Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
1,61 MB
Nội dung
tai lieu, document1 of 66 Tailieumontoan.com Tài liệu sưu tầm CÁC CHUYÊN ĐỀ CÁC BÀI TOÁN VỀ ƯỚC VÀ BỘI Thanh Hóa, ngày 12 tháng năm 2020 luan van, khoa luan of 66 tai lieu, document2 of 66 Website:tailieumontoan.com CHUYÊN ĐỀ: CÁC BÀI TOÁN VỀ ƯỚC VÀ BỘI A KiÕn thøc cÇn nhí I Ước bội 1) Định nghĩa ước bội Ước: Số tự nhiên d ≠ gọi ước số tự nhiên a a chia hết cho d Ta nói d ước a Nhận xét: Tập hợp ước a Ư ( a= ) {d ∈ N : d | a} Bội: Số tự nhiên m gọi bội a ≠ m chia hết cho a hay a ước số m Nhận xét: Tập hợp bội a= ( a ≠ ) B ( a ) {0; a; 2a; ; ka} , k ∈ Z 2) Tính chất: - Số bội số nguyên khác Số ước số nguyên - Các số -1 ước số nguyên - Nếu Ư ( a ) = {1; a} a số nguyên tố - Số lượng ước số : Nếu dạng phân tích thừa số nguyên tố số tự nhiên A a x b y c z … số lượng ước A ( x + 1)( y + 1)( z + 1) … Thật ước A số có dạng mnp …trong đó: m có x + cách chọn (là 1, a, a , …, a x ) n có y + cách chọn (là 1, b, b , …, b y ) p có z + cách chọn (là 1, c, c , …, c z ),… Do đó, số lượng ước A ( x + 1)( y + 1)( z + 1) II Ước chung bội chung 1) Định nghĩa Ước chung (ƯC): Nếu hai tập hợp Ư(a) Ư(b) có phần tử chung phần tử gọi ước số chung a b Kí hiệu ƯC(a; b) Nhận xét: Nếu ƯC ( a; b ) = {1} a b nguyên tố Ước chung lớn (ƯCLN): Số d ∈ N gọi ước số chung lớn a b ( a; b ∈ Z ) d phần tử lớn tập hợp ƯC(a; b) Kí hiệu ước chung lớn a b ƯCLN(a; b) (a;b) gcd(a;b) Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document3 of 66 Website:tailieumontoan.com Bội chung (BC): Nếu hai tập hợp B(a) B(b) có phần tử chung phần tử gọi bội số chung a b Kí hiệu BC(a; b) Bội chung nhỏ (BCNN): Số m ≠ gọi bội chung nhỏ a b m số nhỏ khác tập hợp BC(a; b) Kí hiệu bội chung nhỏ a b BCNN(a; b) [ a; b ] lcm(a;b) 2) Cách tìm ƯCLN BCNN a) Muốn tìn ƯCLN hai hay nhiều số lớn ,ta thực bước sau : Phân tích số thừa số nguyên tố 2.- Chọn thừa số nguyên tố chung 3.- Lập tích thừa số chọn, thừa số lấy với số mũ nhỏ Tích ƯCLN phải tìm Ví dụ: = 30 2.3.5, = 2.5 = 10 = 20 22.5 ⇒ ƯCLN(30; 20) Chú ý : - Nếu số cho khơng có thừa số nguyên tố chung ƯCLN chúng - Hai hay nhiều số có ƯCLN gọi số nguyên tố - Trong s ,ốnđ ã cho số nhỏ ếu số nhỏ b) Muốn tìm BCNN hai hay nhiều số lớn , ta thực ba bước sau : 1- Phân tích số thừa số nguyên tố 2- Chọn thừa số nguyên tố chung riêng 3- Lập tích thừa số chọn , thừa số lấy với số mũ lớn chúng Tích BCNN phải tìm Ví dụ: = 30 2.3.5, 20) 2= 3.5 60 = 20 22.5 ⇒ BCNN(30;= Chú ý: - Nếu số cho đôi nguyên tố BCNN chúng tích số Ví dụ : BCNN(5 ; ; 8) = = 280 - Trong số cho, số lớn bội số cịn lại BCNN số cho số lớn Ví dụ : BCNN(12 ; 16 ; 48) = 48 3) Tính chất Một số tính chất ước chung lớn nhất: Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document4 of 66 Website:tailieumontoan.com ● Nếu ( a1 ; a2 ; ; an ) = ta nói số a1 ; a2 ; ; an nguyên tố ● Nếu ( am ; ak ) = 1, ∀m ≠ k , {m, k } ∈ {1;2; ; n} ta nói số a1 ; a2 ; ; an đôi nguyên tố a b c c ● c ∈ ƯC (a; b) ; = ( a; b ) c a b ; = d d ● d= ( a; b ) ⇔ ● ( ca; cb ) = c ( a; b ) ● ( a; b ) = ( a; c ) = ( a; bc ) = ● ( a; b; c ) = ( ( a; b ) ; c ) ● Cho a > b > - Nếu a = b.q ( a; b ) = b - Nếu a =bq + r ( r ≠ ) ( a; b ) = ( b; r ) Một số tính chất bội chung nhỏ nhất: ● Nếu [ a; b ] = M M ; M = a b ● [ a; b; c ] = [ a; b ] ; c ● [ ka, kb ] = k [ a, b ] ; ● [ a; b ] ( a; b ) = a.b 4) Thuật tốn Euclid việc tính nhanh ƯCLN BCNN “Thuật toán Euclid” thuật toán cổ biết đến, từ thời Hy Lạp cổ đại, sau Euclid (ơ –clit) hệ thống phát triển nên thuật tốn mang tên ơng Về số học, “Thuật toán Euclid” thuật toán để xác định ước số chung lớn (GCD – Greatest Common Divisor) phần tử thuộc vùng Euclid (ví dụ: số ngun) Khi có ƯCLN ta tính nhanh BCNN Thuật tốn khơng u cầu việc phân tích thành thừa số số nguyên Thuật tốn Oclit – dùng để tìm ƯCLN số nguyên Để tìm ƯCLN hai số nguyên a b ta dùng cách chia liên tiếp hay cịn gọi “vịng lặp” sau: • Bước 1: Lấy a chia cho b: Nếu a chia hết cho b ƯCLN(a, b) = b Nếu a khơng chia hết cho b (dư r) làm tiếp bước Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document5 of 66 • Website:tailieumontoan.com Bước 2: Lấy b chia cho số dư r: Nếu b chia hết cho r ƯCLN(a, b) = r a Nếu b chia r dư r1 ( r1 ≠ ) làm tiếp bước • Bước 3: Lấy r chia cho số dư r1 : Nếu r chia cho r1 dư ƯCLN(a, b) = r1 Nếu r chia r1 dư r2 ( r1 ≠ ) làm tiếp bước Nếu r1 cho cho r2 dư r3 ( r3 ≠ ) làm tiếp đến số dư r1 r1 r2 q1 r3 q2 …… Bước 4: Lấy r1 chia cho số dư r2 : Nếu r1 chia hết cho r2 ƯCLN(a, b) = r2 b b q (a, b) rn−1 Số dư cuối khác dãy chia liên tiếp ƯCLN (a,b) qn Ví dụ: Tính ước số chung lớn 91 287 • Trước hết lấy 287 (số lớn số) chia cho 91: 287 = 91.3 + 14 (91 14 dùng cho vòng lặp kế) Theo thuật tốn Euclid, ta có ƯCLN(91,287) = ƯCLN(91,14) Suy tốn trở thành tìm ƯCLN(91,14) Lặp lại quy trình phép chia khơng số dư sau: 91 = 14.6 + (14 dùng cho vòng lặp kế) 14 = 7.2 (khơng cịn số dư suy kết thúc, nhận làm kết quả) Thật vậy: = ƯCLN(14,7) = ƯCLN(91,14) = ƯCLN(287,91) Cuối ƯCLN(287, 91) = Tính BCNN nhanh Để việc giải tốn BCNN ƯCLN nhanh, Nếu biết áp dụng “Thuật toán Euclid” : Biết rằng: hai số nguyên a, b có BCNN [ a,b] ƯCLN (a,b) = a.b a, b ] [ a, b ] ( a, b ) ⇒ [ = a.b ( a, b ) , ( a= ,b) a.b [ a, b ] Nghĩa là: Tích số nguyên a.b = ƯCLN (a,b) x BCNN (a,b) Ví dụ: có a = 12; b = 18 suy ƯCLN (12,18) = thì: BCNN (12,18) = (12 x 18) : = 36 Nếu làm theo cách phân tich thừa số nguyên tố phải tính: Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document6 of 66 Website:tailieumontoan.com 12 = 22 x 3; 18 = x 32 suy BCNN (12,18) = 22 x 32 = 36 Nhận xét: Với cặp số ngun có nhiều chữ số việc phân tích thừa số nguyên tố nhiều thời gian; lấy tích số bấm máy tính cầm tay nhanh dễ 5) Phân số tối giản a phân số tối giải ( a, b ) = b Tính chất: i) Mọi phân số khác đưa phân số tối giản ii) Dạng tối giản phân số iii) Tổng (hiệu) số nguyên phân số tối giản phân số tối giản B CÁC DẠNG TỐN THƯỜNG GẶP Dạng 1: Các tốn liên quan tới số ước số * Cơ sở phương pháp: Nếu dạng phân tích thừa số nguyên tố số tự nhiên A a x b y c z … số lượng ước A ( x + 1)( y + 1)( z + 1) … Thật ước A số có dạng mnp …trong đó: m có x + cách chọn (là 1, a, a , …, a x ) n có y + cách chọn (là 1, b, b , …, b y ) p có z + cách chọn (là 1, c, c , …, c z ),… Do đó, số lượng ước A ( x + 1)( y + 1)( z + 1) * Ví dụ minh họa: Bài tốn Tìm số ước số 1896 Hướng dẫn giải Ta có= : 1896 ) (= 96 3192.296 1) 97.193 = 18721 Vậy số ước số 1896 ( 96 + 1)(192 += Bài toán Chứng minh số tự nhiên lớn số phương số ước số số lẻ Hướng dẫn giải Giả sử n = p1a1 p2a2 pkak với pi nguyên tố ∈ N * Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document7 of 66 Website:tailieumontoan.com n số phương a1 , a2 , , ak số chẵn ( a1 + 1)( a2 + 1) ( ak + 1) số lẻ Mặt khác ( a1 + 1)( a2 + 1) ( ak + 1) số số ước n, tốn chứng minh Bài toán Một số tự nhiên n tổng bình phương số tự nhiên liên tiếp Chứng minh n khơng thể có 17 ước số Hướng dẫn giải Tổng bình phương số tự nhiên liên tiếp có dạng : n = ( m − 1) + m + ( m + 1) = 3m + khơng thể số phương 2 Nếu n có 17 ước số n số phương (bài tốn 1), vơ lí Từ suy điều phải chứng minh Dạng 2: Tìm số nguyên n để thỏa mãn điều kiện chia hết * Cơ sở phương pháp: Tách số bị chia thành phần chứa ẩn số chia hết cho số chia phần nguyên dư, sau để thỏa mãn chia hết số chia phải ước phần số ngun dư, từ ta tìm số nguyên n thỏa mãn điều kiện * Ví dụ minh họa: Bài tốn Tìm số tự nhiên n để (5n + 14) chia hết cho (n + 2) Hướng dẫn giải Ta có 5n + 14 = 5.(n + 2) + Mà 5.(n + 2) chia hết cho (n + 2) Do (5n + 14) chia hết cho (n +2) ⇔ chia hết cho (n + 2) ⇔ (n + 2) ước ⇔ (n +2) ∈ {1 ; ; 4} ⇒ n ∈ {0 ; 2} Vậy với n ∈{0; 2} (5n + 14) chia hết cho (n + 2) Bài tốn Tìm số tự nhiên n để n + 15 số tự nhiên n+3 Hướng dẫn giải Để n + 15 số tự nhiên (n + 15) chia hết cho (n + 3) n+3 ⇒ [(n + 15) - (n + 3)] chia hết cho (n + 3) Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document8 of 66 Website:tailieumontoan.com ⇔ 12 chia hết cho (n +3) ⇔ (n + 3) Ư(12) = {1; 2; 3; 4; 6; 12} ⇔ n ∈ {0; 1; 3; 9} Vậy với n ∈ {0; 1; 3; 9}thì n + 15 số tự nhiên n+3 Bài tốn Tìm số tự nhiên n để n2 + 3n + n + Hướng dẫn giải Ta có: n2 + 3n + n + Suy ra: n (n + 3) + n + ⇔ n + => n + ∈ Ư(6) = {1; 2; 3; 6} => n = 0; n = Bài tốn Tìm số ngun n để phân số 4n + có giá trị số nguyên 2n − Hướng dẫn giải Ta có: 4n + 4n − + n(2n − 1) + = = = n+ 2n − 2n − 2n − 2n − Vì n nguyên nên để 4n + nguyên nguyên 2n − 2n − => 2n – ∈ Ư(7) = {–7; –1; 1; 7} ⇔ 2n ∈ {– 6; 0; 2; 8} ⇔ n ∈ {– 3; 0; 1; 4} Vậy với n ∈ {– 3; 0; 1; 4} 4n + có giá trị số ngun 2n − Bài tốn Tìm số tự nhiên n để biểu thức sau số tự nhiên: 2n + 5n + 17 3n + − B= n+2 n+2 n+2 Hướng dẫn giải Ta có: B= = 2n + 5n + 17 3n 2n + + 5n + 17 − 3n 4n + 19 + − = = n+2 n+2 n+2 n+2 n+2 4(n + 2) + 11 11 = 4+ n+2 n+2 Để B số tự nhiên 11 số tự nhiên n+2 ⇒ 11 (n + 2) ⇒ n + ∈ Ư(11) = {±1; ±11} Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 TÀI LIỆU TOÁN HỌC tai lieu, document9 of 66 Website:tailieumontoan.com Do n + > nên n + = 11 ⇒ n = Vậy n = B ∈ N Bài tốn Tìm k ngun dương lớn để ta có số n = ( k + 1) k + 23 số nguyên dương Hướng dẫn giải ( k + 1) 484 k + 2k + ( k + 23)( k − 21) + 484 , k ∈ Z + n = = k −1+ k + 23 k + 23 k + 23 k + 23 số nguyên dương k + 23 | 484, k + 23 > 23 Ta có: n = = + 23 121 = k= k 98 ⇒ + 23 44 = k 21 k= Ta có 484 = 222 = 4.121= 44.21 ⇒ Với k = 98, ta có n = 81 Với k = 21, ta có n = 11 Vậy giá trị k lớn thỏa mãn yêu cầu toán 98 Dạng 3: Tìm số biết ƯCLN chúng * Cơ sở phương pháp: * Nếu biết ƯCLN(a, b) = K a = K.m b = K.n với ƯCLN(m; n) = (là điều kiện số m, n cần tìm) , từ tìm a b * Ví dụ minh họa: Bài tốn Tìm hai số tự nhiên a, b, biết rằng: a + b = 162 ƯCLN(a, b) = 18 Hướng dẫn giải Giả sử a ≤ b Ta có: = a + b 162,= ( a, b ) 18 a = 18m Đặt với ( m,= n ) 1, m ≤ n b 18 n = Từ a + b= 162 ⇒ 18 ( m + n )= 162 ⇒ m + n= Do ( m, n ) = 1, lập bảng: m n a 18 36 loai 72 b 144 126 Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan of 66 90 TÀI LIỆU TOÁN HỌC tai lieu, document10 of 66 Website:tailieumontoan.com Kết luận: Các số cần tìm là: (18;144 ) ; ( 36;126 ) ; ( 72;90 ) Bài tốn Tìm hai số nhỏ 200, biết hiệu chúng 90 ƯCLN 15 Hướng dẫn giải Gọi hai số cần tìm a, b ( a, b ∈ N ; a, b < 200 ) Ta có:= a − b 90;= ( a, b ) 15 ( m, n ) = ( m, n ) = a = 15m Đặt ⇒ ⇒ 90 b = 15n m − n = 15 ( m − n ) = 15m < 200 m ≤ 13 Lại có: a, b < 200 ⇒ ⇒ 15n < 200 n ≤ 13 m n a b 13 195 105 11 65 75 85 15 Vậy: ( a, b ) = (195;105 ) , ( 65;75 ) , ( 85;15 ) Bài tốn Tìm hai số tự nhiên có tích 432 ƯCLN Hướng dẫn giải Ta có: = ab 432; ( a= ,b) (a ≤ b) Đặt = a 6= m, b 6n với (m, n) = m ≤ n ⇒ 36mn = 432 ⇒ mn = 12 Ta được: m n a b 12 72 18 24 Vậy ( a, b ) = ( 6;72 ) , (18, 24 ) Bài tốn Tìm hai số a, b biết 7a = 11b ƯCLN(a; b) = 45 Hướng dẫn giải Từ giả thiết suy a > b Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 10 of 66 TÀI LIỆU TOÁN HỌC 29 tai lieu, document30 of 66 Website:tailieumontoan.com sinh, lớp 6B có 22 học sinh Câu 20 Đồng hồ thứ lấy lại xác chạy nhanh 12 giờ, tức 720 phút, lại sau: 720 : = 360 (ngày) Đồng hồ thứ hai lấy lại xác chạy chậm 12 giờ, tức 720 phút, lại sau: 720 : = 240 (ngày) Số ngày để hai đồng hồ BCNN ( 360, 240 ) = 720 Đáp số: 720 ngày Câu 21 a) Gọi hai số phải tìm a b , ta có: a − = b 84, = a 28a ', = b 28b ' ( a ', b ' = 1) , suy a '− b ' = Do 300 ≤ b < a ≤ 400 nên 11 ≤ b ' < a ' ≤ 15 Trường hợp = a ' 15, = b ' 12 loại trái với ( a ', b ') = Trường hợp = = = a ' 14, = b ' 11 cho a 392, b 308 b) Có vơ số đáp= số: a 12 = a ', b 12b ' với a ' =2n + 5, b ' =2n + (n ∈ ) Câu 22 Gọi hai số tự nhiên cần tìm a b, ta có: a = 36a1 Vì UCLN( a; b) = 36 nên ( a1:b1) = 1, Mà: b = 36b1 a+b = 432 = > 36a1 + 36b1 = 432 = > 36 ( a1 + b1 ) = 432 Nên a1 + b1 = 12 Mà ( a1:b1) = Nên ta có bẳng sau: a1 11 a 36 180 252 396 b1 11 b 396 252 180 36 Vậy cặp số tự nhiên (a ; b) cần tìm : (36 ; 396), (180 ; 252), (252 ; 180), (396 ; 36) Câu 23 Gọi hai số tự nhiên cần tìm a b, ta có: a = 6a1 Vì UCLN( a; b) = nên ( a1:b1) = 1, Mà: b = 6b1 > 6a1.6b1 = > 36.a1.b1 = a.b = 864 = 864 = 864 Nên a1.b1 = 24 Mà ( a1:b1) = Nên ta có bẳng sau: a1 24 a 18 48 144 b1 24 Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 30 of 66 TÀI LIỆU TOÁN HỌC 30 tai lieu, document31 of 66 b 144 Website:tailieumontoan.com 48 18 Câu 24 Gọi d = ƯCLN( 14n + ; 21n + 4) => d ∈ N* Khi ta có : 3 (14n + 3) d 14n + 3 d 42n + 9 d > 1 d => ( 42n + ) − ( 42n + ) d = = > = > 42 n d + 21 n d + ( ) 21n + 4 d Vậy hai số 14n + 21n + hai số nguyên tố Câu 25 Gọi d = ƯCLN( 2n + ; 6n + 5), => d ∈ N* Khi ta có : 3 ( 2n + 1) d 2n + 1 d 6n + 3 d > d ∈U ( ) = = > = > = > ( 6n + ) − ( 6n + 3) d => 2 d = {1;2} 6n + 5 d 6n + 5 d 6n + 5 d Do 2n + d, mà 2n + lại số lẻ nên d=2 loại, d=1 Vậy hai số 14n + 21n + hai số nguyên tố Câu 26 Gọi số phải tìm x , [14, x ] = 770 14.55, (k ,55) =1, k ước 14 Ta có: 770 =x.k (k ∈ ),770 = Vậy k bằng: 1,2,7,14, tương ứng x 770,385,110,55 Câu 27 a) Gọi d ∈ ƯC (b, b − a ) a − b d , b d , a d Ta có (a, b) = nên d = b) Giả sử a + b ab chia hết cho số nguyên tố d vơ lí Câu 28 Giả sử ab c chia hết cho số nguyên tố d vơ lí Câu 29 a) 4n − 13 ⇒ 4n − + 13 13 ⇒ 4n + 13 ⇒ 4(n + 2) 13 Do ( 4,13) = nên n + 13 ( ) Đáp số: n = 13k − k ∈ * ( b) Đáp số : n =7 k − k ∈ * ) c) ( 25n + 3) 53 ⇒ ( 25n + − 53) 53 Đáp số: n = 53k + ( k ∈ ) Câu 30 a) n không chia hết cho b) n số chẵn c) n số lẻ d) Giả sử 18n + 21n + chia hết cho số nguyên tố d ( 21n + ) − (18n + 3) d ⇒ 21 d Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 31 of 66 TÀI LIỆU TOÁN HỌC 31 tai lieu, document32 of 66 Website:tailieumontoan.com Vậy d ∈ {3;7} Hiển nhiên d ≠ 21n + không chia hết cho Như (18n + 3, 21n + ) ≠ ⇔ (18n + 3) (cịn 21n + ln chia hết cho 7) ⇔ (18n + − 21) ⇔ 18 ( n − 1) ⇔ ( n − 1) Vậy n ≠ k + 1( k ∈ ) (18n + 3, 21n + ) = Câu 31 Bài tốn khơng u cầu tìm giá trị n mà cần vô số giá trị n Do ngồi cách giải trên, giải sau: để ( n + 5, n + 72 ) = Gọi d ∈ ƯC ( n + 5, n + 72 ) 57 d Do ( n + 15 ) d , 57 d nên tồn n cho , rõ n + 15 = 57 k + d = Nếu ta chọn n =57 k − 14 ( k =1, 2,3, ) ( n + 15, n + 72 ) = ràng có vơ số giá trị n Câu 32 a) ƯCLN ( a + b, a − b ) a b lẻ, a b có số chẵn số lẻ b) 29 Câu 33 = a da = ', b db ', (= a ', b ') Ta có: a) Gọi ab = da ' b ' Theo đề bài, ta có: da ' b '+ d = 55 Như 55 hay d ( a ' b '+ d ) = d a ' b '+ ước 55, mặt khác a ' b '+ ≥ b] [ a, = Ta có d a ' b '+ a 'b ' a' b' a b 11 = 22 11 44 11 10 = 2.5 10 50 10 25 55 54 = 2.33 54 54 27 27 Từ đó: b) Giải tương tự câu a) ta được: d ( a ' b '− 1) = d a ' b '− a 'b ' a' b' a b 6 3 2 10 c) Có cặp số (1, 36), (4, 9), (5, 40), (7, 42), (14, 21), (35, 70) Câu 34 a) 1; b) 1111 Câu 35 Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 32 of 66 TÀI LIỆU TOÁN HỌC 32 tai lieu, document33 of 66 Website:tailieumontoan.com B [ A, n + 2] Áp dụng tính chất [ a, b, c ] = [ a, b ] , c , ta có [ n, n + 1] và= B = [ n, n + 1, n + 2] , suy [ n, n + 1]= n ( n + 1) ( [ a, b ] ( a, b )= ab ) Dễ thấy ( n, n + 1) = n ( n + 1)( n + ) a.b Lại áp dụng tính chất [ a; b ] = [ n, n + 1, n + 2] = ( a; b ) ( n ( n + 1) , n + ) nên d= ( n, n + )= ( n, ) Gọi d = ( n ( n + 1) , n + ) Do ( n + 1, n + ) = A Đặt= Xét hai trường hợp: n ( n + 1)( n + ) - Nếu n chẵn d = 2, suy [ n, n + 1, n + 2] = - Nếu n lẻ d = 1, suy [ n, n + 1, n + 2] = n ( n + 1)( n + ) Câu 36 Gọi d ước chung 3n + 5n + ( d ∈ * ) Ta có 3n + 4 d 5n + 1 d nên ( 3n + ) – ( 5n + 1) d ⇔ 17 d ⇒ d ∈ {1;17} Để 3n + 5n + có ước chung lớn 1, ta phải có 3n + 417 hay ( n –10 )17 mà UCLN ( 3 ; 17 ) = nên ( n –10 )17 –10 17 k (k ∈ ) Vì n ∈ , n < 30 ⇒ −10 ≤ n –10 < 20 n= nên k ∈ {0 ; 1} Với k = ⇒ n = 10 , 3.10 + 417 5.10 + 117 (thỏa mãn) Với k =1 ⇒ n =27 , 3.27 + 417 5.27 + 117 (thỏa mãn) Vậy n ∈ {10 ; 27} Câu 37 Để 2n + có giá trị số ngun 2n + 1 n + (1) n+2 Vì n + 2 n + nên ( n + ) n + 2 (2) Từ (1) (2) ( n + ) − ( 2n + 1) n + ⇒ 3 n + Vì n + nguyên nên n + ∈ {−1; −3;1;3} ⇒ n ∈ {−3; −5; −1;1} Vậy với ⇒ n ∈ {−3; −5; −1;1} phân số 2n + số nguyên n+2 Câu 38 Giả sử sau a phút (kể từ lúc 6h) xe lại xuất phát bến lần thứ Lập luận để suy a BCNN ( 75, 60,50 ) Tìm BCNN ( 75, 60,50 ) = 300 (phút) = Sau 5h xe lại xuất phát, lúc 11h ngày 2n + 1 d ⇒ 6n + − ( 2n + 1) d ⇒ 2d ⇒ d ∈ {1; 2} n + 5 d Câu 39 Giả sử d ∈UCLN ( 2n + 1, 6n + ) ⇒ Vì n số nguyên dương nên 2n + ⇒ d ≠ ⇒ d = Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 33 of 66 TÀI LIỆU TOÁN HỌC 33 tai lieu, document34 of 66 Website:tailieumontoan.com Vậy với số nguyên dương n phân số = Câu 40 Cho phân số: P 2n + tối giản 6n + 6n + ( n ∈ ) 3n + a) Chứng tỏ phân số P phân số tối giản Gọi d = ƯC ( 6n + 5,3n + ) (với d ∈ * ) ⇒ 6n + d 3n + d ⇒ ( 6n + ) − ( 3n + ) d ⇔ d ⇒ d = Vậy phân số P phân số tối giản b) Với giá trị n phân số P có giá trị lớn nhất? 6n + ( 3n + ) + 1 = = 2+ 3n + 3n + 3n + 1 5 ≤ ⇔ 2+ ≤ ⇒P≤ Với n ∈ 3n + ≥ ⇒ 3n + 2 3n + 2 Ta có: P= Dấu “=” xảy ⇔ n = Vậy n = phân số P có giá trị lớn ⋅ a = d a1 b = d b1 Câu 41 Gọi UCLN ( a; b ) = d= > ( a1; b1 ) = 48 = 48 = 48 = > da1 + 2db1 = > d ( a1 + 2b1 ) = > d ∈ U ( 48 ) Mà : a + 2b = (1) Ta lại có: 3.BCNN(a; b) + ƯCLN(a; b) = 114 114 = > d (1 + 3a1.b1 ) = 114 = > d ∈ U (114 ) => d + 3.a1.b1.d = (2) Từ (1) (2) => d ∈ UC (48;114) = {1; 2;3;6} 114 3.38 = > d 3 = > d = d = Mà : d (1 + 3a1.b1 ) == + 2b1 16 + 2b1 16 a = a1= TH1 : d = 3=> (loại) => 3a1.b1 38 3a1.b1 37 1 += = >a= 8 2= 12 a + 2b1 = a + 2b1 = a = TH2 : d = > = > = > 6= 19 >b= 18 1 + 3a1.b1 = a1.b1 = b1 == Vậy a = 12 b = 18 Câu 42 Đặt (11a + 2b, 18a + 5b) = d 55a + 10b d ⇒ ⇒ 19a d 36a + 10b d 198a + 36b d ⇒ 19b d 198a + 55b d Và Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 34 of 66 TÀI LIỆU TOÁN HỌC 34 tai lieu, document35 of 66 Website:tailieumontoan.com 19a d ⇒ 19 d (vì (a, b) = 1) 19b d Do Vậy d ∈ {1;9} Câu 43 Ta có b ) ( a,a + b ) ( a,= =( a + a + b,a + b ) =( 2a + b,a + b ) = ( 2a + b,3a + 2b ) = ( 5a + 3b,3a + 2b ) = ( 5a + 3b, ( 5a + 3b ) + 3a + 2b ) = ( 5a + 3b,13a + 8b ) ( ab + bc + ca ) p abc p Câu 44 Giả sử tồn số nguyên tố p cho a p Từ abc p ⇒ b p c p b p c p Giả sử a p ⇒ ab + ac p ⇒ bc p ⇒ Điều mâu thuẫn với (a, b) = (a, c) = ( ) ( ( Câu 45 Ta có a + b,a − ab + b = a + b, ( a + b ) − a − ab + b 2 ) ) = ( a + b,3ab ) Do (a, b) = nên (a + b, ab) = Vì ( a + b,a − ab + b ) = ( a + b,3ab ) = ( a + b,3) ⇒ d ∈ {1;3} * Xét d = Khi a + b = a+b =⇔ ⇔ 3ab = −9 2 a − ab + b 73 73 a − ab + b = Điều không xảy a, b ∈ N * Xét d = Khi ( a;b ) = (17;7 ) 24 a + b = a+b = ⇔ ⇔ 3ab = − ⇔ 2 a − ab + b 73 219 a − ab + b = ( a;b ) = ( 7;17 ) Thử lại ta hai cặp số thỏa mãn điều kiện tốn Liên hệ tài liệu word mơn toán: 039.373.2038 luan van, khoa luan 35 of 66 TÀI LIỆU TOÁN HỌC 35 tai lieu, document36 of 66 (2 Câu 46 Đặt d= Website:tailieumontoan.com ) + 1, 22 + ⇒ d lẻ 2n n Ta có (2 = (2 =( 22 −= n 2n −1 2n −1 2n −1 ( )( + 1)( + 1)( n −1 ) + 1)( − 1) + 1) ( + 1)( + 22 − ) ( 2n −2 2n −2 2n −2 2m 2m ) − d ) Do 22 + − 22 − = 2 d ⇒ d= (vì d lẻ) ( n n ) Vậy 22 + 1, 22 + = n n Câu 47 Đặt d = (m, n) Khi tồn số tự nhiên r, s cho rn - sm = d Đặt d1 = (2 m − 1, 2n − 1) ⇒ d1 lẻ Ta có: 2n − 1 2d − (vì n d ) 2m − 1 2d − (vì m d ) Do d1 2d − n rn 2 − 1 d1 ⇒ − 1 d1 sm Mặt khác: m 2sm ( 2rn −sm −= 1) 2sm ( 2d − 1) d1 ⇒ 2rn − 2= sm 2 − 1 d1 ⇒ − 1 d1 Mà ( 2,d1 ) =1 ⇒ 2d − 1 d1 Từ suy d= 2d − 1 ( ) Vậy 2m − 1, 2n − 1= 2( m,n ) −1 Câu 48 Giả sử a ≤ b a = 15.m Do ƯCLN (a, b) = 15 ⇒ 1, ( m ≤ n ) , ( m, n ) = b = 15.n Khi BCNN(a; b) = 15.m.n Do đó: ƯCLN(a; b).BCNN(a; b) = (15.m.n ) 15 = (15m ) (15n ) = a.b ⇒ ab = 300.15 = 4500 mn = 20 ⇒ 15m.15n = 4500 ⇒ m≤n Ta có bảng: Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 36 of 66 TÀI LIỆU TOÁN HỌC 36 tai lieu, document37 of 66 Website:tailieumontoan.com m n a b 20 15 300 60 75 Vậy cặp số (a ; b) cần tìm : (15 ;60), (300 ; 75) đảo ngược lại Câu 49 Giả sử d= ( a, a + ) ⇒ d | a d | a + ⇒ d | a + − a ⇒ d = d = Với a lẻ (a, a + 2) = Với a chẵn (a, a + 2) = Câu 50 Giả sử d | (1 + a + + a m −1 ) d | ( a − 1) ,suy : d | ( a m −1 − 1) + ( a m − − 1) + + ( a − 1) + m ⇒ d | m Vậy d | m d | a − Ngược lại, d | a d | a − d ( m m −1 + + a + 1) Vậy (1 + a + + a m −1 , a − 1= ) ( m, a − 1) Câu 51 Giả sử d | a, b | d , c | d d lẻ Ta có a + b d a + b ⇒ a + b 2d ( ( 2, d ) = 1) ⇒ Tương tự: a+b d b+c c+d d d 2 Vậy d ước a+b b+c c+a , , 2 Ngược lại, giả sử d ước a+b b+c c+a a+b a+c b+c d ước , , + − = a 2 2 2 Tương tự d | b d | c a+b b+c c+a Vậy: , , = ( a , b, c ) 2 Câu 52 Giả sử d = ( a1 , a2 , , a 49 ) ,khi a1 + a2 + + a49 = 999 d , suy d ước 999 = 33.37 Vì d | ak ( k = 1, 2, , 49 ) nên ak ≥ d , ∀k ⇒ 999 = a1 + a2 + + a49 ≥ 49d ⇒d ≤ 99 < 21 Vậy d nhận giá trị 1,3, 29 Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 37 of 66 TÀI LIỆU TOÁN HỌC 37 tai lieu, document38 of 66 Website:tailieumontoan.com Giá trị d lớn a1= a2= = a48= 9; a49= 567 (vì 9.48 + 567 = 999 ) Câu 53 Giả sử d = (11a + 2b,18a + 5b ) , d |18a + 5b d |11a + 2b , suy d |11(18a + 5b ) − 18 (11a + 2b ) = 19b ⇒ d |19 d | b - Nếu d | b từ d | (11a + 2b ) − (18a + 5b ) =a − 5b ⇒ d | a ⇒ d | ( a, b ) =1 ⇒ d =1 - Nếu d |19 d = d = 19 Vậy (11a + 2b, 18a + 5b) 19 ( ) Câu 54 Giả sử d =m + n, m + n d | m + n d | m + n suy d | ( m + n ) − ( m2 − n2 ) = 2mn 2m d | 2n ( m + n ) − 2mn = 2n d | m + n d | mn suy d | 2m ( m + n ) − 2mn = ( ) ( ) Do d | 2m , 2n = m , n = ⇒ d =1 d = Nếu m, n lẻ d = Nếu m, n khác tính chẵn lẻ d = Câu 55 a) Giả sử d =( 21n + 4,14n + 3) , d | 21n + d |14 n + suy d | ( 21n + ) d | (14n + 3) ⇒ d | (14n + 3) − ( 21n + ) =1 ⇒ d =1 Vậy 21n + phân số tối giản 14n + ) ( b) Giả sử d =2n + 1, n + 2n suy d | n + 2n − n ( 2n + 1) = n Từ d | 2n + d | n suy d | 2n + − 2n = ⇒ d = Vậy 2n + phân số tối giản 2n + 2n Câu 56 a) Ta có: phân số 18n + 3 ( 6n + 1) Mà ( 3,7 ) = = 21n + 7 ( 3n + 1) ( 3,3n + 1) = ( 6n + 1,3n + 1) = nên để 18n + tối giản ta phải có ( 6n + 1,7 ) = 21n + Mặt khác, 6n + = 7n – (n – 1), : ( 6n + 1,7 ) =1 ⇔ ( n − 1,7 ) =1 ⇔ n ≠ 7k + ( k ∈ Z ) Liên hệ tài liệu word môn toán: 039.373.2038 luan van, khoa luan 38 of 66 TÀI LIỆU TOÁN HỌC 38 tai lieu, document39 of 66 Vậy, với n chia cho khơng dư b) Ta có Website:tailieumontoan.com 18n + phân số tối giản 21n + 2n + 11 tối giản ⇔ ( n + 7,11) =1 ⇔ n ≠ 11k − ( k ∈ Z ) , = 2− n+7 n+7 Câu 57 Khơng tính tổng qt ta giả sử a ≤ b Vì ( a, b ) = 16 nên = a 16 = a1 , b 16b1 với ( a1 , b1 ) = Từ a + b = 128 suy 16 ( a1 + b1 ) = 128 ⇔ a1 + b1 = Với điều kiện a1 ≤ b1 ( a1 , b1 ) = ta có a1 = 1, b1 hoặc= a1 3,= b1 Từ ta có = a 16, = b 112 = a 48, = b 80 Câu 58 Ta có ab + ba= 10a + b + 10b + a= 11( a + b ) ;33= 11.3 Vì (a + b) khơng chia hết ) ( ab + ba,33 = 11 Câu 59 Số có chữ số tận 136 chia hết có ước số dương 1, 2, 4, Câu 60 d | a, d | b d | ma + nb, d | ka + lb; d | ma + nb, d | ka + lb d | k ( ma + nb ) − m ( ka + lb ) =±b ⇒ d | b Tương tự : d | a Câu 61 Ta có 123456798 – 123456789 = nên ƯCLN phải tìm 1, 9, mà tất số cho chia hết ƯCLN phải tìm Câu 62 d | a ( 2a + b ) − ( a + ab ) = a2 d =( 2a − b, a + ab ) ⇒ ⇒ d | ( a , b ) =1 ⇒ d =1 2 d | b ( 2a + b ) − ( a + ab ) = b − 2a Câu 63 a ) d =(12n + 1,30n + ) ⇒ d | (12n + 1) − ( 30n + ) =1 ⇒ d =1 Vậy phân số 12n + phân số tối giản 30n + b) d =(15n + 8n + 6,30n + 21n + 13) ⇒ d | (15n + 8n + ) − ( 30n + 21n + 13) =1 ⇒ d | 5n + ⇒ d | 3n ( 5n + 1) − (15n + 8n + ) ⇒ d | 5n + ⇒ d | ( 5n + ) − ( 5n + 1) ⇒ d | d | 5n + ⇒ d |1 ⇒ d = d |5 15n + 8n + Vậy phân số phân số tối giản 30n + 21n + 13 Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 39 of 66 TÀI LIỆU TOÁN HỌC 39 tai lieu, document40 of 66 Câu 64 Website:tailieumontoan.com n + 13 15 tối giản (15, n − ) = = 1+ n−2 n−2 Do n – khơng chia hết cho Do để phân số n + 13 tối giản n ≠ 3k + 2, n ≠ 5l + n−2 Câu 65 Chứng minh n lẻ không chia hết cho Câu 66 Các số cho có dạng k + ( n + 2) n+2 k tối = 1+ ( k = 7,8, ,31) Mà k k k + ( n + 2) giản ⇔ ( n + 2, k ) =1 ⇔ n + nguyên tố với 7,8, ,31 n + nhỏ ⇔ n + = 37 ⇔ n = 35 Câu 67 a) a = 6, b = 60 a = 12, b = 30 ( a ≤ b ) ; b) Các cặp số (a, b) với a ≤ b cần tìm (1;54 ) , ( 2;27 ) , ( 5;50 ) , (10;25 ) (11;44 ) Câu 68 n + 1[ 2,3, 4,5,6,7,8,9] = 5.7.8.9 = 2520 Vậy n = 2519 Câu 69 Ta có: N = ab ( ab + 1)( 2ab + 1) chia hết cho số: 1; a ; b ( ab + 1)( 2ab + 1) ; b ; a ( ab + 1)( 2ab + 1) ; ab + ; ab ( 2ab + 1) ; 2ab + ; ab ( ab + 1) ; N ; ab ; ( ab + 1)( 2ab + 1) ; b ( ab + 1) ; a ( 2ab + 1) ; a ( ab + 1) ; b ( 2ab + 1) có 16 ước dương Nên để N có 16 ước dương a; b; ab + 1; 2ab + số nguyên tố Do a, b > ⇒ ab + > Nếu a; b lẻ ab + chia hết hợp số (vơ lý) Do khơng tính tổng qt, giả sử a chẵn b lẻ ⇒ a = Ta có b khơng chia hết cho 2ab + 1= 4b + ab + 1= 2b + chia hết cho 3 hợp số (vô lý) ⇒ b = Vậy= a 2;= b Câu 70 Đặt A = p − pq + 2q B = p + pq + q Xét trường hợp: +) p= q= , không thoả mãn +)= p 2, q ≥ 3, ( A, B ) = ( − 2q + 2q ,8 + 2q + q ) = ( − q + q ,8 + p + q ) = ( + 3q,8 + 2q + q ) 2 (vì + p + q ) = ( + q,8 + ( + q ) q ) , (vì + p + q 3 ) = d Suy d lẻ d Do d = Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 40 of 66 TÀI LIỆU TOÁN HỌC 40 tai lieu, document41 of 66 Website:tailieumontoan.com +) = q 2, p ≥ 3, ( p − p+ 8, p + p + ) = ( p − p + 8, p + p + ) , (vì p − p + 8 ) = ( p − 6, p + p + ) = ( p − 2, p + p + ) , (vì p + p + 2 ) = ( p − 2, p + ) ( A, B ) = 2 2 2 2 ( = p − 2, ( p − ) + p ) = d Suy d p , d lẻ d < p Do d = +) p, q ≥ 3, Vì p, q số lẻ nên p + q p − q số chẵn Suy A= p ( p − q ) + 2q B = p + q ( q + p ) Vậy A B không nguyên tố Tóm lại:= p 2, q ≥ 3, q nguyên tố hoặc= q 2, p ≥ 3, p nguyên tố Câu 71 Gọi ( a + b, a + b ) = d ⇒ a + b d a + b d ⇒ a + 2ab + b d ⇒ 2ab d ( a, b ) = ⇒ ( ab, a + b ) =1 ⇒ ( 2ab, a + b ) =( 2, a + b ) ⇒ d ước số ( 2ab, a + b ) ⇒ d ước số ( 2, a + b ) d = ⇒ d ước số cùa ⇒ d = a + b = +b = a= a a = ⇔ ⇔ = = 25 ab 12 b b = a + b = 1⇒ Nếu d = 14 a + b = Nếu d= ⇒ 2 50 a + b = vô nghiệm Tóm lại ( a, b ) = ( 3, ) , ( 4,3) = m + n = B m + n Gọi d ước chung lớn A B với d ≥ Câu 72 Đặt A Khi ta có A d; B d hay ta m + n d; m + n d Ta lại có A − B = (m + n) − (m 2 ) ( ) + n = 2mn Mà A − B d nên suy 2mn d Lại có m + n d nên 2n ( m + n ) d ⇒ 2mn + 2n d Kết hợp với 2mn d ta 2n d Hoàn toàn tương tự ta chứng minh 2m d Liên hệ tài liệu word mơn tốn: 039.373.2038 luan van, khoa luan 41 of 66 TÀI LIỆU TOÁN HỌC 41 tai lieu, document42 of 66 Website:tailieumontoan.com Theo m n nguyên tố nên m n khơng tính chẵn Ta xét trường hợp sau: • Trường hợp 1: Trong hai số m n có số chẵn số lẻ, m + n số lẻ nên từ m + n chia hết cho d ta suy d số lẻ Từ ta m n chia hế cho d Mà ta lại có m n nguyên tố nên suy d = • Trường hợp 2: Cả hai số m n số lẻ, từ m + n số chẵn nên từ m + n chia hết cho d với d lớn ta suy d số chẵn Đặt d = 2d' , từ 2m d 2n d ta m d' n d' Do m n nguyên tố nên suy d' = , d = Vậy ta có hai kết sau: ( ) + Nếu hai số m n có số chẵn số lẻ m + n, m + n = ( ) + Nếu hai số m n lẻ m + n, m + n = Câu 73 Giả sử số nguyên dương a, b thỏa mãn u cầu tốn, ta có 16ab + 1 ( a + b ) ( 4a + 1, 4b − 1) = Ta có ( 4a + 1)( 4b + = 1) 16ab + + ( a + b ) ( a + b ) Lại có 4a + + 4b − 1= ( a + b ) ( a + b ) Mà ( 4a + 1, 4b − 1) = Nếu hai số 4a + a + b chia hết cho số ngun tố p đó, từ 4a + + 4b − chia hết cho ( a + b ) ta suy 4b − 1 p , điều mâu thuẫn với giả thiết ( 4a + 1, 4b − 1) = Từ suy ( 4a + 1,a + b ) = Ta có ( 4a + 1)( 4b + 1) ( a + b ) ( 4a + 1,a + b ) = nên suy 4b + 1 ( a + b ) Ngược lại giả sử a, b số nguyên dương thỏa mãn 4b + 1 ( a + b ) Khi từ ( 4a + 1)( 4b + 1)( a + b ) ta suy 16ab( a + b ) Nếu hai số 4a + 4b − chia hết cho p p số nguyên tố lẻ Ta lại có 4a + + 4b − 1= ( a + b ) ( a + b ) , suy 4b + 1 p Do ta 4b + − ( 4b − 1) = p , điều mâu thuẫn với p số nguyên tố lẻ Từ ta ( 4a + 1, 4b − 1) = Liên hệ tài liệu word môn toán: 039.373.2038 luan van, khoa luan 42 of 66 TÀI LIỆU TOÁN HỌC 42 tai lieu, document43 of 66 Website:tailieumontoan.com Như hai số nguyên dương a, b thỏa mãn ( 4a + 1, 4b − 1) = 16ab ( a + b ) tương đương với hai số nguyên dương a, b thỏa mãn 4b + 1 ( a + b ) Chú ý 4b + số lẻ 4b + < ( a + b ) nên từ 4b + 1 ( a + b ) ta suy 4b + = a + b a = 3b + ⇔ b 3a − = 4b + 1= ( a + b ) Như cặp số nguyên dương ( a; b ) ( c; 3c − 1) , ( 3c + 1; c ) với c ∈ N* Câu 74 Ta có: N = ab ( ab + 1)( 2ab + 1) chia hết cho số: 1; a ; b ( ab + 1)( 2ab + 1) ; b ; a ( ab + 1)( 2ab + 1) ; ab + ; ab ( 2ab + 1) ; 2ab + ; ab ( ab + 1) ; N ; ab ; ( ab + 1)( 2ab + 1) ; b ( ab + 1) ; a ( 2ab + 1) ; a ( ab + 1) ; b ( 2ab + 1) có 16 ước dương Nên để N có 16 ước dương a; b; ab + 1; 2ab + số nguyên tố Do a, b > ⇒ ab + > Nếu a; b lẻ ab + chia hết hợp số (vô lý) Do khơng tính tổng qt, giả sử a chẵn b lẻ ⇒ a = Ta có b khơng chia hết cho 2ab + 1= 4b + ab + 1= 2b + chia hết cho 3 hợp số (vô lý) ⇒ b = Vậy= a 2;= b Câu 75 Gọi d ƯCLN(m, n) suy m , n , mn chia hết cho d m + n + m2 + n2 + m + n Do số nguyên nên m + n + m + n chia hết cho d + = n m mn Suy m + n chia hết cho d ⇒ m + n ≥ d ⇒ m + n ≥ d Câu 76 a) Dễ thấy số ( a, b, c ) = (1,3, ) thỏa mãn đề b) Đặt S = a + b + c + ab + bc + ac Từ giả thiết suy S chia hết cho a, b, c Vì a, b, c đơi khác nhau, a, b, c đồng thời số nguyên tố S abc hay S kabc(k ∈ ) = Khơng tính tổng qt, giả sử a < b < c Nếu a = b, c lẻ ⇒ b + c + bc lẻ nên không chia hết cho Do a ≥ nên b ≥ 5, c ≥ = Từ S kabc(k ∈ ) suy 1 1 1 0