1. Trang chủ
  2. » Giáo án - Bài giảng

De thi dap an hoc ky 2 lop 9 mon toan

3 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 18,96 KB

Nội dung

Học sinh có lời giải khác đáp án nếu đúng vẫn cho điểm tùy thuộc vào mức điểm của từng câu và mức độ làm bài của học sinh.. - Trong mỗi câu, nếu học sinh giải sai ở bước giải trước thì k[r]

(1)SỞ GD&ĐT QUẢNG BÌNH Trường: Họ tên HS: Số báo danh: ĐỀ KIỂM TRA HỌC KỲ II- NĂM HỌC 2009-2010 Môn: Toán lớp Thời gian 90' ( Không kể thời gian giao đề) Đề có: 01 trang, gồm có 04 câu Mã đề 01  x 1  A   : x   x  x 1  x x Câu (2,0 điểm) Cho biểu thức: a) Tìm x để A có nghĩa b) Rút gọn biểu thức A Câu (2,0 điểm) Cho tam giác vuông có hai cạnh góc vuông kém 2cm Tính độ dài hai cạnh góc vuông tam giác đó, biết cạnh huyền 10cm Câu (2,0 điểm) Cho phương trình: 3x2 - 4x + m + = (*) với m là tham số a) Giải phương trình (*) với m = - b) Với giá trị nào m thì phương trình (*) có hai nghiệm phân biệt 1   c) Tìm m đêt phương trình (*) có hai nghiệm phân biệt x1 và x2, cho: x1 x2 Câu (4,0 điểm) Từ điểm A bên ngoài đường tròn (O; R), vẽ hai tiếp tuyến AB, AC (B, C là hai tiếp điểm), và cát tuyến AMN Gọi I là trung điểm dây MN a) Chứng minh điểm A, B, I, O, C cùng nằm trên đường tròn b) Nếu AB = OB thì tứ giác ABOC là hình gì? Vì sao? c) Cho AB = R Tính diện tích hình tròn và độ dài đường tròn ngoại tiếp tứ giác ABOC theo R híng dÉn vµ biÓu ®iÓm chÊm đề khảo sát chất lợng môn toán lớp học kỳ iI 2009- 2010 Yêu cầu chung (2) - Đáp án trình bày cho lời giải cho câu Học sinh có lời giải khác đáp án (nếu đúng) cho điểm tùy thuộc vào mức điểm câu và mức độ làm bài học sinh - Trong câu, học sinh giải sai bước giải trước thì không cho điểm các bước giải sau có liên quan - Đối với câu học sinh không vẽ hình thì không cho điểm - Điểm toàn bài là tổng điểm các câu, điểm toàn bài làm tròn đến 0,5 C©u Néi dung a §KX§ lµ: b [ ] 0,5 0,5 Gọi x là cạnh góc vuông lớn (x > đơn vị là cm) = > cạnh bé là x - Áp dụng định lý Pitago ta có phương trình: x2 + (x- 2)2 = 102 <= > 2x2 - 4x - 96 = <= > x2 – 2x – 48 =  = + 48 = 49 > Phương trình có hai nghiệm: x1 = 8, x2 = (TMĐK) Các cạnh góc vuông tam giác là: 8cm và 6cm ĐS : 8cm và 6cm Với m = - phương trình (*) trở thành 3x2 - 4x + = a cã a + b + c = – + = nªn ph¬ng tr×nh cã nghiÖm x1 = 1; x 2= b §iÓm 0,5 0,5 1 √ x +1 + : √ x ( √ x −1 ) √ x − ( √ x −1 )2 ( √ x − 1) 1+ √ x A= √ x ( √ x − ) √ x+ x −1 A= √ √x A= ¿ x >0 x≠1 ¿{ ¿ Phương trình (*) có hai nghiệm phân biệt Khi  > <= > b’2 - ac > <= > – 3(m + 5) > <= > – 3m - 15 > <= > - 3m- 11> 0,25 0,5 0,25 0,25 0,25 0,25 0,25 0,5 0,25 0,25 0,25 11 11 0,25 <= > m<− Vậy m<− thì phương trình (*) có hai nghiệm phân biệt c §Ó ph¬ng tr×nh (*) cã hai nghiÖm vµ phân biệt x1 và x2 cho: 1   x1 x2 Theo hÖ thøc Vi-Ðt vµ ®iÒu kiÖn cã hai nghiÖm th×: ¿ Δ≥0 b a c x x2 = a ¿{{ ¿ x 1+ x 2=− ¿ 11 m← m+5 x x2= ¿{{ ¿ x 1+ x = 0,25 0,25 (3) 1 + =− x1 x2 x +x = > 2−4 x1 x2 4 =− m+5 => 4 =− m+5 => = > m + = - 7= > m = - 12 (TMĐK) 1   th× m = - 12 Vậy để phơng trình (*) có hai nghiệm và x1 x2 VÏ h×nh chÝnh x¸c 0,5 B N I M A O a XÐt tam giác vuông ABO vuông B (gt) C= > A, B, O nằm trên đường tròn đường kính AO (1) XÐt tam giác vuông AIO vuông I (t/c đường kính và dây) = > A, I, O nằm trên đường tròn đường kính AO (2) XÐt tam giác vuông ACO vuông C (gt) = > A, C, O nằm trên đường tròn đường kính AO (3) Từ (1), (2) và (3) = > điểm A, B, I, O, C cùng nằm trên đường tròn đường kính AO Nếu AB = OB thì tứ giác ABOC là hình vuông vì AB = AC (t/c hai tiếp b tuyến cắt nhau) = > AB = OB = OC = CA và tứ giác ABOC có góc vuông nên tứ giác ABOC là hình vuông c Cho AB = R = > tứ giác ABOC là hình vuông có cạnh R R √2 = > đường tròn ngoại tiếp tứ giác ABOC có bán kính là R √2 Diện tích hình tròn ngoại tiếp tứ giác ABOC là: π (2) = πR2 R độ dài đường tròn ngoại tiếp tứ giác ABOC là: π √ = πR √ 2 0,25 0,25 0,25 0,25 0,5 0,5 0,5 0,25 0,25 0,25 0,25 (4)

Ngày đăng: 05/10/2021, 03:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w