1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Tài liệu Giải tích mạch điện P1 docx

9 703 2

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 9
Dung lượng 118,51 KB

Nội dung

GII TÊCH MẢNG Trang 1 GII TÊCH MẢNG LÅÌI NỌI ÂÁƯU Hãû thäúng âiãûn bao gäưm cạc kháu sn xút, truưn ti v phán phäúi âiãûn nàng. Kãút cáúu mäüt hãû thäúng âiãûn cọ thãø ráút phỉïc tảp, mún nghiãn cỉïu nọ âi hi phi cọ mäüt kiãún thỉïc täøng håüp v cọ nhỉỵng phỉång phạp tiïnh toạn ph håüp. Gii têch mảng l mäüt män hc cn cọ tãn gi “Cạc phỉång phạp tin hc ỉïng dủng trong tênh toạn hãû thäúng âiãûn”. Trong âọ, âãư cáûp âãún nhỉỵng bi toạn m táút c sinh viãn ngnh hãû thäúng no cng cáưn phi nàõm vỉỵng. Vç váûy, âãø cọ mäüt cạch nhçn củ thãø vãư cạc bi toạn ny, giạo trçnh âi tỉì kiãún thỉïc cå såí â hc nghiãn cỉïu l thuút cạc bi toạn cng nhỉ viãûc ỉïng dủng chụng thäng qua cäng củ mạy vi tênh. Pháưn cúi, bàòng ngän ngỉỵ láûp trçnh Pascal, cäng viãûc mä phng cạc pháưn mủc ca bi toạn â âỉåüc minh hoả. Näüi dung giạo trçnh gäưm 2 pháưn chênh: I. Pháưn l thuút gäưm cọ 8 chỉång. 1. Âải säú ma tráûn ỉïng dủng trong gii têch mảng. 2. Phỉång phạp säú dng âãø gii cạc phỉång trçnh vi phán trong gii têch mảng. 3. Mä hçnh họa hãû thäúng âiãûn. 4. Graph v cạc ma tráûn mảng âiãûn. 5. Thût toạn dng âãø tênh ma tráûn mảng. 6. Tênh toạn tro lỉu cäng sút. 7. Tênh toạn ngàõn mảch. 8. Xẹt quạ trçnh quạ âäü ca mạy phạt khi cọ sỉû cäú trong mảng. II. Pháưn láûp trçnh: gäưm cọ bäún pháưn mủc: 1. Xáy dỉûng cạc ma tráûn ca 1 mảng củ thãø 2. Tênh toạn ngàõn mảch. 3. Tênh toạn tro lỉu cäng sút lục bçnh thỉåìng v khi sỉû cäú. 4. Xẹt quạ trçnh quạ âäü ca cạc mạy phạt khi cọ sỉû cäú trong mảng âiãûn. GV: Lã Kim Hng GII TÊCH MẢNG Trang 2 CHỈÅNG 1 ÂẢI SÄÚ MA TRÁÛN ỈÏNG DỦNG TRONG GII TÊCH MẢNG Trong chỉång ny ta nhàõc lải mäüt säú kiãún thỉïc vãư âải säú ma tráûn thäng thỉåìng âỉåüc ỉïng dủng trong gii têch mảng. 1.1. ÂËNH NGHÉA V CẠC KHẠI NIÃÛM CÅ BN: 1.1.1. Kê hiãûu ma tráûn: Ma tráûn chỉỵ nháût A kêch thỉåïc m x n l 1 bng gäưm m hng v n cäüt cọ dảng sau: [] ji mnmm n n a aaa aaa aaa A == . . . 21 22221 11211 Nãúu m = 1 v n >1 thç A gi l ma tráûn hng hồûc vectå hng. Ngỉåüc lải n = 1 v m > 1 thç A gi l ma tráûn cäüt hồûc vectå cäüt. Vê dủ: 3 1 2 =A v 132=A 1.1.2. Cạc dảng ma tráûn: Ma tráûn vng: L ma tráûn cọ säú hng bàòng säú cäüt (m = n). Vê dủ: 333231 232221 131211 aaa aaa aaa A = Ma tráûn tam giạc trãn: L ma tráûn vng m cạc pháưn tỉí dỉåïi âỉåìng chẹo chênh a ë j ca ma tráûn bàòng 0 våïi i > j. 33 2322 131211 00 0 a aa aaa A = Ma tráûn tam giạc dỉåïi: L ma tráûn vng m cạc pháưn tỉí trãn âỉåìng chẹo chênh a ëj ca ma tráûn bàòng 0 våïi i < j. 333231 2221 11 0 00 aaa aa a A = Ma tráûn âỉåìng chẹo: L ma tráûn vng nãúu táút c cạc pháưn tỉí trãn âỉåìng chẹo chênh khạc 0, cn cạc pháưn tỉí khạc ngoi âỉåìng chẹo chênh ca ma tráûn bàòng 0 (a ëj = 0 våïi ji ≠ ). GII TÊCH MẢNG Trang 3 33 22 11 00 00 00 a a a A = Ma tráûn âån vë: L ma tráûn vng m táút c cạc pháưn tỉí trãn âỉåìng chẹo chênh ca ma tráûn bàòng 1 cn táút c cạc pháưn tỉí khạc bàòng 0 (a ij = 1 våïi i = j v a ëj = 0 våïi ji ≠ ). 100 010 001 =U Ma tráûn khäng: L ma tráûn m táút c cạc pháưn tỉí ca ma tráûn bàòng 0. Ma tráûn chuøn vë: L ma tráûn m cạc pháưn tỉí a ëj = a ji (âäøi hng thnh cäüt v ngỉåüc lải). 3231 2221 1211 aa aa aa A = v 322212 312111 aaa aaa A T = Cho ma tráûn A thç ma tráûn chuøn vë kê hiãûu l A t , A T hồûc A’ Ma tráûn âäúi xỉïng: L ma tráûn vng cọ cạc càûp pháưn tỉí âäúi xỉïng qua âỉåìng chẹo chênh bàòng nhau a ëj = a ji . Vê dủ: 463 625 351 =A Chuøn vë ma tráûn âäúi xỉïng thç A T = A, nghéa l ma tráûn khäng thay âäøi. Ma tráûn xiãn - phn âäúi xỉïng: L ma tráûn vng cọ A = - A T . Cạc pháưn tỉí ngoi âỉåìng chẹo chênh tỉång ỉïng bàòng giạ trë âäúi ca nọ (a ëj = - a ji ) v cạc pháưn tỉí trãn âỉåìng chẹo chênh bàòng 0. Vê dủ: 063 605 350 − − − = A Ma tráûn trỉûc giao: L ma tráûn cọ ma tráûn chuøn vë chênh l nghëch âo ca nọ. (A T .A = U = A .A T våïi A l ma tráûn vng v cạc pháưn tỉí l säú thỉûc). Ma tráûn phỉïc liãn håüp: L ma tráûn nãúu thãú pháưn tỉí a + jb båíi a - jb thç ma tráûn måïi A * l ma tráûn phỉïc liãn håüp. Cho ma tráûn A thç ma tráûn phỉïc liãn håüp l A * 1124 53 jj j A ++ = v 1124 53 jj j A −− − = ∗ -Nãúu táút c cạc pháưn tỉí ca A l thỉûc, thç A = A * -Nãúu táút c cạc pháưn tỉí ca A l o, thç A = - A *. GII TÊCH MẢNG Trang 4 Ma tráûn Hermitian (ma tráûn phỉïc âäúi): L ma tráûn vng våïi cạc pháưn tỉí trãn âỉåìng chẹo chênh l säú thỉûc cn cạc càûp pháưn tỉí âäúi xỉïng qua âỉåìng chẹo chênh l nhỉỵng säú phỉïc liãn håüp, nghéa l A = (A * ) t . 532 324 j j A + − = Ma tráûn xiãn - Hermitian (ma tráûn xiãn - phỉïc âäúi): L ma tráûn vng våïi cạc pháưn tỉí trãn âỉåìng chẹo chênh bàòng 0 hồûc ton o cn cạc càûp pháưn tỉí âäúi xỉïng qua âỉåìng chẹo chênh l nhỉỵng säú phỉïc, tỉïc A = - (A * ) t . 032 320 j j A −− − = Nãúu ma tráûn vng phỉïc liãn håüp cọ (A * ) t . A = U = A. (A * ) t thç ma tráûn A âỉåüc gi l ma tráûn âån vë. Nãúu ma tráûn âån vë A våïi cạc pháưn tỉí l säú thỉûc âỉåüc gi l ma tráûn trỉûc giao. Bng 1.1: Cạc dảng ma tráûn. Kê hiãûu Dảng ma tráûn Kê hiãûu Dảng ma tráûn A = -A A = A t A = - A t A = A * A = - A * Khäng Âäúi xỉïng Xiãn-âäúi xỉïng Thỉûc Hon ton o A = (A * ) t A = - (A * ) t A t A = U (A * ) t A = U Hermitian Xiãn- Hermitian Trỉûc giao Âån vë 1.2. CẠC ÂËNH THỈÏC: 1.2.1. Âënh nghéa v cạc tênh cháút ca âënh thỉïc: Cho hãû 2 phỉång trçnh tuún tênh a 11 x 1 + a 12 x 2 = k 1 (1) (1.1) a 21 x 1 + a 22 x 2 = k 2 (2) Rụt x 2 tỉì phỉång trçnh (2) thãú vo phỉång trçnh (1), gii âỉåüc: 21122211 212122 1 aaaa kaka x − − = Suy ra: 21122211 121211 2 aaaa kaka x − − = Biãøu thỉïc (a 11 a 22 - a 12 a 21 ) l giạ trë âënh thỉïc ca ma tráûn hãû säú A. Trong âọ |A| l âënh thỉïc. 2221 1211 || aa aa A = Gii phỉång trçnh (1.1) bàòng phỉång phạp âënh thỉïc ta cọ: 21122211 212122 222 121 1 aaaa kaka A ak ak x − − == v 21122211 121211 221 111 2 aaaa kaka A ka ka x − − == • Tênh cháút ca âënh thỉïc: GII TÊCH MẢNG Trang 5 a. Giạ trë ca âënh thỉïc bàòng 0 nãúu: - Táút c cạc pháưn tỉí ca hng hồûc cäüt bàòng 0. - Cạc pháưn tỉí ca 2 hng (cäüt) tỉång ỉïng bàòng nhau. - Mäüt hng (cäüt) l tỉång ỉïng tè lãû ca 1 hồûc nhiãưu hng (cäüt). b. Nãúu ta âäøi chäø 2 hng ca ma tráûn vng A cho nhau ta âỉåüc ma tráûn vng B v cọ det(B) = - det(A). c. Giạ trë ca âënh thỉïc khäng thay âäøi nãúu: - Táút c cạc hng v cäüt tỉång ỉïng âäøi chäø cho nhau. - Cäüng thãm k vo 1 hng (cäüt) thỉï tỉû tỉång ỉïng våïi cạc pháưn tỉí ca hng (cäüt) âọ. d. Nãúu táút c cạc pháưn tỉí ca hng (cäüt) nhán våïi thỉìa säú k, thç giạ trë ca âënh thỉïc l âỉåüc nhán båíi k. e. Têch ca cạc âënh thỉïc bàòng têch ca tỉìng âënh thỉïc. | A.B.C| = |A| .|B| .|C|. f. Âënh thỉïc täøng khạc täøng cạc âënh thỉïc. |A + B - C| = |A| + |B| -|C|. 1.2.2. Âënh thỉïc con v cạc pháưn phủ âải säú. Xẹt âënh thỉïc: 333231 232221 131211 aaa aaa aaa A = Chn trong âënh thỉïc ny k hng, k cäüt báút k våïi 1 [ k [ n. Cạc pháưn tỉí nàòm phêa trãn kãø tỉì giao ca hng v cäüt â chn tảo thnh mäüt âënh thỉïc cáúp k, gi l âënh thỉïc con cáúp k ca A. B k hng v k cäüt â chn, cạc pháưn tỉí cn lải tảo thnh 1 âënh thỉïc con b ca âënh thỉïc A. Pháưn phủ âải säú ỉïng våïi pháưn tỉí a ij ca âënh thỉïc A l âënh thỉïc con b cọ km theo dáúu (-1) i+j . 3332 1312 3332 1312 12 21 )1( aa aa aa aa A −=−= + Mäúi liãn hãû giỉỵa cạc âënh thỉïc v pháưn phủ: - Täøng cạc têch ca cạc pháưn tỉí theo hng (cäüt) våïi pháưn phủ tỉång ỉïng bàòng âënh thỉïc |A|. - Täøng cạc têch ca cạc pháưn tỉí theo hng (cäüt) våïi pháưn phủ tỉång ỉïng trong hng (cäüt) khạc bàòng 0. 1.3. CẠC PHẸP TÊNH MA TRÁÛN. 1.3.1. Cạc ma tráûn bàòng nhau: Hai ma tráûn A v B âỉåüc gi l bàòng nhau nãúu táút c cạc pháưn tỉí ca ma tráûn A bàòng táút c cạc pháưn tỉí ca ma tráûn B (a ij = b ëj ∀ i, j; i, j = 1, 2, n). 1.3.2. Phẹp cäüng (trỉì) ma tráûn. GII TÊCH MẢNG Trang 6 Cäüng (trỉì) cạc ma tráûn phại cọ cng kêch thỉåïc m x n. Vê dủ: Cọ hai ma tráûn A[a ij ] mn v B[b ij ] mn thç täøng v hiãûu ca hai ma tráûn ny l ma tráûn C[c ij ] mn våïi c ij = a ij 6 b ij Måí räüng: R = A + B + C + . + N våïi r ij = a ij 6 b ij 6 c ij 6 .6 n ij . Phẹp cäüng (trỉì) ma tráûn cọ tênh cháút giao hoạn: A + B = B + A. Phẹp cäüng (trỉì) ma tráûn cọ tênh cháút kãút håüp: A + (B + C) = (A + B) + C. 1.3.3. Têch vä hỉåïng ca ma tráûn: k.A = B. Trong âọ: b ij = k .a ij ∀ i & j . Tênh giao hoạn: k.A = A.k Tênh phán phäúi: k (A + B) = k.A + k B = (A + B) k. (våïi A v B l cạc ma tráûn cọ cng kêch thỉåïc, k l 1 hàòng säú ). 1.3.4. Nhán cạc ma tráûn: Phẹp nhán hai ma tráûn A.B = C. Nãúu ma tráûn A cọ kêch thỉåïc m x q v ma tráûn B cọ kêch thỉåïc q x n thç ma tráûn têch C cọ kêch thỉåïc m x n. Cạc pháưn tỉí c ij ca ma tráûn C l täøng cạc têch ca cạc pháưn tỉí tỉång ỉïng våïi i hng ca ma tráûn A v j cäüt ca ma tráûn B l: c ij = a i1 .b 1j + a i2 .b 2j + . + a iq .b qj Vê dủ: 3231 2221 1211 . aa aa aa BA = x 2212121121321131 2212121121221121 2212121121121111 2221 1211 babababa babababa babababa bb bb ++ ++ ++ = Phẹp nhán ma tráûn khäng cọ tênh cháút hoạn vë: A.B ≠ B.A Phẹp nhán ma tráûn cọ tênh cháút phán phäúi âäúi våïi phẹp cäüng: A (B + C) = A.B + A.C. Phẹp nhán ma tráûn cọ tênh cháút kãút håüp: A (B.C) = (A.B) C = A.B.C. Têch 2 ma tráûn A.B = 0 khi A = 0 hồûc B = 0. Têch C.A = C.B khi A = B. Nãúu C = A.B thç C T = B T .A T 1.3.5. Nghëch âo ma tráûn: Cho hãû phỉång trçnh: a 11 x 1 + a 12 x 2 + a 13 x 3 = y 1 a 21 x 1 + a 22 x 2 + a 23 x 3 = y 2 (1.2) a 31 x 1 + a 32 x 2 + a 33 x 3 = y 3 Viãút dỉåïi dảng ma tráûn A.X = Y Nãúu nghiãûm ca hãû trãn l duy nháút thç täưn tải mäüt ma tráûn B l nghëch âo ca ma tráûn A. Do âọ: X = B.Y (1.3) Nãúu âënh thỉïc ca ma tráûn A ≠ 0 thç cọ thãø xạc âënh x i nhỉ sau: GII TÊCH MẢNG Trang 7 3 31 2 21 1 11 1 y A A y A A y A A x ++= 3 32 2 22 1 12 2 y A A y A A y A A x ++= 3 33 2 23 1 13 3 y A A y A A y A A x ++= Trong âọ: A 11 , A 12 , A 33 l âënh thỉïc con phủ ca a 11 , a 12 , a 13 v |A| l âënh thỉïc ca ma tráûn A. Ta cọ: A A B ji ji = i, j = 1, 2, 3. Nhán ma tráûn A våïi nghëch âo ca nọ ta cọ A.A -1 = A -1 .A = U Rụt X tỉì phỉång trçnh (1.3) sau khi â nhán c hai vãú cho A -1 . A.X = Y A -1 .A.X = A -1 .Y U.X = A -1 .Y Suy ra: X = A -1 .Y Nãúu âënh thỉïc ca ma tráûn bàòng 0, thç ma tráûn nghëch âo khäng xạc âënh (ma tráûn suy biãún). Nãúu âënh thỉïc khạc 0 gi l ma tráûn khäng suy biãún v l ma tráûn nghëch âo duy nháút. Gi sỉí 2 ma tráûn A v B cng cáúp v l kh âo lục âọ: (A.B) -1 = B -1 .A -1 Nãúu A T kh âo thç (A T ) -1 cng kh âo: (A t ) -1 = (A -1 ) t 1.3.6. Ma tráûn phán chia: Täøng cạc ma tráûn â phán chia âỉåüc biãøu diãùn båíi ma tráûn nh bàòng täøng cạc ma tráûn nh tỉång ỉïng. Phẹp nhán âỉåüc biãøu diãùn nhỉ sau: Trong âọ: C 1 = A 1 .B 1 + A 2 .B 3 C 2 = A 1 .B 2 + A 2 .B 4 A A 1 A 3 A 2 A 4 = A 1 A 3 A 2 A 4 B 1 B 3 B 2 B 4 A 1 6B 1 A 3 6B 3 A 2 6B 3 A 4 6B 3 6 = A 1 A 3 A 2 A 4 B 1 B 3 B 2 B 4 C 1 C 3 C 2 C 4 = GII TÊCH MẢNG Trang 8 C 3 = A 3 .B 1 + A 4 .B 3 C 4 = A 3 .B 2 + A 4 .B 4 Tạch ma tráûn chuøn vë nhỉ sau: Tạch ma tráûn nghëch âo nhỉ sau: Trong âọ: B 1 = (A 1 - A 2 .A 4 -1 .A 3 ) -1 B 2 = -B 1 .A 2 .A 4 -1 B 3 = -A 4 -1 .A 3 .B 1 B 4 = A 4 -1 - A 4 -1 .A 3 .B 2 (våïi A 1 v A 4 phi l cạc ma tráûn vng). 1.4. SỈÛ PHỦ THÜC TUÚN TÊNH V HẢNG CA MA TRÁÛN : 1.4.1. Sỉû phủ thüc tuún tênh: Säú cäüt ca ma tráûn A(m x n) cọ thãø viãút theo n vectå cäüt hồûc m vectå hng. {c 1 }{c 1 } . {c 1 } {r 1 }{r 1 } {r 1 } Phỉång trçnh vectå cäüt thưn nháút. p 1 {c 1 } + p 2 {c 2 } + + p n {c n } = 0 (1.4) Khi táút c P k = 0 (k = 1, 2, , n). Tỉång tỉû vectå hng l khäng phủ thüc tuún tênh nãúu. q r = 0 (r = 1, 2, ., n). q 1 {r 1 } + q 2 {r 2 } + + q n {r n } = 0 (1.5) Nãúu p k ≠ 0 tha mn phỉång trçnh (1.4), thç vectå cäüt l tuún tênh. Nãúu q r ≠ 0 tha mn phỉång trçnh (1.5), thç vectå hng l tuún tênh. Nãúu vectå cäüt (hng) ca ma tráûn A l tuún tênh, thç âënh thỉïc ca A = 0. 1.4.2. Hảng ca ma tráûn: Hảng ca ma tráûn l cáúp cao nháút m táút c cạc âënh thỉïc con khạc 0. 0 [ r(A) [ min(m, n) våïi A l ma tráûn kêch thỉåïc m x n. 1.5. HÃÛ PHỈÅNG TRÇNH TUÚN TÊNH: Hãû phỉång trçnh tuún tênh ca m phỉång trçnh trong n hãû säú âỉåüc viãút: a 11 x 1 + a 12 x 2 + + a 1n x n = y 1 a 21 x 1 + a 22 x 2 + + a 2n x n = y 2 (1.6) a m1 x 1 + a m2 x 2 + + a mn x n = y m Trong âọ: A A 1 A 3 A 2 A 4 = A T A T 1 A T 3 A T 2 A T 4 = A A 1 A 3 A 2 A 4 = A -1 B 1 B 3 B 2 B 4 = GII TÊCH MẢNG Trang 9 a i j : L hãû säú thỉûc hồûc phỉïc ; x j : L biãún säú ; y j : L hàòng säú ca hãû. Hãû phỉång trçnh âỉåüc biãøu diãùn åí dảng ma tráûn nhỉ sau: A. X = Y (1.7) Ma tráûn måí räüng: mmnmm n n yaaa yaaa yaaa A ˆ 21 222221 111211 = Nãúu y i = 0 thç hãû phỉång trçnh gi l hãû thưn nháút, nghéa l: A.X = 0. Nãúu mäüt hồûc nhiãưu pháưn tỉí ca vectå y i ≠ 0 thç hãû gi l hãû khäng thưn nháút. Âënh l: Âiãưu kiãûn cáưn v â âãø hãû phỉång trçnh tuún tênh cọ nghiãûm l hảng ca ma tráûn hãû säú bàòng hảng ca ma tráûn måí räüng. Hãû phỉång trçnh tuún tênh vä nghiãûm khi v chè khi hảng ca ma tráûn hãû säú nh hån hảng ca ma tráûn måí räüng. Nãúu hảng ca ma tráûn r(A) = r(Á) = r = n (säú áøn) ca hãû phỉång trçnh tuún tênh (1.6) thç hãû cọ nghiãûm duy nháút (hãû xạc âënh). Nãúu r(A) = r(Á) = r < n thç hãû phỉång trçnh tuún tênh cọ vä säú nghiãûm v cạc thnh pháưn ca nghiãûm phủ thüc (n - r) tham säú ty .

Ngày đăng: 23/12/2013, 01:18

TỪ KHÓA LIÊN QUAN

w