Bài 3 : 2điểm Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và bình phương độ dài đường chéo gấp 5 lần chu vi.Tính diện tích hình chữ nhật Bài 4: 3điểm Cho đường tròn tâm O, [r]
(1)SỞ GIÁO DỤC VÀ ĐÀO TẠO NGHỆ AN KỲ THI TUYỂN SINH VÀO LỚP THPT NĂM HỌC 2011 – 2012 Câu 1: (3,0 điểm) Cho biểu thức A = ( x −1√ x + √ x1−1 ) : (√√xx−1+1) ❑ a) Nêu điều kiện xác định và rút biểu thức A b) Tim giá trị x để A = c) Tìm giá trị lớn cua biểu thức P = A - √ x Câu 2: (2,0 điểm) Cho phương trình bậc hai x2 – 2(m + 2)x + m2 + = (1) (m là tham số) a) Giải phương trình (1) m = b) Tìm m để phương trình (1) có nghiệm x1, x2 thỏa mãn x1x2 – 2(x1 + x2) = c) Câu 3: (1,5 điểm) Quãng đường AB dài 120 km Hi xe máy khởi hành cùng lúc từ A đến B Vận tốc xe máy thứ lớn vận tốc xe máy thứ hai là 10 km/h nên xe máy thứ đến B trước xe máy thứ hai Tính vận tóc xe ? Câu 4: (3,5 điểm) Cho điểm A nằm ngoài đường tròn (O) Từ A kẻ hai tiếp tuyến AB, AC và cát tuyến ADE tới đường tròn (B, C là hai tiếp điểm; D nằm A và E) Gọi H là giao điểm AO và BC a) Chứng minh ABOC là tứ giác nội tiếp b) Chứng minh AH.AO = AD.AE c) Tiếp tuyến D đường tròn (O) cắt AB, AC theo thứ tự I và K Qua điểm O kẻ đường thẳng vuông góc với OA cắt tia AB P và cắt tia AC Q Chứng minh IP + KQ PQ - Hết (2) SỞ GIÁO DỤC VÀ ĐÀO TẠO KHÁNH HÒA KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2011 - 2012 Bài 1( điểm) 4 2 3 Đơn giản biểu thức: A 1 P a ( );( a 1) a a a a 1) 2) Cho biểu thức: Rút gọn P và chứng tỏ P 0 Bài 2( điểm) 1) Cho phương trình bậc hai x2 + 5x + = có hai nghiệm x1; x2 Hãy lập phương trình bậc hai có hai nghiệm (x12 + ) và ( x22 + 1) 2 x 4 x 4 y 1 y 2) Giải hệ phương trình Bài 3( điểm) Quãng đường từ A đến B dài 50km.Một người dự định xe đạp từ A đến B với vận tốc không đổi.Khi giờ,người dừng lại 30 phút để nghỉ.Muốn đến B đúng thời gian đã định,người đó phải tăng vận tốc thêm km/h trên quãng đường còn lại.Tính vận tốc ban đầu người xe đạp Bài 4( điểm) Cho tam giác ABC có ba góc nhọn và H là trực tâm.Vẽ hình bình hành BHCD.Đường thẳng qua D và song song BC cắt đường thẳng AH E 1) Chứng minh A,B,C,D,E cùng thuộc đường tròn 2) Chứng minh BAE DAC 3) Gọi O là tâm đường tròn ngoại tiếp tam giác ABC và M là trung điểm BC,đường thẳng AM cắt OH G.Chứng minh G là trọng tâm tam giácABC 4) Giả sử OD = a.Hãy tính độ dài đường tròn ngoại tiếp tam giác BHC theo a (3) SỞ GIÁO DỤC VÀ ĐÀO TẠO QUẢNG TRỊ ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Khóa ngày 27 tháng năm 2011 Câu (2,0 điểm) Rút gọn các biểu thức (không sử dụng máy tính cầm tay): a) M 27 12 ; a N :a a 2 a 2 , với a > và a 4 b) Câu (1,5 điểm) Giải các phương trình (không sử dụng máy tính cầm tay): a) x x 0 ; x 1 x 3 b) Câu (1,0 điểm) a) Vẽ đồ thị (d) hàm số y = -x + 3; b) Tìm trên (d) điểm có hoành độ và tung độ Câu (1,0 điểm) Gọi x1, x2 là hai nghiệm phương trình x2 + 3x -5 = Tính giá trị biểu thức x12 x22 Câu (1,5 điểm) Giải bài toán cách lập hệ phương trình: Tính chu vi hình chữ nhật, biết tăng chiều hình chữ nhật thêm 4m thì diện tích hình chữ nhật tăng thêm 80m2 ; giảm chiều rộng 2m và tăng chiều dài 5m thì diện tích hình chữ nhật diện tích ban đầu Câu (3,0 điểm) Cho tứ giác ABCD nội tiếp đường tròn (O) đường kính AD Hai đường chéo AC và BD cắt E Kẻ È vuông góc với AD (F AD; F O) a) Chứng minh: Tứ giác ABEF nội tiếp được; b) Chứng minh: Tia CA là tia phân giác góc BCF; c) Gọi M là trung điểm DE Chứng minh: CM.DB = DF.DO HẾT - (4) SỞ GIÁO DỤC ĐÀO TẠO HỌC PHỔ THÔNG BÌNH ĐỊNH Bài (2điểm) KÌ THI TUYỂN SINH VÀO LỚP 10 TRUNG KHÓA NGÀY :29/06/2011 3 x y 7 a) Giải hệ phương trình : 2 x y 8 b) Cho hàm số y = ax + b.Tìm a và b biết đồ thị hàm số đã cho song song với đường thẳng y = -2x +3 và qua điểm M( 2;5) Bài 2: (2điểm) Cho phương trình x 2(m 1) x m 0 (m là tham số) a)Giải phương trình m = -5 b)Chứng minh phương trình luôn có hai nghiệm phân biệt với m c)Tìm m cho phương trình đã cho có hai nghiêm x1, x2 thỏa mãn hệ thức x12 x2 x1 x2 0 Bài : (2điểm) Một mảnh đất hình chữ nhật có chiều dài chiều rộng 6m và bình phương độ dài đường chéo gấp lần chu vi.Tính diện tích hình chữ nhật Bài 4: (3điểm) Cho đường tròn tâm O, vẽ dây cung BC không qua tâm.Trên tia đối tia BC lấy điểm M bất kì.Đường thẳng qua M cắt đường (O) hai điểm N và P (N nằm M và P) cho O năm bên góc PMC Trên cung nhỏ NP lấy điểm A cho cung AN cung AP.Hai dây cung AB,AC cắt NP D và E a)Chứng minh tứ giác BDEC nọi tiếp b) Chứng minh : MB.MC = MN.MP c) Bán kính OA cắt NP K Chứng minh: MK MB.MC Bài (1điểm) Tìm giá trị nhỏ biểu thức: A x x 2011 x2 (với x 0 (5) SỞ GD&ĐT HÒA BÌNH KỲ THI TUYỂN SINH VÀO LỚP 10 THPT NĂM HỌC 2010-2011 2 x- A = 1+ : x - x + x - Câu (2 điểm) Cho biểu thức : a) Tìm x để biểu thức A có nghĩa ; b) Rút gọn biểu thức A Câu (2 điểm) Cho phương trình : x - mx - x - m - = (1), (m là tham số) a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt x1 ; x với giá trị m ; 2 b) Tìm giá trị m để biểu thức P = x1 + x - x1x + 3x1 + 3x đạt giá trị nhỏ Câu (2 điểm) Một canô xuôi dòng sông từ bến A đến bến B hết giờ, ngược dòng sông từ bến B bến A hết (Vận tốc dòng nước không thay đổi) a) Hỏi vận tốc canô nước yên lặng gấp lần vận tốc dòng nước chảy ? b) Nếu thả trôi bè nứa từ bến A đến bến B thì hết bao nhiêu thời gian ? Câu (3 điểm) Cho tam giác ABC vuông A và AB = 10cm Gọi H là chân đường cao kẻ từ A xuống BC Biết HB = 6cm, tính độ dài cạnh huyền BC Cho tam giác ABC nội tiếp đường tròn (O), H là trực tâm tam giác, AH cắt đường tròn (O) D (D khác A) Chứng minh tam giác HBD cân Hãy nêu cách vẽ hình vuông ABCD biết tâm I hình vuông và các điểm M, N thuộc các đường thẳng AB, CD (Ba điểm M, I, N không thẳng hàng) x y - xy - = 2 2 Câu (1 điểm) Giải hệ phương trình : x + y = x y (6) Së GD §t hµ tÜnh §Ò thi TS vµo líp 10 N¨m häc 2011 - 2012 C©u 1: ® a) Tìm m để đờng thẳng y = (2m – 1)x + song song với đờng thẳng y = 3x -1 b) Gi¶i hÖ pt: {2xx+2− 3y=4 y=1 C©u 2: 1,5 ® Cho biÓu thøc: P = ( 2−1√ a − 2+1√ a )( √2a +1) víi a> , # a) Rót gän P b) Tìm a để P > /2 C©u 3: (2 ®) a) Tìm tọa độ giao điểm y = x2 và y = -x + 2 b) Xác định m để pt: x - x+1- m=0 có hai nghiệm x1,2 thỏa mãn 4( 1 + ¿ − x x +3=0 x1 x2 Câu 4: (3,5 đ) Trên nửa đờng tròn đờng kính BC, lấy hai điểm M, N cho M thuộc cung BN Gäi A lµ giao ®iÓm cña BM vµ CN H lµ giao ®iÓm cña BN vµ CM a) CMR: tø gi¸c AMHN néi tiÕp b) CM : Δ ABN đồng dạng Δ HCN c) TÝnh gi¸ trÞ cña S = BM.BA + CN.CA SỞ GIÁO DỤC & ĐÀO TẠO THÀNH PHỐ CẦN THƠ KỲ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011-2012 Khóa ngày 27/06/2011 Câu (2 điểm) : Cho biểu thức A = x+1- x x+ x + x -1 x +1 1) Tìm x để biểu thức A có nghĩa (7) 2) Rút gọn biểu thức A 3) Với giá trị nào x thì A < ? Câu (2 điểm) : Giải các bất phương trình và phương trình sau : 1) – 5x ≤ – 16 2) x2 + x – 20 = 1 + = x+3 x+4 x+5 4) x – 4x - = 3) Câu (1,5 điểm) : Cho phương trình 2x2 – 2mx + m – = (1) 1) Chứng minh phương trình (1) có hai nghiệm phân biệt với giá trị m 2) Xác định m để phương trình (1) có hai nghiệm dương Câu (1,5 điểm) : Cho parabol (P) : y = ax2 1) Tìm a biết parabol (P) qua điểm A( ; –3) Vẽ (P) với a vừa tìm 2) Xác định giá trị m để đường thẳng y = (2 – m)x + 3m – m2 tạo với trục hoành góc = 60o Câu (3 điểm) : Cho tam giác ABC vuông A có đường cao AH Vẽ đường tròn tâm O đường kính AH, nó cắt AB và AC E và F Các tiếp tuyến với đường tròn (O) E và F cắt cạnh BC M và N 1) Chứng minh : Tứ giác MEOH nội tiếp 2) Chứng minh : AB.HE = AH.HB 3) Chứng minh : điểm E, O, và F thẳng hàng 4) Cho AB = 10 cm; AC = 15 cm Tính diện tích tam giác OMN (Hết) Kỳ thi tuyển sinh Đồng Nai 2011 – 2012 Câu I: 2, 5đ 1/ Giải PT 2x2 – 3x – = ¿ x +3 y=7 2/ Giải HPT x −3 y=0 ¿{ ¿ (8) 3/ Đơn giản biểu thức P=√ 5+ √ 80 − √ 125 4/ Cho biết √ a+b=√ a −1+ √ b −1( a ≥1 ; b ≥ 1) Chứng minh a + b = ab Lưu ý: các câu 1/, 2/ 3/ không sử dụng máy tính Câu II: 3,0đ Cho Parapol y = x2 (P), và đường thẳng : y = 2(1 – m)x + (d), với m là tham số 1/ Vẽ đồ thị (P) 2/ Chứng minh với giá trị m, parapol (P) và đường thẳng (d) luôn cắt hai điểm phân biệt 3/ Tìm các giá trị m, để (P) và (d) cắt điểm có tung độ y = Câu III: 3, 5đ Cho (O), dường kính AB = 2R, C là điểm trên đường tròn ( khác A, B) Gọi M là trung điểm cung nhỏ BC 1/ Chứng minh AM là tia phân giác góc BAC 2/ Cho biết AC = R Tính BC, MB 3/ Giả sử BC cắt AM N Chứng minh MN MA = MC2 Câu IV: 1,0đ Chứng minh P= x4 – 2x3 + 2x2 – 2x + , với giá trị x (9)