N(5;- 2 1 ) và đờng thẳng (d): y = ax + b. a) Tìm a và b để đờng thẳng (d) đi qua M và N . b) Xác định toạ độ giao điểm của đờng thẳng (d) với hai trục Oy và Ox . B ài III ( 2 điểm) : Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 Cho số nguyên dơng gồm hai chữ số. Tìm số đó biết rằng tổng của hai chữ số bằng 8 1 số đã cho và nếu thêm 13 vào tích hai chữ số sẽ đợc một số mới viết theo thứ tự ngợc lại với số đã cho. B ài IV ( 4 điểm) : Cho tam giác nhọn PBC , PA là đờng cao . Đờng tròn đờng kính BC cắt PB , PC lần luợt ở M và N . NA cắt đờng tròn tại điểm thứ hai là E . a) Chứng minh 4 điểm A , B, P ,N cùng thuộc một đờng tròn. Xác định tâm và bán kính của đờng tròn đó . b) Chứng minh : EM BC . c) Gọi F là điểm đối xứng của N qua BC. Chứng minh : AM . AF = AN . AE. đề thi số 3 B ài I ( 1,5 điểm) : Rút gọn biểu thức : M = 1 1 . 1 1 a a a a a + ữ ữ + với a 0 và a 1 B ài iI ( 1,5 điểm) : Tìm hệ số x, y thoả mãn các điều kiện : 2 2 25 12 x y xy + = = B ài iiI ( 2 điểm) : Hai ngời cùng làm chung một công việc sẽ hoàn thành trong 4 giờ . Nếu mỗi ngời làm riêng để hoàn thành công việc thì thời gian ngòi thứ nhất làm ít hơn ngời thứ hai 6 giờ . Hỏi nếu làm riêng thì mỗi ngòi phảI làm trong bao lâu sẽ hoàn thành công việc? B ài Iv ( 2 điểm) : Cho các hàm số : y = 2 x (P) và y = 3x + 2 m (d) ( x là biến số , m là số cho trớc) 1) CMR với bất kỳ giá trị nào của m , đg thẳng (d) luôn cắt parabol (P) tại 2 điểm phân bịêt 2) Gọi 1 2 ;y y là tung độ các giao điểm của đờng thẳng (d) và parabol (P) . Tìm m để đẳng thức : 1 2 1 2 11y y y y+ = B ài v ( 3 điểm) : Cho tam giác ABC vuông ở đỉnh A . Trên cạnh AC lấy điểm M ( khác với các điểm A và C) Vẽ đ ờng tròn (O) đờng kính MC . Gọi T là giao điểm thứ hai của cạnh BC với đờng tròn (O). Nối BM và kéo dài cắt đờng tròn (O) tại điểm thứ hai là D . Đờng thẳng AD cắt đờng tròn (O) tại điểm thứ hai là S . Chứng minh : 1) Tứ giác ABTM nội tiếp đợc trong một đòng tròn. 2) Khi điểm M di chuyển trên cạnh AC thì góc ADM số đo không đổi. 3) Đờng thẳng AB song song với đờng thẳng ST. đề thi số 4 Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 B ài I ( 2 điểm) : Cho biểu thức : S = 2 : y xy x x y x xy x xy + ữ ữ + với x > 0 , y > 0 và x y a) Rút gọn biểu thức trên . b) Tìm giá trị của x và y để S = 1. B ài iI ( 2 điểm) : Trên parabol y = 2 1 2 x lấy hai điểm A, B . Biết hoành đọ của điểm A là 2 A x = và tung độ của điểm B là 8 B y = . Viết phơng trình đờng thẳng AB. B ài Iii ( 1 điểm) : Xác định giá trị của m trong phơng trình bậc hai : 2 8 0x x m + = để 4 + 3 là nghiệm của phơng trình . Với m vừa tìm đợc , phơng trình đã cho còn một nghiệm nữa . Tìm nghiệm còn lại ấy? B ài Iv ( 4 điểm) : Cho hình thang cân ABCD ( AB // CD và AB > CD ) nội tiếp trong một đờng tròn (O) . Tiếp tuyến với đ- ờng tròn (O) tại A và tại D cắt nhau tại E . Gọi I là giao điểm của các đờng chéo AC và BD . 1) Chứng minh tứ giác AEDI nội tiếp trong một đờng tròn . 2) Chứng minh các đờng thẳng EI , AB song song với nhau. 3) Đờng thẳng EI cắt các cạnh bên AD và BC của hình thang tơng ứng ở R và S . CMR : a) I là trung điểm của đoạn RS . b) 1 1 2 AB CD RS + = B ài v ( 1 điểm) : Tìm tất cả các cặp số ( x , y ) nghiệm đúng phơng trình : ( ) ( ) 4 4 2 2 16 1 1 16x y x y+ + = đề thi số 5 B ài I ( 2 điểm) : Giải hệ phơng trình : 2 5 2 3 1 1,7 x x y x x y + = + + = + B ài Ii ( 2 điểm) : Cho biểu thức P = 1 1 x x x x + + với x > 0 ; x 1 a) Rút gọn biểu thức P. b) Tính giá trị của P khi x = 1 2 B ài Iii ( 2 điểm) : Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 Cho đờng thẳng d phơng trình y = ax + b. Biết rằng đờng thẳng d cắt trục hoành tại điểm hoành độ bằng 1 và song song với đờng thẳng y = -2x + 2003. a) Tìm a , b . b) Tìm toạ độ các điểm chung ( nếu ) của d và parabol y = 2 1 2 x . B ài Iv ( 3 điểm) : Cho đờng tròn (O) tâm là điểm O và một điểm A cố định nằm ngoài đờng tròn . Từ A kẻ các tiếp tuyến AP , AQ với đờng tròn (O) , P và Q là các tiếp điểm . Đờng thẳng đi qua O và vuông góc với OP cắt đờng thẳng AQ tại M . a) CMR : MO = MA . b) Lấy điểm N trên cung lớn PQ của đờng tròn (O) sao cho tiếp tuyến tại N của đờng tròn (O) cắt các tia AP và AQ tơng ứng tại B và C . 1) CMR : AB + AC BC không phụ thuộc vào vị trí điểm N . 2) CMR nếu tứ giác BCQP nội tiếp đờng tròn thì PQ // BC. B ài v ( 1 điểm) : Giải phơng trình : 2 2 2 3 2 3 2 3x x x x x x + + = + + + đề thi số 6 B ài I ( 3 điểm) : 1)Đơn giản biểu thức : P = 14 6 5 14 6 5+ + 2) Cho biểu thức : Q = 2 2 1 . 1 2 1 x x x x x x x + + ữ ữ + + với x > 0 ; x 1 a) Chứng minh Q = 2 1x b) Tìm số nguyên lớn nhất để Q giá trị là số nguyên . B ài Ii ( 3 điểm) : Cho hệ phơng trình : ( ) 1 4 2 a x y ax y a + + = + = ( a là tham số ) 1) Giải hệ khi a = 1. 2) Chứng minh rằng với mọi giá trị của a , hệ luôn nghiệm duy nhất (x , y) sao cho x + y 2 B ài iiI ( 3 điểm) : Cho đờng tròn (O) đờng kính AB = 2R . Đờng thẳng (d) tiếp xúc với đờng tròn (O) tại A . M và Q là hai điểm phân biệt , chuyển động trên (d) sao cho M khác A và Q khác A . Các đờng thẳng BM và BQ lần lợt cắt đờng tròn (O) tại các điểm thứ hai là N và P . Chứng minh : 1) Tích BM . BN không đổi . 2) Tứ giác MNPQ nội tiếp đợc trong đờng tròn . 3) Bất đẳng thức : BN + BP + BM + BQ > 8R Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 B ài iv ( 1 điểm) : Tìm giá trị nhỏ nhất của hàm số : 2 2 2 6 2 5 x x y x x + + = + + đề thi số 7 B ài I ( 2 điểm) : 1) Tính giá trị của biểu thức : P = 7 4 3 7 4 3 + + 2) Chứng minh : ( ) 2 4 . a b ab a b b a a b a b ab + = + với a > 0 và b > 0. B ài iI ( 3 điểm) : Cho parabol (P) và đờng thẳng (d) phơng trình : y = 2 2 x (P) và y = mx m + 2 (d) m là tham số 1) Tìm m để đờng thẳng (d) và parabol (P) cùng đi qua điểm hoành độ x = 4 . 2) CMR với mọi giá trị của m , đờng thẳng (d) luôn cắt (P) tại hai điểm phân biệt. 3) Giả sử ( ) ( ) 1 1 2 2 ; , ;x y x y là toạ độ giao điểm của của đờng thẳng (d) và parabol (P) . CMR ( ) ( ) 1 2 1 2 2 2 1 .y y x x+ + B ài iiI ( 4 điểm) : Cho BC là dây cung cố định của đờng tròn tâm O , bán kính R ( 0 < BC < 2R ) .A là điểm di động trên cung lớn BC sao cho tam giác ABC nhọn . Các đờng cao AD , BE , CF của tam giác ABC cắt nhau tại H ( , , )D BC E CA F AB . 1) Chứng minh tứ giác BCEF nội tiếp đợc trong một đờng tròn. Từ đó suy ra AE . AC = AF . AB 2) Gọi A là trung điểm của BC . Chứng minh AH = 2 AO . 3) Kẻ đờng thẳng d tiếp xúc với đờng tròn (O) tại A . Đặt S là diện tích của tam giác ABC , 2p là chu vi của tam giác DEF. a) Chứng minh : d // EF. b) Chứng minh : S = p . R . B ài v ( 1điểm) : Giải phơng trình : 2 9 16 2 2 4 4 2x x x+ = + + . đề thi số 8 B ài I ( 2 điểm) : Cho biểu thức : 1 1 2 1 : 1 1 2 x x A x x x x + + = ữ ữ ữ với x > 0 và x 4. Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 1) Rút gọn A. 2) Tìm x để A = 0 . B ài iI ( 3,5 điểm) : Trong mặt phẳng toạ độ Oxy cho parabol (P) và đờng thẳng (d) phơng trình: Y = 2 x (P) và y = 2(a 1 ) x +5 2a ( a là tham số ) 1) Với a = 2 tìm toạ độ giao điểm của parabol (P) và đờng thẳng (d) 2) Chứng minh rằng với mọi a đờng thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. 3) Gọi hoành độ giao điểm của đờng thẳng (d) luôn cắt parabol (P) là 1 2 ,x x . Tìm a để 2 2 1 2 6x x+ = B ài iIi ( 3,5 điểm) : Cho đờng tròn (O) đờng kính AB . Điểm I nằm giữa A và O ( I khác A và O ) . Kẻ dây MN vuông góc với AB tại I . Gọi C là điểm tuỳ ý thuộc cung lớn MN ( C khác M , N và B ) Nối AC cắt MN tại E . Chứng minh : 1) Tứ giác IECB nội tiếp . 2) 2 .AM AE AC= 3) AE . AC AI . IB = AI 2 . B ài iv ( 1 điểm) : Cho 4, 5, 6a b c và 2 2 2 90a b c+ + = Chứng minh : a + b + c 16 đề thi số 9 B ài I ( 2,5 điểm) : Cho biểu thức : 5 2 4 1 . 2 3 x x P x x x + + = + ữ ữ ữ + với 0; 4x x 1) Rút gọn P . 2) Tìm x để P > 1 . B ài Ii ( 3 điểm) : Cho phơng trình : 2 2( 1) 4 0x m x m + + = (1) , (m là tham số). 1) Giải phơng trình (1) với m = -5. 2) Chứng minh rằng phơng trình (1) luôn hai nghiệm 1 2 ,x x phân biệt mọi m. 3) Tìm m để 1 2 x x đạt giá trị nhỏ nhất ( 1 2 ,x x là hai nghiệm của phơng trình (1) nói trong phần 2/ ) . B ài Iii ( 3,5 điểm) : Cho đờng tròn (O) và hai điểm A , B phân biệt thuộc (O) sao cho đờng thẳng AB không đi qua tâm O . Trên tia đối của tia AB lấy điểm M khác điểm A , từ điểm M kẻ hai tiếp tuyến phân biệt ME , MF với đờng Giáo viên: Nguyễn xuân Tờng Giáo án ôn tập Toán 9 tròn (O) , ( E , F là hai tiếp điểm ) . Gọi H là trung điểm của dây cung AB ; các điểm K ,I theo thứ tự là giao điểm của đờng thẳng EF với các đờng thẳng OM và OH . 1) Chứng minh 5 điểm M , H , O , E , F cùng nằm trên một đờng tròn . 2) Chứng minh : OH . OI = OK . OM 3) Chứng minh IA , IB là các tiếp tuyến của đờng tròn (O). B ài Iv ( 1 điểm) : Tìm tất cả các cặp số (x;y ) thoả mãn : 2 2 2 2 5 5 6x y xy x y+ + = để x+ y là số nguyên. đề thi số 10 Bi 1: (2,5 im) Cho biu thc P= 1. Rỳt gn biu thc P 2. Tỡm x P < 1 2 Bi 2: (2,5 im) Gii bi toỏn sau bng cỏch lp phng trỡnh Mt ngi i xe p t A n B cỏch nhau 24km. Khi t B tr v A ngi ú tng vn tc thờm 4km/h so vi lỳc i, vỡ vy thi gian v ớt hn thi gian i 30 phỳt. Tớnh vn tc ca xe p khi i t A n B. Bi 3: (1 im) Cho phng trỡnh 1. Gii phng trỡnh khi b= -3 v c=2 2. Tỡm b,c phng trỡnh ó cho cú hai nghim phõn bit v tớch ca chỳng bng 1 Bi 4: (3,5 im) Cho ng trũn (O; R) tip xỳc vi ng thng d ti A. Trờn d ly im H khụng trựng vi im A v AH <R. Qua H k ng thng vuụng gúc vi d, ng thng ny ct ng trũn ti hai im E v B ( E nm gia B v H) 1. Chng minh gúc ABE bng gúc EAH v tam giỏc ABH ng dng vi tam giỏc EAH. 2. Ly im C trờn d sao cho H l trung im ca on AC, ng thng CE ct AB ti K. Chng minh AHEK l t giỏc ni tip. 3. Xỏc nh v trớ im H AB= R . Bi 5: (0,5 im) Cho ng thng y = (m-1)x+2 Tỡm m khong cỏch t gc ta n ng thng ú l ln nht. Gi ý mt phng ỏn bi gii thi 10 Giáo viên: Nguyễn xuân Tờng Gi¸o ¸n «n tËp To¸n 9 Bài 1: P= 1. Kết quả rút gọn với điều kiện xác định của biểu thức P là 2. Yêu cầu . Đối chiếu với điều kiện xác định của P kết quả cần tìm là Bài 2: Gọi vận tốc khi đi là x (đơn vị tính km/h, điều kiện là x>0) ta phương trình . Giải ra ta nghiệm x=12(km/h) Bài 3: 1. Khi b=-3, c= 2 phương trình x 2 -3x+2=0 nghiệm là x=1, x=2 2. Điều kiện cần tìm là Bài 4: 1. vì cùng chắn cung AE. Do đó tam giác ABH và EHA đồng dạng. 2. nên hay . Vậy tứ giác AHEK là nội tiếp đường tròn đường kính AE. 3. M là trung điểm EB thì OM vuông góc BE, OM=AH. Ta đều cạnh R. Vậy AH= OM= Gi¸o viªn: NguyÔn xu©n Têng Gi¸o ¸n «n tËp To¸n 9 Bài 5: Đường thẳng y = (m-1)x+2 mx= y+x-2đi qua điểm cố định A(0;2). Do đố OA=2. Khoảng cách lớn nhất từ gốc tọa độ đến đường thẳng d là OA=2, xảy ra khi d vuông góc với OA hay hệ số góc đường thẳng d là 0 tức là m-1. ®Ò thi sè 11 Câu 1: (1, 5 điểm) Giải các phương trình và hệ phương trình sau: a) x 2 – 2 x + 4 = 0 b) x 4 – 29x 2 + 100 = 0 c) 5 6 17 9 7 x y x y + =   − =  Câu 2: (1, 5 điểm) Thu gọn các biểu thức sau: a) b) Câu 3: (1 điểm) Một khu vườn hình chữ nhật diện tích bằng 675 m 2 và chu vi bằng 120 m. Tìm chiều dài và chiều rộng của khu vườn. Câu 4: (2 điểm) Cho phương trình x 2 – 2mx + m 2 – m + 1 = 0 với m là tham số và x là ẩn số. a) Giải phương trình với m = 1. b) Tìm m để phương trình hai nghiệm phân biệt x 1 ,x 2 . c) Với điều kiện của câu b hãy tìm m để biểu thức A = x 1 x 2 - x 1 - x 2 đạt giá trị nhỏ nhất. Câu 5: (4 điểm) Gi¸o viªn: NguyÔn xu©n Têng Gi¸o ¸n «n tËp To¸n 9 Cho tam giác ABC ba góc nhọn (AB < AC). Đường tròn đường kính BC cắt AB, AC theo thứ tự tại E và F. Biết BF cắt CE tại H và AH cắt BC tại D. a) Chứng minh tứ giác BEFC nội tiếp và AH vuông góc với BC. b) Chứng minh AE.AB = AF.AC. c) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và K là trung điểm của BC. Tính tỉ số OK BC khi tứ giác BHOC nội tiếp. d) Cho HF = 3 cm, HB = 4 cm, CE = 8 cm và HC > HE. Tính HC. Gợi ý giải đề thi Câu 1: a) Ta Δ’ = 1 nên phương trình 2 nghiệm phân biệt là x 1 = 5 – 1 và x 2 = 5 + 1. b) Đặt t = x 2 ≥ 0, ta được phương trình trở thành t 2 – 29t + 100 = 0 t = 25 hay t =2. * t = 25 x 2 = 25 x = ± 5. * t = 4 x 2 = 4 x = ± 2. Vậy phương trình đã cho 4 nghiệm là ± 2; ±5. c) Câu 2: a) b) Câu 3: Gọi chiều dài là x (m) và chiều rộng là y (m) (x > y > 0). Theo đề bài ta có: Ta có: (*) x 2 – 60x + 675 = 0 x = 45 hay x = 15. Khi x = 45 thì y = 15 (nhận) Khi x = 15 thì y = 45 (loại) Vậy chiều dài là 45(m) và chiều rộng là 15 (m) Câu 4: Cho phương trình x 2 – 2mx + m 2 – m + 1 = 0 (1) a) Khi m = 1 thì (1) trở thành: x 2 – 2x + 1 = 0 (x – 1) 2 = 0 x = 1. b) (1) hai nghiệm phân biệt x 1 , x 2 Δ’ = m – 1 > 0 m > 1. Vậy (1) hai nghiệm phân biệt x 1 , x 2 m > 1. c) Khi m > 1 ta có: S = x 1 + x 2 = 2m và P = x 1 x 2 = m 2 – m + 1 Do đó: A = P – S = m 2 – m + 1 – 2m = m 2 – 3m + 1 = − ≥ – . Gi¸o viªn: NguyÔn xu©n Têng . thẳng (d) luôn cắt (P) tại hai điểm phân biệt. 3) Giả sử ( ) ( ) 1 1 2 2 ; , ;x y x y là toạ độ giao điểm của của đờng thẳng (d) và parabol (P) . CMR ( ) (. điểm của (d) và (P) . 2) CMR : (d) và (P) luôn cắt nhau tại hai điểm phân biệt với mọi m . Gọi hai giao điểm của (d) và (P) là 1 1 2 2 ( , ); ( , )A x

Ngày đăng: 28/12/2013, 23:27

HÌNH ẢNH LIÊN QUAN

Cho tam giác ABC vuông tại A. Dựng hình chữ nhật MNPQ sao cho M ,N là các điểm trên cạnh BC, còn P ,Q lần lợt là các điểm trên cạnh AC , AB  - DE THI LOP 10 ( CO LOI GIAI) - môn toán
ho tam giác ABC vuông tại A. Dựng hình chữ nhật MNPQ sao cho M ,N là các điểm trên cạnh BC, còn P ,Q lần lợt là các điểm trên cạnh AC , AB (Trang 34)

TỪ KHÓA LIÊN QUAN

w