1. Trang chủ
  2. » Luận Văn - Báo Cáo

De thi hoc ki I toan 9

4 14 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 4
Dung lượng 62,56 KB

Nội dung

Chứng minh rằng AB là tiếp tuyến của đường tròn tâm C bán kính CE... Áp dụng định lí Pytago vào tam giác CIO vuông tại I 2.[r]

(1)KỲ THI HỌC KỲ I NĂM HỌC 2014-2015 MÔN THI: TOÁN Thời gian làm bài : 90 phút ( không kể thời gian giao đề) Bài 1: ( 3.0 điểm ) P x 1 x 25 x   4 x x x 2 Cho biểu thức a Nêu điều kiện xác định và rút gọn biểu thức P x b Tính giá trị P c Tìm x để P < Bài 2: ( 2.0 điểm ) Cho hàm số y = ( m – )x + 26 Hãy xác định m để: a Hàm số trên đồng biến b Đồ thị hàm số qua điểm A( 1; -2) Vẽ đồ thị hàm số vừa tìm c Đồ thị hàm số đã cho song song với đồ thị hàm số y = ( 4023 – m )x -11 Bài 3: ( điểm ) Giải phương trình a x  x  2  x b 22  x  10  x 2 Bài 4: (3.5 điểm ) Cho đường tròn tâm O đường kính AB = 10cm Điểm I nằm A và IA O cho OI = Vẽ dây cung CD vuông góc với OA I Nối AC; BC a Chứng minh rằng: AC2 = AI.AB b Tính độ dài dây CD c Gọi H là trung điểm IC Qua H vẽ đường thẳng vuông góc với CO cắt CO M và cắt đường tròn (O) E; F Chứng minh AB là tiếp tuyến đường tròn tâm C bán kính CE Bài 5: (0,5đ) Chứng minh rằng: a  b2  a b với a; b 0 (2) BÀI Bài 1: 3.0 điểm Ý a 1.5 điểm ĐKĐ: x 0; x 4 P x 1 x 5 x   x x x 2 ( x  1)( x  2)  x ( x  2)   x x x P x 2 P b 0.75 điểm c 0.75 điểm Bài 2: 2.0 điểm a 0.5 điểm b 0.5 điểm c 1.0 điểm  3 P 5 2 ĐIỂM 0.5 0.25 0.25 0.5 3 x 2 P < 2 x  x   x  16 x 2 Kết hợp với ĐKXĐ: P   x  16; x 4 Hàm số đồng biến  m    m  0.75 0.5 0.25 0.5 Đồ thị hàm số qua điểm A( 1; -2 )  -2 = m – + 26  m  27 0.5 Đồ thị hàm số đã cho song song với đồ thị hàm số y = ( 4023 – m )x -11  m – = 4023 – m và 26 -11 0.5  m = 2012 0.5 (3) 0.5 E C M H F A I B O K D Bài 4: 3.5 điểm a 1.0 điểm  Vì C thuộc đường tròn đường kính AB nên ACB vuông C ACB vuông tạiC có đường cao CI  AC2 = AI.AB b 1.25 điểm IA Vì điểm I nằm A và O cho OI = nên: OA OI = = 3cm Áp dụng định lí Pytago vào tam giác CIO vuông I 2 2 ta có: CI = CO  OI   4cm Vì dây cung CD vuông góc với OA I nên I là trung điểm CD Từ đó suy : CD = 2CI = 8cm c 0.75 điểm Kéo dài CO cắt đường tròn (O) điểm thứ là K Tam giác CMH đồng dạng với tam giác CIO (g.g) nên CM CH CI   CI CO 2CO ( H là trung điểm CI )  CI CM 2CO (1) Tam giác CEK vuông E, đường cao CM nên CE CM CK CM 2CO (2) Từ (1) và (2) suy ra: CI = CE và CI vuông góc với AB nên AB là tiếp tuyến đường tròn tâm C bán kính CE 0.5 0.5 0.25 0.25 0.25 0.5 0.25 0.25 (4) Bài a b  2( a  b2 ) a  b 2  2(a  b ) (a  b) a  b2  ( vì a; b không âm )  (a  b) 0 , hiển nhiên đúng Dấu “ = “ xảy và a = b Vậy a  b2  a b (5)

Ngày đăng: 25/09/2021, 00:50

w