Dùng đồ thị biện luận theo y về số nghiệm của phơng trình Bài 4: 2,5đ Cho nửa đờng tròn tâm O.. đờng kính AB từ một điểm M trên nửa đờng tròn ta vẽ tiếp tuyến xy.[r]
(1)§Ò thi häc sinh giái m«n To¸n líp : N¨m häc 2007 - 2008 Bài 1: Hãy chọn đáp án đúng C©u 1: Ph¬ng tr×nh 4x x = x - a V« nghiÖm b V« sè nghiÖm c Cã nghiÖm ©m d Cã nghiÖm d¬ng C©u 2: gi¸ trÞ cña biÓu thøc N 52 5 1 3 2 b»ng 5 a ; b 2 - ; c ; d C©u 3: Cho tam gi¸c ABC, biÕt B = C; AC - AB = BC = §é dµi c¹nh AB lµ: a ; b ; c ; d , §é dµi c¹nh AC lµ a ; b ; c ; d C©u 4: §êng trßn néi tiÕp tam gi¸c ABC tiÕp xóc víi AB t¹i D BiÕt AC BC = 2AD DB Sè ®o gãc C lµ a 300 ; b 600 ; c 900 ; d 1200 Bµi 2: (2,5®) Cho biÓu thøc: x 8x x : 2 x 4 x x x x P= a Rót gän P b Tính gía trị x để P = -1 c Tìm m để với giá trị x > ta có m ( x )P > x + Bµi 3: (2,5®) Cho ph¬ng tr×nh y = |2 - x| + |2x + 1| a Vẽ đồ thị phơng trình b Minh hoạ nghiệm phơng trình trên đồ thị trờng hợp y = 2 c Dùng đồ thị biện luận theo y số nghiệm phơng trình Bài 4: (2,5đ) Cho nửa đờng tròn tâm O đờng kính AB từ điểm M trên nửa đờng tròn ta vẽ tiếp tuyến xy Kẻ AD xy và Bc xy a Chøng minh MC = MD b Chứng minh tổng AD + BC có giá trị không đổi c Xác định vị trí điểm M để tứ giác ABCD có diện tích lớn §¸p ¸n vµ biÓu ®iÓm Bài 1: (2,5đ) hãy chọn đáp án đúng C©u 1: §óng lµ a C©u 2: §óng lµ a C©u 3: §óng lµ b (0,5®) (0,5®) (0,5®) (2) §óng lµ a C©u 4: §óng lµ c (0,5®) (0,5®) Bµi 2: (2,5®) a Rót gän P (1,5®) (0,5®) §iÒu kiÖn a O ; x vµ x (0,5®) x (2 x ) x ( x 1) 2( x 2) : (2 x )(2 x ) x ( x 1) P= (0,25®) x 4x 3 x : = (2 x )(2 x ) x ( x 2) (0,25®) x 4x x ( x 2) = (2 x )(2 x ) x 4x = x (0,25®) (0,25®) b (0,5®) P = -1 4x + x - = (0,25®) ( x + 1) (4 x - 3)= x = x = 16 (0,25®) c BiÕt ph¬ng tr×nh ®a vÒ d¹ng 4mx > x + (4m - 1) x > (0,25®) NÕu 4m - th× tËp nghiÖm kh«ng thÓ chøa mäi gi¸ trÞ x > 9; Nếu 4m - > thì nghiệm bất phơng trình là x > 4m đó bất phơng trình tho¶ m·n víi mäi x > 4m vµ 4m - > Ta cã m 18 (0,25®) Bài 3: Vẽ đờng thẳng phơng trình: y = |2 - x| + | 2x + 1| víi x - ta cã thÓ y = - x - 2x - y = -3x + (1/4®) víi - < x ta cã y = - x + 2x + y = x + (1/4®) víi x > ta cã y = x - + 2x + y = 3x - (1/4®) ta vẽ đờng thẳng nÕu x x x nÕu x 2 nÕu x2 3x y = |2 - x| + |2x+ 1| Vậy đồ thị y = |2 - x| + | 2x + 1| là đờng ABCE b Phơng trình đã cho y A E C 2,5 y = 2,5 (3) Khi y = 2,5 th× x = - c Dùng đồ thị biện luận theo y vÒ sè nghiÖm cña ph¬ng tr×nh nhìn vào đồ thị Ta nhËn thÊy: y = 2,5 ph¬ng tr×nh cã nghiÖm x=-2 y < 2,5 ph¬ng tr×nh v« nghiÖm y > 2,5 ph¬ng tr×nh cã nghiÖm Bµi 4: (2,5®) a AD // BC // CM (v× OM xy AB xy) BC xy tø gi¸c ABCD lµ h×nh thang và OM là đờng trung bình Suy M lµ trung ®iÓm cña DC vµ MC = MD (1/2®) C x D y M A H O D b Theo tính chất đờng tròn hình thang ta có 20M = AD + BC mà 20M = AB ; AB là đờng kính đờng tròn (O) nên không đổivậy AB = AD + BC không đổi 1 c SABCD = CD (AD + BC) = AB CD (theo chøng minh trªn AB = AD + BC) AB không đổi SABCD lín nhÊt CD lín nhÊt Mµ CD AB vËy CD lín nhÊt CD = AB tøc lµ lóc Êy M lµ ®iÓm chÝnh gi÷a cung AB SABCD đặt giá trị lớn là AB2 M là điểm chính cung AB Ghi chú (Học sinh làm cách khác đúng cho điểm tối đa) (4)