Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 17 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
17
Dung lượng
504 KB
Nội dung
DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỒNG NAI Trường THPT Chuyên Lương Thế Vinh – Biên Hòa SÁNG KIẾN KINH NGHIỆM Chuyên đề: PHƯƠNG PHÁP TÍNH THỂTÍCHKHỐIĐADIỆN Chuyên đề: Thểtíchkhốiđadiện * Trang 1 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” I )TÍNH THỂTÍCHKHỐIĐADIỆN THEO CÔNG THỨC Việc áp dụng công thức thông thường yêu cầu a) xác định đường cao b) tính độ dài đường cao và diệntích mặt đáy Để xác định đường cao ta lưu ý • Hình chóp đều có chân đường cao trùng với tâm của đáy. • Hình chóp có các cạnh bên bằng nhau thì chân đường cao trùng với tâm đường tròn ngoại tiếp mặt đáy. • Hình chóp có các mặt bên cùng tạo với đáy những góc bằng nhau thì chân đường cao chính là tâm đường tròn nội tiếp mặt đáy. • Hình chóp có một mặt bên vuông góc với đáy thì chân đường cao nằm trên giao tuyến của mặt phẳng đó và đáy. • Hình chóp có hai mặt bên cùng vuông góc với đáy thì đường cao nằm trên giao tuyến của hai mp đó Để tính độ dài đường cao và diệntích mặt đáy cần lưu ý • Các hệ thức lượng trong tam giác đặc biệt là hệ thức lượng trong tam giác vuông. • Các khái niệm về góc, khoảng cách và cách xác định. Sau đây là các bài tập Bài1 Chóp tam giác đều SABC có đáy là tam giác đều cạnh bằng a, các cạnh bên tạo với đáy một góc 60 0 .Hãy tính thểtích của khối chóp đó. Bài giải gọi D là trung điểm của BC và E là tâm đáy Khi đó A B C S D E AE= 3 2 AD= 3 3a Ta có ∠ SAD=60 0 nên SE=AE.tan60 0 =a S ABC = 4 3 2 a Do đó V SABC = 3 1 SE.S ABC = 12 3 3 a Bài 2 Cho hình chóp tam giác SABC có SA=5a,BC=6a,CA=7a. Các mặt bên SAB,SBC,SCA cùng tạo với đáy một góc 60 0 .Tính thểtích của khối chóp đó Bài giải Ta có hình chiếu của đỉnh S trùng tâm D đường tròn nội tiếp đáy Chuyên đề: Thểtíchkhốiđadiện * Trang 2 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” A B C S D k Ta có p= 2 CABCAB ++ =9a Nên S ABC = ))()(( cpbpapp −−− =6a 2 . 6 mặt khác S ABC =pr ⇒ r= p S = 6 3 2 a trong ∆ SDK có SD=KDtan60 0 = r.tan60 0 = 2a. 2 Do đó V SABC = 3 1 SD.S ABC =8a 3 . 3 Bài 3 cho hình chóp SABC có các cạnh bên bằng nhau cùng hợp với đáy góc 60 0 , đáy là Tam giác cân AB=AC=a và ∠ BAC=120 0 . Tính thểtíchkhối chóp đó. Bài giải O A C B S O Gọi D là trung BC và O là tâm đường tròn ngoại tiếp tam giác ABC Có SO chính là đường cao S ABC =1/2.AB.AC.sin120 0 = 4 3 2 a và BC=2BD=2.ABsin60 0 =a. 3 OA=R= s cba 4 =a ⇒ SO=OA.tan60 0 =a. 3 Do vậy V SABC = 3 1 SO.S ABC =1/4a 3 . Bài 4 Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh 2a,SA=a, SB=a 3 và mpSAB vuông góc với mặt đáy. Gọi M,N lần lượt là trung điểm của AB,BC. Hãy tính thểtíchkhối chóp SBMDN. Bài giải Chuyên đề: Thểtíchkhốiđadiện * Trang 3 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” B A D C S H M N Hạ SH ⊥ AB tại H thì SH chính là đường cao S ADM =1/2AD.AM=a 2 S CDN =1/2.CD.CN=.a 2 Nên S BMDN =S ABCD -S ADM -S CDN =4a 2 -2a 2 =2a 2 . mặt khác 222 111 SBSASH += ⇒ SH= 22 22 . SBSA SBSA + = 2 3a do đó V SBMDN = 3 1 .SH.S BMDN = 3 3 3 a Bài 5 Cho hình chóp S.ABCD, đáy ABCD là hình thang vuông tại A,D; AB=AD=2a,CD=a. Góc giữa hai mpSBC và ABCD bằng 60 0 . Gọi I là trung điểm của AD, Biết hai mp SBI,SCI cùng vuông góc với mpABCD. Tính thểtíchkhối chóp S.ABCD. Bài giải A B D C S I H J Gọi H trung điểm là của I lên BC, J là trung điểm AB. Ta có SI ⊥ mpABCD IC= 22 DCID + =a 2 IB= 22 ABIA + =a 5 và BC= 22 JBCJ + =a 5 S ABCD =1/2AD(AB+CD)=3a 2 S IBA =1/2.IA.AB=a 2 và S CDI = 1/2.DC.DI=1/2.a 2 ⇒ S IBC =S ABCD -S IAB -S DIC = 2 3 2 a mặt khác S IBC = 2 1 .IH.BC nên IH = a BC S IBC 5 33 2 = SI=IH.tan60 0 = a 5 3.9 . Chuyên đề: Thểtíchkhốiđadiện * Trang 4 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Do đó V ABCD = 3 1 SI.S ABCD = 5 153 a 3 Bài 6 Cho chóp SABC có SA=SB=SC=a, ∠ ASB= 60 0 , ∠ CSB=90 0 , ∠ CSA=120 0 CMR tam giác ABC vuông rồi tính thểtích chóp. Bài giải Gọi E,D lần lượt là AC,BC A C B S E D ∆ SAB đều AB=a, ∆ SBC Vuông BC=a. 2 ∆ SAC có AE=SA.sin60 0 = 2 3a ⇒ AC=a 3 và SE=SAcos60 0 = 2 1 a. ⇒ ∆ ABC có AC 2 =BA 2 +BC 2 =3a 2 vậy ∆ ABC vuông tại B Có S ABC = 2 1 .BA.BC= 2 2 2 a ∆ SBE có BE= 2 1 AC= 2 3a SB 2 =BE 2 +SE 2 =a 2 nên BE ⊥ SE AC ⊥ SE Do đó SE chính là đường cao V SABC = 3 1 SE.S ABC = 3 12 2 a Bài 7 Cho khối lăng trụ đứng ABC.A 1 B 1 C 1 có đáy là tam giác vuông tại A,AC=a, ∠ ACB=60 0 Đường thẳng BC 1 tạo với mp(A 1 ACC 1 )một góc 30 0 .Tính thểtíchkhối lăng trụ. Bài giải Ta có hv A B C A1 B1 C1 Trong tam giác ABC có AB=AC.tan60 0 =a 3 Chuyên đề: Thểtíchkhốiđadiện * Trang 5 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” AB ⊥ AC và AB ⊥ A 1 A Nên AB ⊥ mp(ACC 1 A) do đó ∠ AC 1 B=30 0 và AC 1 =AB.cot30 0 =3a. Á.D pitago cho tam giác ACC 1 : CC 1 = 2 2 1 ACAC − =2a 2 Do vậy V LT =CC 1 .S ABC = 2a 2 . 2 1 .a.a 3 =a 3 . 6 Bài 8 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là tam giác đều cạnh a, điểm A 1 cách đều ba điểm A,B.C,cạnh bên A 1 A tạo với mp đáy một góc 60 0 .Hãy tính thểtíchkhối trụ đó. Bài giải G A1 B1 C1 A B C H I Ta có tam giác ABC đều cạnh a nên S ABC = 4 3 2 a mặt khác A 1 A= A 1 B= A 1 C ⇒ A 1 ABC là tứ diện đều gọi G là trọng tâm tam giác ABC có A 1 G là đường cao Trong tam giác A 1 AG có AG=2/3AH= 3 3a và ∠ A 1 AG=60 0 A 1 G=AG.tan60 0 =a. vậy V LT =A 1 G.S ABC = 4 3. 3 a Bài9 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là ABC là tam giác vuông cân với cạnh huyền AB= 2 .Cho biết mpABB 1 vuông góc với đáy,A 1 A= 3 ,Góc A 1 AB nhọn, góc giữa mpA 1 AC và đáy bằng 60 0 . hãy tính thểtích trụ. Bài giải Tam giác ABC có cạnh huyền AB= 2 và cân nên CA=CB=1; S ABC= 1/2.CA.CA=1/2. . MpABB 1 vuông góc với ABC từ A 1 hạ A 1 G ⊥ AB tại G. A 1 G chính là đường cao Từ G hạ GH ⊥ AC tại H Gt ⇒ góc A 1 HG=60 0 Đặt AH=x(x>0) Do ∆ AHG vuông cân tại H nên HG=x và AG=x 2 ∆ HGA 1 có A 1 G=HG.tan60 0 =x. 3 ∆ A 1 AG có A 1 A 2 =AG 2 +A 1 G 2 ⇔ 3=2x 2 +3x 2 hay x= 5 15 Chuyên đề: Thểtíchkhốiđadiện * Trang 6 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” A1 B1 C1 A C B G H Do đó A 1 G= 5 53 vậy V LT =A 1 G.S ABC = 10 53 Bài 10 Cho khối hộp ABCD.A 1 B 1 C 1 D 1 có đáy là hcn với AB= 3 và AD= 7 . Các mặt bên ABB 1 A 1 và A 1 D 1 DA lần lượt tạo với đáy những góc 45 0 và 60 0 . Hãy tính thểtíchkhối hộp đó biết cạnh bên bằng 1. giải A1 D1 C1 A D B C F B1 N H M Gọi H là hình chiếu của A 1 lên mpABCD Từ H hạ HM ⊥ AD tại M và HN ⊥ AB tại N Theo gt ∠⇒ A 1 MH=60 0 và ∠ A 1 NH=45 0 Đặt A 1 H=x(x>0) ta có A 1 M= 0 60sin x = 3 2x tứ giác AMHN là hcn( góc A,M,N vuông) Nên HN=AM mà AM= 2 1 2 1 MAAA − = 3 43 2 x − Mặt khác trong tam giác A 1 HN có HN=x.cot45 0 Suy ra x = 3 43 2 x − hay x= 7 3 vậy V HH =AB.AD.x= 3. II ) TÍNH GIÁN TIẾP Nghĩa là ta sử dụng phân chia lắp ghép khốiđa diện, để đưa về bài toán áp dụng tính thểtích theo công thức hoặc dùng bài toán tính tỉ lệ hai khối tứ diện(chóp tam giác) Cho hình chóp SABC. Trên các đoạn thẳng SA,SB,SC lấy lần lượt ba điểm A 1, B 1 ,C 1 khác với S thì SC SC SB SB SA SA V V ABC CBA 111 1 111 = đôi khi gặp bài toán kết hợp cả Chứng minh bài toán Tỉ số thểtích hai khối tứ diện(chóp tam giác) Chuyên đề: Thểtíchkhốiđadiện * Trang 7 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” S A B C E H A1 B1 C1 Gọi H,E lần lượt là hình chiếu của A,A 1 trên mpSBC ⇒ AH / / A 1 E nên ∆ SAH và ∆ SA 1 E đồng dạng 11 SA SA EA AH = Khi đó V SABC= 3 1 AH.S SBC = 3 1 AH.SB.SC.sinBSC. V SA 1 B 1 C 1 = 3 1 A 1 E.S SB 1 C 1 = 3 1 A 1 E.SB 1. SC 1 .sinBSC. Do vậy 111 111 sin 3 1 sin 3 1 111 SC SC SB SB EA AH BSCSCSBEA BSCSCSBAH V V CBSA SABC == Nên SC SC SB SB SA SA V V ABC CBA 111 1 111 = Bài 1 Cho hình chóp SABC có SA=a,SB=2a,SC=3a và ∠ BSA=60 0 , ∠ ASC=120 0 , ∠ CSB=90 0 . Hãy tính thểtích chóp Bài giải Nhận xét các mặt ở đây không có các lưu ý nên việc xác định đường cao là khó nhưng ta thấy các góc ở đỉnh S là rất quen thuộc. Ta liên tưởng đến bài 6 phần I Vây ta có lời giải sau S C B A C1 B1 Trên SB lấy B 1 Sao cho SB 1 =a, Trên SC lấy C 1 sao cho SC 1 =a, Chuyên đề: Thểtíchkhốiđadiện * Trang 8 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” Ta có 12 2. 3 11 a V CSAB = (theo bài 6) Mà 11 11 CSABSABC V SC SC SB SB SA SA V = = 2 2. 3 a Bài 2 Cho khối trụ tam giác ABCA 1 B 1 C 1 có đáy là tam giác đều cạnh a. A 1 A =2a và A 1 A tạo với mpABC một góc 60 0 . Tính thểtíchkhối tứ diện A 1 B 1 CA. giải A1 C1 B1 A B C H K Gọi H là hình chiếu của A 1 trên mpABC Khi đó A 1 H=A 1 A.sinA 1 AH=2a.sin60 0 =a. 3 Mà V LT =A 1 H.S ABC = 4 3 4 3. .3. 32 aa a = nhận thấy khối lăng trụ được chia làm ba khối chóp khối chóp CA 1 B 1 C 1 có 111 CBCA V = 3 1 V LT khối chóp B 1 ABC có ABCB V 1 = 3 1 V LT Khối chóp A 1 B 1 CA do đó ACBA V 11 = 3 1 V LT = 4 3 a Bài 3 Cho khối hộp chữ nhật ABCD.A 1 B 1 C 1 D 1 có AB=a,A 1 A=c,BC=b. Gọi E,F lần lượt là trung điểm của B 1 C 1 và C 1 D 1 . Mặt phẳng FEA chia khối hộp thành hai phần. hãy tính tỉ số thểtích hai khốiđadiện đó Bài giải Chuyên đề: Thểtíchkhốiđadiện * Trang 9 * GV: Nguyễn Văn Huy DẠY KÈM TẠI NHÀ - ĐT: 0968 64 65 97 “THẦY GIỎI – TRÒ GIỎI” DDF Mp(FEA) cắt các đoạn thẳng A 1 D 1 ,A 1 B 1 ,B 1 B,D 1 D lần lượt tại J,I,H,K(hv) Gọi V 1 ,V 2 lần lượt là thểtích phần trên và phần dưới mp Ta nhận thấy rằng hai phần khốiđadiện chưa phải khối hình quen thuộc nhưng khi ghép thêm hai phần chóp HIEB 1 và chóp KFJD 1 thì phần dưới là hình chóp AIJA 1 Ba tam giác IEB 1 ,EFC 1 ,FJD 1 bằng nhau “ c.g.c” Theo TA-LET 3 1 1 1 1 1 == IA IB AA HB Và 3 1 11 1 1 == JA JD AA KD 11 723 . 2 . 2 . 2 1 . 3 1 . 3 1 111 KFJDHIEB V abccba IBEBHBV ==== 8 3 . 2 3 . 2 3 . 2 1 . 3 1 2 1 3 1 1 abc c ba JAAIAAV JIAA J === V 1 = JIAA J V -2. 1 HIEB V = 72 25 72 .2 8 3 abcabcabc =− V 2 = V hh -V 1 = 72 47abc do vậy 47 25 2 1 = V V III) BÀI TOÁN ÔN TẬP Sau khi đã trang bị phần phương pháp như vậy ta cũng giúp học sinh đưa ra cách giải một bài toán linh hoạt bằng cả hai phương pháp để học sinh so sánh đối chiếu lựa chọn và đưa ra bài tập ở mức độ tổng hợp Bài 1 Cho khối lăng trụ đứng ABC.A 1 B 1 C 1 có tất cả các cạnh đều bằng a. a) hãy tính thểtíchkhối tứ diện A 1 BB 1 C. b) Mp đi qua A 1 B 1 và trọng tâm tamgiác ABC cắt AC,BC lần lượt tại E,F. Hãy tính thểtích chóp C.A 1 B 1 FE. Giải a) Cách 1 tính trực tiếp gọi H là trung điểm B 1 C 1 suy ra V td = 12 3. 2 . 2 3. . 3 1 3 1 32 1 1 aaa SHA BCB == Chuyên đề: Thểtíchkhốiđadiện * Trang 10 * GV: Nguyễn Văn Huy H K A D B C B1 C1 D1 A1 I E F J . lượt tại H,I,K. Hãy tính thể tích khối chóp S.AHIK theo a Bài giải Cách 1 tính trực tiếp Ta có aACaaaCDADAC 243 222222 =⇒=+=+= Nên ⊥∆ SAC cân tại A mà AI. C 1 D 1 có đáy là hcn với AB= 3 và AD= 7 . Các mặt bên ABB 1 A 1 và A 1 D 1 DA lần lượt tạo với đáy những góc 45 0 và 60 0 . Hãy tính thể tích khối hộp