BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Nguyễn Duy Thắng TỔNG HỢP NANO CU2O-CU/ALGINATE VÀ KHẢO SÁT KHẢ NĂNG KHÁNG NẤM NEOSCYTALIDIUM DIMIDIATUM GÂY BỆNH ĐỐM NÂU TRÊN CÂY THANH LONG LUẬN VĂN THẠC SĨ: HÓA HỌC Thành phố Hồ Chí Minh- 2021 BỘ GIÁO DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Nguyễn Duy Thắng TỔNG HỢP NANO CU2O-CU/ALGINATE VÀ KHẢO SÁT KHẢ NĂNG KHÁNG NẤM NEOSCYTALIDIUM DIMIDIATUM GÂY BỆNH ĐỐM NÂU TRÊN CÂY THANH LONG Chuyên ngành: Hóa vô Mã số: 8440113 LUẬN VĂN THẠC SĨ: HÓA HỌC NGƯỜI HƯỚNG DẪN KHOA HỌC Hướng dẫn : TS Bùi Duy Du Thành phố Hồ Chí Minh - 2021 Lời cam đoan Tôi xin cam đoan là công trình nghiên cứu của dưới sự hướng dẫn khoa học của TS Bùi Duy Du Các nội dung nghiên cứu, kết quả đề tài là trung thực, chưa được công bố ở các đề tài cùng cấp và các công trình khoa học tương tự Tp Hồ Chí Minh, tháng 02 năm 2021 Học viên cao học Nguyễn Duy Thắng i Lời cảm ơn Để hoàn thành luân văn này, xin gửi lời cảm ơn chân thành đến: TS Bùi Duy Du, thầy đã hướng dẫn tận tình, tạo điều kiện cho về sở vật chất, thiết bị và địa điểm để thực hiện và hoàn thành luận văn NCS Lê Nghiêm Anh Tuấn, thầy đã giúp đỡ và hướng dẫn quá trình làm thí nghiệm và hoàn thiện nội dung luận văn Trung tâm sinh học và vật liệu mới – Viện Khoa học Vật Liệu ứng dụng, phòng thí nghiệm trọng điểm về Công nghệ Tế bào Thực vật – Viện Sinh học nhiệt đới, đã cung cấp sở hạ tầng, trang thiết bị giúp thực hiện các thí nghiệm Học viện Khoa học và Công nghệ – Viên Hàn lâm Khoa học và Công nghệ Việt Nam đã hỗ trợ tạo mọi điều kiện giúp hoàn thành tốt chương trình đào tạo Thạc sĩ và hoàn thành luận văn này Các bạn học viên lớp cao học Hóa vô và Hóa phân tích khóa 2017A và 2017B đã động viên giúp đỡ suốt hóa trình học tập cũng thực hiện luận văn ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT STT Ký hiệu/ từ viết tắt Thuật ngữ đầy đủ PDA Potato dextrose agar TEM Transmission electron microscopy Môi trường ni cấy vi sinh vật, nấm meo Kính hiển vi điện tử truyền qua XRD X-Ray diffraction Nhiễu xạ tia X FT-IR UV-Vis Fourier transform infrared spectroscopy Ultraviolet-visible spectroscopy Quang phổ hồng ngoại biến đổi fourier Phổ hấp thụ tử ngoại khả kiến EDX Energy-dispersive X-ray Phổ tán xạ lượng tia X EDTA Chất ổn định CTAB Ethylenediaminetetraacetic acid Cetyltrimethylammonium bromid PAAM Polymer Allylamine Chất ổn định 10 AAM Allylamine Chất ổn định 11 DMF Dimethyl formamide Dung môi hữu 12 FA Formamide Dung môi hữu Ý nghĩa Chất ổn định iii DANH MỤC CÁC BẢNG Bảng 1.1 Các công nghệ khác sử dụng cho việc điều chế hạt nano Cu2O 14 Bảng 3.1 Ảnh hưởng của nồng độ alginate đến kích thước hạt nano Cu2O-Cu 41 Bảng 3.2 Độc tính cấp LD50 qua đường miệng chuột của chế phẩm nano Cu2O Cu/alginate 47 Bảng 3.3 Tỷ lệ nhạy cảm của chuột với chế phẩm nano Cu2O-Cu/alginate 48 Bảng 3.4 Sự thay đổi khối lượng thể và phản ứng nhạy cảm da 48 Bảng 3.5 Hiệu lực ức chế nấm Neoscytalidium dimidiatum của chế phẩm nano Cu2O-Cu/alginate 51 Bảng 3.6 Tỉ lệ bệnh và chỉ số bệnh đốm nâu long thí nghiệm điều kiện nhà lưới 53 Bảng 3.7 Hiệu lực phòng trừ bệnh đốm nâu cành long ở thí nghiệm điều kiện nhà kính 54 iv DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Đặc trưng cấu trúc của alginate Hình 1.2 Mơ hình tạo gel của alginate với ion hóa trị Hình 1.3 Triệu chứng bệnh đốm nâu dây, quả long nấm Neoscytalidium dimidiatum gây Hình 1.4 Hình ảnh chụp hạt nano đờng tương tác lên tế bào vi khuẩn, phá vỡ cấu trúc màng của tế bào vi khuẩn tiêu diệt chúng Hình 1.5 Cơ chế phòng trừ vi sinh vật của CuO Cu2O (Surapaneni Meghana et al, 2013) 10 Hình 1.6 Đợc tính của chất hợp chất kim loại nano so với ḿi kim loại của (Nguồn: Olesja Bondarenko cs, 2013) 17 Hình 2.1 Quy trình điều chế vật liệu Cu2O-Cu/alginate 21 Hình 2.2 Thiết bị kính hiển vi điện tử truyền qua JEM 1400; JEOL - Nhật Bản 22 Hình 2.3 Sơ đồ nhiễu xạ của tia X tinh thể 23 Hình 2.4 Góc đỉnh phản xạ của tía X phụ thuộc kích thước hạt 24 Hình 2.5 Nhiễu xạ tia X (D8-ADVANCE, Brucker – Đức) 24 Hình 2.6 Thiết bị hờng ngoại FT–IR 8400S (Shimadzu - Nhật Bản) 25 Hình 2.7 Thiết bị UV- Vis Model V630, Jasco - Nhật Bản 27 Hình 2.8 Kính hiển vi điện tử quét phân giải cao với hệ tán xạ lượng tia X (JSM-7610 - JEOL JED 2300 - Nhật Bản 27 Hình 2.9 Sự đổi màu dung dịch xanh của phức [Cu(NH3)4]2+ thành nâu đỏ quá trình khử Cu2+ thành Cu 30 Hình 3.1 Phổ UV-vis của alginate (a) phức [Cu(NH3)4]2+ dung dịch alginate (b) 37 Hình 3.2 Ảnh TEM phân bớ kích thước hạt của nano Cu2O-Cu phụ thuộc vào nồng độ Cu2+ 38 Hình 3.3 Ảnh TEM và phân bố kích thước hạt của nano Cu2O-Cu phụ thuộc vào nồng độ chất khử 40 Hình 3.4 Ảnh TEM phân bớ kích thước hạt của nano Cu2O-Cu phụ thuộc vào nồng độ chất ổn định alginate 41 Hình 3.5 Phổ FT-IR của alginate nano Cu2O-Cu/alginate 43 v Hình 3.6 Giản đờ XRD của Alginate nano Cu2O-Cu/Alginate 40 44 Hình 3.7 Phổ EDX của chế phẩm nano Cu2O-Cu/alginate 44 Hình 3.8 Phổ UV-vis của phức alginate-Cu2+, nano Cu2O-Cu/Alginate 45 Hình 3.9 Sơ đờ mơ mơ phản ứng tạo cấu trúc nano nhân-vỏ Cu@Cu2O 46 Hình 3.10 Sự thay đổi kích thước hạt nano Cu2O-Cu và phổ UV-vis của vật liệu theo thời gian 47 Hình 3.11 Sự phát triển của nấm Neoscytalidium dimidiatum sau ngày 51 Hình 3.12 Đờ thị tương quan giữa nờng đợ Cu của nano Cu2O-Cu/alginate đến hiệu lực ức chế nấm Neoscytalidium dimidiatum 52 Hình 3.13 Triệu chứng bệnh đớm nâu dây long thí nghiệm xử lý Cu2O-Cu/alginate 55 vi MỤC LỤC Lời cam đoan i Lời cảm ơn ii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT iii DANH MỤC CÁC BẢNG iv DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ v MỤC LỤC .vii MỞ ĐẦU CHƯƠNG 1: TỔNG QUAN 1.1 Vật liệu nano đồng, nano oxit đồng hiệu ứng kháng vi sinh vật gây bệnh thực vật 1.2 Rong nâu ứng dụng của axit alginic rong nâu làm chất điều hòa sinh trưởng thực vật ổn định dung dịch keo nano 1.3 Bệnh đốm nâu long 1.4 Cơ chế kháng vi sinh vật của nano Cu Cu2O 1.5 Tình hình nghiên cứu tổng hợp vật liệu nano Cu2O-Cu 11 1.6 Đợc tính của nano đờng và oxit đồng 14 CHƯƠNG 2: NỘI DUNG VÀ PHƯƠNG PHÁP NGHIÊN CỨU 18 2.1 Mục tiêu nghiên cứu 18 2.2 Nội dung nghiên cứu 18 2.3 Vật liệu và phương pháp nghiên cứu 19 2.3.1 Vật liệu 19 2.3.2 Phương pháp nghiên cứu 19 2.3.2.1 Phương pháp tổng hợp nano Cu2O-Cu/alginate 19 2.3.2.2 Phương pháp chụp ảnh hiển vi điện tử truyền qua (TEM) 20 2.3.2.3 Phương pháp đo phổ nhiễu xạ tia X (XRD) 22 2.3.2.4 Phương pháp đo phổ hồng ngoại (FT-IR) 24 2.3.2.5 Phương pháp đo phổ tử ngoại – khả kiến (UV-vis) 24 2.3.2.6 Phương pháp đo phổ tán xạ lượng tia X (EDX) 26 2.3.2.7 Phương pháp xác định hàm lượng Cu nông sản phương pháp quang phổ hấp thụ nguyên tử 26 2.3.3 Phương pháp thống kê xử lý số liệu 28 2.4 Thực nghiệm 28 2.4.1 Nghiên cứu tổng hợp nano Cu2O-Cu/alginate 28 vii 2.4.1.1 Thí nghiệm ảnh hưởng của nồng độ ion Cu2+ ban đầu đến kích thước hạt nano Cu2OCu/alginate 28 2.4.1.2 Thí nghiệm ảnh hưởng nờng đợ chất khử hydrazine đến kích thước hạt nano Cu2OCu/alginate 29 2.4.1.3 Thí nghiệm ảnh hưởng nờng độ chất ổn định alginate đến kích thước hạt nano Cu2OCu/alginate 30 2.4.1.4 Đánh giá đợc tính cấp LD50 của nano Cu2O-Cu/alginate 30 2.4.2 Khảo sát in vitro hiệu lực kháng nấm Neoscytalidium dimidiatum gây bệnh đốm nâu long theo nồng độ của nano Cu2O-Cu/alginate 31 2.4.2.1 Khảo nghiệm hiệu lực phịng trừ bệnh đớm nâu long của chế phẩm nano Cu2O-Cu/alginate phương pháp khuếch tán đĩa thạch 31 2.4.2.2 Khảo nghiệm hiệu lực phòng trừ bệnh đốm nâu long của chế phẩm nano Cu2O-Cu/alginate nhà kính 32 CHƯƠNG 3: KẾT QUẢ VÀ THẢO LUẬN 36 3.1 Tổng hợp nano Cu2O-Cu/ALGINATE 36 3.1.1 Ảnh hưởng nồng độ ion Cu2+ đến kích thước hạt nano Cu2O-Cu/alginate 36 3.1.2 Ảnh hưởng nồng độ chất khử hydrazine đến kích thước hạt nano Cu2O-Cu/alginate 38 3.1.3 Ảnh hưởng nồng độ alginate đến kích thước hạt nano Cu2O-Cu/alginate 39 3.2 Nghiên cứu tính chất đặc trưng của nano Cu2O-Cu/ALGINATE 41 3.2.1 Phổ FT-IR của nano Cu2O-Cu/alginate 41 3.2.2 Phổ XRD của nano Cu2O-Cu/alginate 42 3.2.3 Phổ tán xạ lượng tia X (EDX) của chế phẩm nano Cu2O-Cu/alginate 43 3.2.4 Phổ UV-vis của vật liệu nano Cu2O-Cu/alginate 44 3.2.5 Nghiên cứu sự thay đổi kích thước hạt của dung dịch keo nano Cu2O-Cu/Alginate 45 3.2.6 Đợc tính của nano Cu2O-Cu/alginate 46 3.2.6.1 Độc tính qua đường miệng 46 3.2.6.2 Độc tính qua đường tiếp xúc da 47 3.3 Hoạt tính kháng nấm neoscytalidium dimidiatum gây bệnh đốm nâu long của nano Cu2O-Cu/ALGINATE 49 3.3.1 Thí nghiệm khuếch tán đĩa thạch xác định hiệu lực kháng nấm phụ thuộc nồng độ Cu vật liệu nano Cu2O-Cu/alginate 49 3.3.2.Thí nghiệm điều kiện nhà lưới 52 CHƯƠNG KẾT LUẬN VÀ KIẾN NGHỊ 55 4.1 Kết luận 55 4.2 Kiến nghị 55 TÀI LIỆU THAM KHẢO 56 viii CHƯƠNG KẾT LUẬN VÀ KIẾN NGHỊ 4.1 KẾT LUẬN Kết quả của luận văn hoàn thành được các nội dung, mục tiêu khoa học và thực tiễn đề ra, bao gồm các kết luận sau: − Đã nghiên cứu khảo sát các yếu tố ảnh hưởng đến kích thước hạt nano Cu2O-Cu quy trình điều chế nano Cu2O-Cu ổn định alginate với hàm lượng Cu từ 40 mM đến 80 mM Ở khoảng nồng độ trên, các hạt nano tạo có kích thước 5,4 – 8,4 nm Kích thước hạt nano Cu2O-Cu tăng cùng chiều với hàm lượng Cu và ngược chiều với hàm lượng chất bảo vệ Alginate và tăng chậm tăng hàm lượng chất khử Hydrazine − Dựa các nghiên cứu phổ XRD, FT-IR, UV-vis của vật liệu nano Cu2O-Cu/alginate, chúng đề xuất chúng có cấu trúc lõi vỏ, lõi là Cu2O vỏ là Cu Dung dịch keo Cu2O-Cu/alginate có thời gian đạt cân sa lắng tháng lưu trữ, từ thời điểm đạt cân sa lắng kích thước hạt nano không thay đổi theo thời gian bảo quản − Ở nồng độ 30 ppm vật liệu nano Cu2O-Cu/Alginate đạt hiệu quả kháng nấm N dimidiatum 100% thí nghiệm khuếch tán đĩa thạch, ở nồng đô 40 ppm Cu, vật liệu nano Cu2O-Cu/Alginate có hiệu quả phòng trừ nấm N dimidiatum gây bệnh đốm nâu long đạt hiệu quả 90% nên có tiềm sử dụng làm thuốc bảo vệ thực vật sản xuất nông sản − Vật liệu nano Cu2O-Cu/Alginate không độc ( LD>3000 mg/kg), không kích ứng da, không phát hiện tồn dư nông sản nên là loại vật liệu an toàn sử dụng để kiểm soát bệnh thực vật sản xuất nông sản sạch đạt tiêu chuẩn xuất khẩu 4.2 KIẾN NGHỊ Vật liệu nano Cu2O-Cu/Alginate là vật liệu có khả phòng trừ nấm bệnh thực vật đạt hiệu quả cao đối với nấm N dimidiatum, vì vậy cần có các nghiên cứu tiếp theo khảo sát hiệu lực sinh học đối với các đối tượng gây bệnh các loại trồng khác với mục tiêu sử dụng vật liệu làm chất kiếm soát nấm bệnh thực vật phổ rộng cho sản xuất nông nghiệp an toàn, bền vững 55 TÀI LIỆU THAM KHẢO Inorganic Crystal Structure Database (ICSD) (2007) No Title Fachinformation szentrum Karlsruhe, Ger U.S Dep Commer behalf United States Sachin, S Sawant, D Bhagwat Ashok, and M Mahajan Chandrashekhar "Synthesis of cuprous oxide (Cu2O) nanoparticles–a review." Журнал нано-та електронної фізики 8,№ , 2016, : 01035-1 LIU, Yingchi, et al Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells Applied physics letters, 2011, 98.16: 162105 LI, Xiaodong, et al Nanoindentation of Cu2O nanocubes, Nano Letters, 2004, 4.10: 1903-1907 Qian, Yong, et al Synthesis of cuprous oxide (Cu2O) nanoparticles/graphene composite with an excellent electrocatalytic activity towards glucose Int J Electrochem Sci, 2012, 7.10: 1006310073 Poizot, P L S G., et al Nano-sized transition-metal oxides as negativeelectrode materials for lithium-ion batteries Nature, 2000, 407.6803: 496499 Kondo, JunkoáN, et al Cu2O as a photocatalyst for overall water splitting under visible light irradiation Chemical Communications, 1998, 3: 357358 Lefez, B.; lenglet, M Photoluminescence of thin oxide layers on metallic substrates (Cu2O/Cu and ZnO/Zn) Chemical physics letters, 1991, 179.3: 223-226 Mancier, Valérie; daltin, Anne-Lise; leclercq, Didier Synthesis and characterization of copper oxide (I) nanoparticles produced by pulsed sonoelectrochemistry Ultrasonics Sonochemistry, 2008, 15.3: 157-163 56 10 Zhang, J., Liu, J., Peng, Q., Wang, X., & Li, Y Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors Chemistry of materials, 2006, 18(4), 867-871 11 D Rusjan, Copper in horticulture, In “Fungicides for Plant and Animal Diseases” (Eds by D Dhanasekaran, N Thajuddin and A Panneerselvam), published by Intech, Rijecka, Croatia, 2012, 257-278 12 K Giannousi, G Sarafidis, S Mourdikoudis, A Pantazaki, and C Dendrinou-Samara, Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction, Inorganic Chemistry, 2014, 53 (18), pp 9657–9666 13 L Xiong, Z.-H Tong, J.-J Chen, L.-L Li, and H.-Q Yu, Morphologydependent antimicrobial activity of Cu/Cu𝑥O nanoparticles, Ecotoxicology, 2015, 24 (10), pp 2067–2072 14 Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A, Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review, Arch Toxicol, 2013, 87(7):1181-200, 2013 15 Cesar, G G., Maria, V., Perez, L., Jorge, E L., Marguerite, R., Marcelo, A V., Influence of the extraction–purification conditions on final properties of alginates obtained from brown algae (Macrocystis pyrifera), International Journal of Biological Macromolecules, 2009, 44(4), 365–371 16 Dawczynski, C., Schubert, R., Jahreis, G., Amino acids, fatty acids, a dietary fibre in edible seaweed products, Food Chemistry, 2007, 103(3), 891–899 17 N Sari-Chmayssem, S Taha, H Mawlawi, J P Guégan, J Jeftić, T Benvegnu, Extracted and depolymerized alginates from brown algae Sargassum vulgare of Lebanese origin: chemical, rheological, and antioxidant properties, J Appl Phyco 28 (2016) 1915–1929 57 18 M Sen, Effects of molecular weight and ratio of guluronic acid to mannuronic acid on the antioxidant properties of sodium alginate fractions prepared by radiation-induced degradation Appl Radiat Isotopes 69 (2011) 126–129 19 L H Thanh, N K B Tam, V T Nga, H T Thuy, T V Hai, H T Son, N N Quynh, N T H Nga, Study on the possibility of using microorganisms as biological agents to control fungal pathogens Neoscytalidium dimidiatum causing disease of brown spots on the dragon fruit, J Viet Env 2016, (1), 41-44 20 H Y Run, L L Qiao, J M Jun, F W Feng, C Jing Fruit internal brown rot caused by Neoscytalidium dimidiatum on pitahaya in Guangdong province, China, Australasian Plant Dis Notes, 2015, 10-13 21 Bui Duy Du, Lai Thi Kim Dung, Vo Nguyen Dang Khoa, Nguyen Duy Thang, Le Nghiem Anh Tuan, Chitinase-induced resistance against neoscytalidium dimidiatum on dragon trees: the effect of oligochitosan prepared by the heterogeneous degradation of chitosan with H 2O2 under hydrothermal conditions, Vietnam Journal of Chemistry, 2015, 53(2), 161-165 22 Uyen Thi Phan Ngoc, Dai Hai Nguyen Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum, Green Processing and Synthesis, 2018, 7(2), 132-138 23 D C Pham, T H Nguyen T.H., P U T Ngoc , N.T.T Le , T.V Tran, D H Nguyen, Preparation, characterization and antifungal properties of chitosan-silver nanoparticles synergize fungicide against Pyricularia oryzae J Nanoscience Nanotechnology 2018, 18(8), 5299-5305 24 Bùi Duy Du, Nghiên cứu chế tạo keo bạc nano xạ gamma Co-60 số ứng dụng chúng y học nông nghiệp, Luận án Tiến sĩ Hóa học, Đại học KHTN Hà Nội, 2009 25 Wikipedia.org/wiki/Anti-microbial properties of copper 58 26 Thurman R B.; Gerba C P (1989) The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses CRC Critical Reviews in Environmental Control 18(4): 295–315 27 Kuwahara, June; Suzuki, Tadashi; Funakoshi, Kyoko; Sugiura, Yukio (1986) Photosensitive DNA cleavage and phage inactivation by copper(II)-camptothecin Biochemistry 25 (6): 1216–1221 28 Vasudevachari, M; Antony, A (1982) Inhibition of avian myeloblastosis virus reverse transcriptase and virus inactivation by metal complexes of isonicotinic acid hydrazide Antiviral Research (5): 291–300 29 Samuni, A; Aronovitch, J; Godinger, D; Chevion, M; Czapski, G (1983) On the cytotoxicity of vitamin C and metal ions A site-specific Fenton mechanism European Journal of Biochemistry 137 (1–2): 119–124 30 Samuni, A.; Chevion, M.; Czapski, G (1984) Roles of Copper and Superoxide Anion Radicals in the Radiation-Induced Inactivation of T7 Bacteriophage Radiat Res 99 (3): 562–572 31 Manzl, C; Enrich, J; Ebner, H; Dallinger, R; Krumschnabel, G (2004) Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes.Toxicology 196 (1–2): 57–64 32 Josef Jampílek, Katarína Kráľová, Application of nanotechnology in agriculture and food industry, its prospects and risks, Ecol Chem Eng S 22(3):321-361, 2015 33 Surapaneni Meghana, Prachi Kabra, Swati Chakraborty and Nagarajan Padmavathy, Understanding the pathway of antibacterial activity of Copper Oxide Nanoparticles, J Name., 2013, 00, 1-3, pp1-8 34 Nguyễn Hoài Châu, Nghiên cứu ảnh hưởng hạt kim loại sắt, đồng, Coban kích thước nano đến sinh trưởng, phát triển, khả chống chịu, suất chất lượng ngô hạt số vùng trồng ngơ chính, đề tài nghiên cứu khoa học, 2014 59 35 Trần Quế Chi và cs, Nghiên cứu chế tạo tinh thể nano kim loại đồng phương pháp hoàn nguyên nhiệt độ thấp nhằm ứng dụng nông nghiệp, Tạp chí hóa học 52 (3) (2014), 36 Trần Quế Chi và cs, Nghiên cứu chế tạo tinh thể nano kim loại đồng sử dụng phương pháp khử đồng oxit hydro nhằm ứng dụng nông nghiệp, Tạp chí khoa học và công nghệ 52 (3C) (2014), 682-687 37 Du C V., Phong N.T.P, Chuong N.X Synthesis and characterization of copper nanoparticles contract in glycerin using hydrazinee hydrate reduction methods combined with microway heating, J Sci Technol 52 (1C) (2014) 75-84 38 Tran Thi Ha, Sai Cong Doanh, Nguyen Quang Hoa, and Nguyen Viet Tuyen, Effect of laser annealing on properties of CuO nanocrystals prepared by microwave irradiation method, The 8th International Conference on Photonics and Applications (ICPA 8), Da Nang, Vietnam, August 12-16, 2014 39 Bui Duy Du, Lai Thi Kim Dung, Le Nghiem Anh Tuan, Nguyen Quoc Hien, Large-scale fabrication of colloidal nano-sized CuCl solution with high concentration for using as fungicide for plant, Vietnam Journal of Chemistry, 55 (4), pp 460-464, 2017 40 Bui Duy Du, Le Nghiem Anh Tuan, Nguyen Duy Hang, Nguyen Quoc Hien, Study on production of nano CuCl/zeolite with high concentration on large scale for using as nematocide against root-lesion nematode (Pratylenchus spp.) for plant, Vietnam Journal of Chemistry, 55 (3e12), pp 327-331, 2017 41 Hai-tao Zhu, Can-ying Zhang, Yan-sheng Yin, Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation, Journal of Crystal Growth, 2004, 270, 722–728 60 42 M Blosi, S Albonetti, M Dondi, C Martelli, G Baldi, Microwaveassisted polyol synthesis of Cu nanoparticles, Nanopart Res, 2011, 13:127–138 43 Ratnika Varshney, Seema Bhadauria, M S Gaur, and Renu Pasricha, Characterization of copper nanoparticles synthesized by a novel microbiological method, journal of the Minerals, Metals & Materials Society, 2010, 62 (12), pp102–104 44 Szu-Han Wu and Dong-Hwang Chen, Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions, Journal of Colloid and Interface Science, 2014, 273, pp165–169 45 Arijit Kumar Chatterjee, Raj Kumar Sarkar, Asoke Prasun Chattopadhyay, Pulakesh Aich, Ruchira Chakraborty, Tarakdas Basu, A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E.Coli, Nanotechnology, 2012, 23, 085103 46 Muhammad sani Usman, Mohamed Ezzat El, Zowalaty, Kamyar Shameli, Norhazlin Zainuddin, Mohamed Salama, Nor Azowa Ibrahim, Synthesis, characterization, and antimicrobial properties of copper nanoparticles, International Journal of Nanomedicine,2013:8 4467–4479 47 Appu Manikandan and Muthukrishnan Sathiyabama, Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity, J Nanomed Nanotechno, 2015, 6:1, 2015 48 Asim Umer, Shahid Naveed, Naveed Ramzan, Muhammad Shahid Rafique, Muhammad Imran, A green method for the synthesis of Copper Nanoparticles using L-ascorbic acid, revista Matéria, 2014, v 19, n 3, pp 197 – 203 49 Yu, W., Xie, H., Chen, L., & Li, Y, Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles Powder Technology, 2010, 197(3), 218-221 61 50 A Sarkar.; T Mukherjee, T.; S Kapoor, PVP-stabilized copper nanoparticles: A reusable catalyst for “click” reaction between terminal alkynes and azides in nonaqueous solvents The Journal of Physical Chemistry C, 2008, 112.9: 3334-3340 51 Foresti, E., Fracasso, G., Lanzi, M., Lesci, I G., Paganin, L., Zuccheri, T., & Roveri, N., New thiophene monolayer-protected copper nanoparticles: synthesis and chemical-physical characterization Journal of Nanomaterials, 2008 Volume 2008 52 Wang, Jianyong, et al Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles Neurotoxicology, 2009, 30.6: 926-933 53 L Gou, C Murphy, Controlling the size of Cu2O nanocubes from 200 to 25 nm Journal of Materials Chemistry, 2004, 14(4), 735-738 54 L Kiaune and N Singhasemanon, "Pesticidal copper (I) oxide: environmental fate and aquatic toxicity." Reviews of Environmental Contamination and Toxicology, 2011, Volume 213, pp 1-26 55 Zhen Chen, Huan Meng, Gengmei Xing et al Acute toxicological effects of copper nanoparticles in vivo, Toxicology Letters 163 (2006) 109–120 56 In-Chul Lee, Je-Won Ko, Sung-Hyeuk Park, Je-Oh Lim, In-Sik Shi, Changjong Moon, Sung-Hwan Kim, Jeong-Doo He, Jong-Choon Kim, Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats, International Journal of Nanomedicine 2016:11 2883– 2900 57 Senthil kumar, P.; senthamarai, C.; durgadevi, A Adsorption kinetics, mechanism, isotherm, and thermodynamic analysis of copper ions onto the surface modified agricultural waste Environmental Progress & Sustainable Energy, 2014, 33.1: 28-37 58 Bui Duy Du, Dang Van Phu, Le Anh Quoc, and Nguyen Quoc Hien, Synthesis and investigation of antimicrobial activity of Cu 2O 62 nanoparticles/zeolite, Journal of Nanoparticles, Article ID 7056864, 2017, pp 1-6 59 Montazer, Majid, et al Simultaneous synthesis and fabrication of nano Cu O on cellulosic fabric using copper sulfate and glucose in alkali media producing safe bio-and photoactive textiles without color change Cellulose, 2015, 22.6: 4049-4064 60 Judith Diaz-Visurraga, Carla Daza, Claudio Pozo, Abraham Becerra, Carlos von Plessing, Apolinaria García, Study on antibacterial alginatestabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy, International Journal of Nanomedicine 7, 3597–3612, 2012 63 Cite this paper: Vietnam J Chem., 2019, 57(3), 318-323 Article DOI: 10.1002/vjch.201900022 Synthesis and in vitro antifungal efficiency of alginate-stabilized Cu2O-Cu nanoparticles against Neoscytalidium dimidiatum causing brown spot disease on dragon fruit plants (Hylocereus undatus) Bui Duy Du1,2*, Doan Thi Bich Ngoc2, Nguyen Duy Thang2, Le Nghiem Anh Tuan1,2, Bui Dinh Thach3, Nguyen Quoc Hien4 Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Viet Nam Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Viet Nam Research and Development Center for Radiation Technology, Vietnam Atomic Energy Institute, Ho Chi Minh City 700000, Viet Nam Received March 21, 2019; Accepted for publicaiton April 18, 2019 Abstract Cu2O-Cu nanoparticles (Cu2O-Cu NPs) stabilized by alginate have been developed for using as a plant fungicide The antifungal effect of Cu2O-Cu NPs against Neoscytalidium dimidiatum fungus causing brown spot disease in dragon fruit plants was investigated Transmission electron microscopy (TEM) was used to assess the morphology and size of Cu2O-CuNPs The average diameter of spherical Cu2O-Cu NPswas determined to be 5.40.4 nm Furthermore, the Cu2O-CuNPs stabilized in alginate were also characterized by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis Especially, the prepared Cu2O-Cu NPs/alginate showed high antifungal efficiency (~100 %) against Neoscytalidium dimidiatum with 30 ppm concentration copper The obtained results showed that Cu2O-Cu NPs stabilized in alginate have great potential in the development of nanomaterials for plant fungicide applications Keywords Cu2O-Cu nanoparticles, alginate, antifungal activity, Neoscytalidium dimidiatum INTRODUCTION In recent years, the researches on Cu and Cu-based nanoparticles (NPs) had drawn a lot of interests from the scientists due to their electrical and heat conductivity, magnetic, optical and catalytic properties and high anti-microorganism efficiency Cu nanomaterials are cheaper than those of Ag or Au.[1] However, Cu nanopartilces are not stable in open air due to their higher susceptibility to oxidation than bulk Cu materials, so Cu NPs were rarely applied in practice However, copper oxide (CuO, Cu2O) NPs have been widely used as a anti-microorganisms agent.[2,3] Therefore, researches focused on the synthesis of Cu2O nanomaterials for applications in different industrial fields such as photovoltaic and photocatalyst[4], negative electrode for lithium-ion battery.[5] According to Wick and Tilley (2015), Cu2O NPs were a potential material in converting energy used in solar cells in low light conditions and Cu2O NPs were able to produce in large scale and cheap price.[6] In agriculture, Cu is one of the micronutrients for plant growth, which is involved in the synthesis of chlorophyll and biochemical reactions of plant cells.[1] Furthermore, Cu2O in nanosize was as highly resistant to microorganisms as that of Cu and CuO.[3,7] Recently, some researches on antifungal activity of Cu2O NPs on the plant were published, typically Huang et al (2015) used Cu2ONPs to inhibit Alternaria solani fungus causing blight of tomato and root rot of peppers.[8] Cu2O NPs had the ability to inhibit the growth of E coli bacteria If the Cu concentration increases, antifungal activity of Cu2ONPs will increase.[9-11] In Vietnam, the production of export agricultural products has beenincreased, especially high-value 318 Wiley Online Library © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim Vietnam Journal of Chemistry agricultural products Dragon fruit (Hylocereus undatus) has high export value that has been mainly cultivating in Binh Thuan province (30,000 ha) and Mekong delta provinces (12,000 ha) In recent years, the cultivation of dragon fruit plantsmet an obstacle by appearing brown spot disease caused by Neoscytalidium dimidiatum (N dimidiatum) Up to now, adequate fungicides for controlling this disease that causes damage to domestic and export economic have not been found.[12] The brown spot disease usually appearsin the rainy season, the infected area can be up to 90 % and the disease incidence can be 10-50 % Therefore, the study of creating new fungicides to control N dimidiatum fungi is really essential In this article, we presented the results of the synthesis of Cu2O-Cu NPs colloidal solution having high Cu concentration (5,000 ppm) from CuSO4.5H2O, hydrazine and alginate extracted from brown seaweed, Khanh Hoa province and in vitro antifungal effect of resultant Cu2O-Cu NPs/alginate on N dimidiatum causing brown spot disease in dragon fruit plants was also investigated MATERIALS AND METHODS 2.1 Materials Analytical reagents including CuSO4.5H2O, NH4OH (25 %), and N2H4.H2O (80 %) were purchased from Xilong Scientific Company Limited, China, and industrial reagent alginate (Mw ~ 51,200 g/mol) was extracted from brown seaweed at Khanh Hoa province, Vietnam The Potato Dextrose Agae (PDA) medium for fungus incubation was purchased from Himedia, India The strain of N dimidiatum was provided by the Institute of Tropical Biology VAST, Ho Chi Minh City Distilled water was used in all experiments 2.2 Synthesis of Cu2O-CuNPs/alginate colloidal solution 5.5 ml 25 % NH3 solution was added into mixture of g CuSO4.5H2O and ml water to creat Cu(NH4)42+ complex to avoid gel formation between Cu2+ and alginate 12.5 g of alginate was dissolved in 225 ml distilled water at temperature ~ 60 oC, stirred for hours Then, the solution of Cu(NH4)42+ complex was added into alginate solution, stirred for 10 m in order to prepare a homogeneous mixture, and then water was added to make 250 mL of solution ml of 8% hydrazine was slowly added into alginate- Bui Duy Du et al Cu2+ solution while stirring to prepare Cu2O-Cu NPs/alginate colloidal solution with 5,000 ppm Cu concentration 2.3 Characterization of Cu2O-Cu NPs/alginate Cu2O-Cu NPs/alginate powder was obtained by spray drying method The content of copper in Cu2O-Cu NPs/alginate product was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) on a Perkin-Elmer, Optima 5300 DV The functional groups of the Cu2O-Cu NPs/alginate were analyzed by FT-IR technique Spectral-grade KBr powder was mixed with Cu2OCu NPs/alginate at a weight ratio of mg Cu2O-Cu NPs/alginate: 200 mg KBr in an agate mortar The mixture powder was pressed into pellets with a diameter of 13 mm and thickness of 0.5 mm The infrared (IR) spectrum of Cu2O-Cu NPs/alginate was measured by using FT-IR spectroscopy (FT-IR 8400S, Shimadzu) over the wavenumber range from 4000 to 400 cm-1 X-ray diffraction (XRD) of Cu2OCu NPs/alginate product was carried out on D8 Advance Bruker, Germany The XRD pattern was obtained by using CuKα as a radiation source (λ = 1.5405 Å) operating under a constant current of 30 mA at 40 kV with a diffraction angle (2θ) scan range from to 80° And the Cu2O-CuNPs size was measured using a transmission electron microscope (TEM; JEM 1010, JEOL, Tokyo, Japan) 2.4 In vitro antifungal effect of Cu2OCuNPs/alginate against N dimidiatum fungus The antifungal activity of Cu2O-Cu NPs/alginate was tested against N dimidiatumby culture medium toxicity method.[13,14] Firstly, PDA culture medium was prepared For investigation of the concentration effect, Cu2O-Cu NPs/alginatewith concentration of (control), 15.0; 22.5 and 30.0 ppm Cu were added to potato dextrose agar (PDA) media Secondly, N dimidiatum fungi colonies were given directly into the center of agar surface The PDA agar plate containing the both fungi colonies and test samples or the control were incubated at 30 oC Each experiment was performed in triplicates After days incubation, the antifungal effect was evaluated by measuring diameter of colony growth and calculated as follows: Inhibition efficiency (%) = 100d/d0 where: d0 and d are the fungal growth diameter (mm) of the control and studied samples, respectively © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim www.vjc.wiley-vch.de 319 Synthesis and in vitro antifungal efficiency of… Vietnam Journal of Chemistry pH > 11.[16] The color of Cu2+solution was blue before being reduced, and became yellow after reduction In this process, the following chemical reactions occurred: Cu2+ +4NH3 → [Cu(NH3)4]2+ (1) 2[Cu(NH3)4]2+ + N2H4 + 5OH- + alginate → Cu2O/alginate + N2+ 4NH3 + 4NH4+ + 4H2O (2) (Cu2O + Cu2O + Cu2O + ⋅⋅⋅)/alginate → Cu2O NPs/alginate (3) In aqueous ammonia media, ammonia reacts with Cu2+ according to the reaction (1) and [Cu(NH3)4]2+ complex was created to avoid Cu2+ to form complexes with alginate as being seen in Equation (2) Then the cuprous ions react with hydroxyl in the system to form cuprous oxide.[17] The copper ions Cu2+ may be reduced to cuprous ions according to the reaction (4) Cuprous oxide may be produced via oxidation of Cu as the reaction (5): 2Cu2++ N2H4+ 4OH−+ alginate → 2Cuo/alginate + N2+ 4H2O (4) Cuo/alginate + O2 → Cu2O/alginate (5) 2.5 Statistical Analysis Cu2O-CuNPs size was statistically calculated from TEM image by Photoshop CS6 and Microsoft EXCEL 2010 software All data were expressed as mean ± standard error (SE) and subjected to statistical analysis with the JMP Statistical Discovery v10.0 software (SAS Institute Inc., USA) One-way ANOVA was performed for each treatment including three replicates Significant differences between means were determined by Ducan’s multiple range test at P < 0.05 RESULTS AND DISCUSSION 3.1 Synthesis and characterization of Cu2O-Cu NPs/alginate Hydrazine hydrate (N2H4.H2O) and NH3·H2O were used as reductant and buffer agent, respectively.[15] The optimum reduction of Cu2+ can be achieved at b) a) 25 Average diameter = 5.4±0.4 nm Frequency, % 20 15 10 5 Diameter, nm Figure 1: TEM image (a) and particle size distribution (b) of Cu2O-Cu NPs/alginate The morphology and size of Cu2O-Cu NPs/alginate are shown in figure Cu2O-Cu NPshad spherical shape, good separation, small particle size and distribution in narrow ranges mainly from 3-7 nm Particularly, the average size of Cu2O-Cu NPs was were 5.4±0.4 nm It was observed from TEM image that alginate enables better the dispersion of Cu2O-Cu NPs and seemed to be suitable as a stabilizer in synthesis of Cu2O-CuNPs colloidal solution The content of Cu in Cu2O-Cu NPs/alginate colloidal solution was determined by ICP-AES method is 5.06 ppm IR spectra data of alginate and Cu2O-Cu NPs/alginate are shown in figure Figure 2a showed that a wide band at 3469 cm-1 and a weak band at 2931 cm-1 were assigned to hydrogen bonded (O–H) and (C–H) stretching vibrations, respectively Two strong absorptions were observed at 1610 cm-1and 1415 cm-1 They were attributed to asymmetric and symmetric stretching vibrations of carboxylate groups (O–C–O).[18] According to Fenoradosoa et al (2010), the absorption at 1415 cm−1 was assigned to C–OH deformation vibration with contribution of O–C–O symmetric stretching vibration of carboxylate group.[19] The one band at 1128 cm-1 was assigned to C–O stretching for © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim www.vjc.wiley-vch.de 320 Bui Duy Du et al Vietnam Journal of Chemistry pyranose Figure 2b showed a shift from 3469 to 3438 cm−1 is observed for stabilized Cu2O-Cu NPs; this decrease in frequency may occur due to the interaction of Cuo with –OH groups.[20] Furthermore, the characteristic band centered at 618.46 cm–1 for Cu2O was ascribed to the vibrational mode of Cu–O a) in Cu2O phase.[21] When stabilization occurs, the band corresponding to –C–O– stretching appear shifted at lower frequency (1128 to 1111 cm−1).[20] Therefore, the obtained results of IR spectra confirmed the formation of Cu2O NPs b) Figure 2: FT-IR spectra of brown seaweed alginate (a) and Cu2O-Cu NPs/alginate (b) a) b) Figure 3: XRD patterns of brown seaweed alginate (a) and Cu2O-Cu NPs/alginate (b) XRD patterns of brown seaweed alginate and Cu2O-Cu NPs/alginate are shown in figure Figure 3a showed that alginate extracted from brown seaweed (Khanh Hoa province) appeared characteristic peaks at 2θ ~13.6o and 21.5o,[18] there were also peaks at 2θ ~28.2o; 29.3o; 31.9o; 32.4o and 34.2o, which proved that alginate extraction has crystalline structure, which contains other impurities in brown seaweed that were inorganic or organic compounds Because alginate extracted from brown seaweed was subjected to agricultural application, so in the extraction process we did not remove mineral salts and organic compounds, these compounds had the effect of regulating growth for crops Figure 3b showed the XRD pattern of Cu2O-Cu NPs/alginate The diffraction pattern exhibited the characteristic peaks of two phases; crystalline metallic copper (cubic) and Cu2O (cubic) This means that Cu2+ ions were already reduced to Cu and Cu+ The XRD pattern of Cu2O showed the peaks corresponding to ~29.6o (1 0); 36.5o (1 1); 42.4o (2 0); 61.5o (2 0); 73.6o (3 1); 77.5o (2 2) The XRD pattern showed the peaks for Cu at 2θ ~ 43.4o (1 1); 50.4o (2 0); 74.5o (2 0) All peaks can be attributed to the cubic form of metallic copper.[22] These peaks are very close to that given by JCPDS data of XRD for Cu2O (JCPDS: 34-1354) and Cu (JCPDS: 040836) The results of this study were also consistent with the studies of Badawy[22] and Maximino.[23] 3.2 Antifungal activity of Cu2O-Cu NPs/alginate The antifungal effect of Cu2O-Cu NPs/alginate increased with the Cu concentration After incubation for days, the growth inhibition was of 25.1 %, 61.1 %, and 100 % for Cu 15.0, 22.5 and 30 © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim www.vjc.wiley-vch.de 321 Synthesis and in vitro antifungal efficiency of… Vietnam Journal of Chemistry ppm, respectively Results in Figure indicated that the antifungal efficiency increased strongly when concentration of Cu increased After days of incubation, N dimidiatum fungal growth normally on the control plates with the diameter reached 90 mm However, cultural media supplemented with Cu at 22.5 ppm showed strong inhibition effects on N dimidiatum with the fungal diameter only reached 55 mm (61.1 % inhibition) The antifungal efficiency increased to ~100 % at Cu concentartion of 30 ppm Based on the results in figure 4, ED50 (effective dose for 50 % inhibition) of Cu on N dimidiatum was found to be 20.8 ppm The antifungal effect of AgNPs/chitosan on N dimidiatum in the dragon fruit plants was also investigated by Phan Ngoc et al (2018) with highest inhibitory effect at 10 ppm Ag and 2% chitosan.[24] In addition, Du et al (2015) reported that oligochitosan against N dimidiatum with EC50 = 51.5 ppm.[14] Beside, nSiO2-OC also showed high efficiency in controlling brown spot disease on dragon fruit plants caused by N dimidiatum fungal.[25] Figure 4: The antifungal effect of Cu2O-Cu NPs/alginate on N dimidiatum after days of incubation Dhanasekaran, N Thajuddin and A Panneerselvam), published by Intech, Rijecka, Croatia, 257-278, 2012 CONCLUSION In this study, we have prepared the Cu2O-Cu NPs/alginate colloidal solution with high concentration of 5,000 ppm Cu, the average particle size of 5.4±0.4 nm, the particle size distribution in a narrow range The Cu2O-Cu NPs/alginate product exhibited highly antifungal efficiency (~100 %), for the growth of N dimidiatum causing brown spot disease on dragon fruit plant at 30.0 ppm Cu concentration The results of this study revealed that Cu2O-Cu NPs/alginate is a potential material used as a fungicide in sustanable agriculture production L Xiong, Z.-H Tong, J.-J Chen, L.-L Li, H.-Q Yu Morphology-dependent antimicrobial activity of Cu/Cu O nanoparticles, Ecotoxicology, 2015, 24 (10), 2067-2072 K Giannousi, G Sarafidis, S Mourdikoudis, A Pantazaki, C Dendrinou-Samara Selective synthesis of Cu2O and Cu/Cu2O NPs: antifungal activity to yeast saccharomyces cerevisiae and DNA interaction, Inorg Chem., 2014, 53(18), 9657-9666 N Gu, J Gao, H Li, Y Wu, Y Ma, K Wang Montmorillonite-supported with Cu2O nanoparticles for damage and removal of Microcystis aeruginosa under visible light, Appl Clay Sci., 2016, 132-133, 79-89 Acknowledgments This research is funded by Science and Technology Programme for the Sustainable Development of the Mekong Delta Region under grant number TNB.ĐT/14-19/C38 H Xu, W Wang, W Zhu Shape evolution and size- REFERENCES R D Rusjan, Copper in horticulture, In “Fungicides for Plant and Animal Diseases” (Eds by D controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties, J Phys Chem B, 2006, 110(28), 13829–13834 Wick, S D Tilley Photovoltaic and photoelectrochemical solar energy conversion with Cu2O, J Phys Chem C, 2015, 119(47), 26243– 26257 © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim www.vjc.wiley-vch.de 322 Vietnam Journal of Chemistry Bui Duy Du et al L Kiaune, N Singhasemanon Pesticidal copper (I) 17 P He, X Shen, H Gao Size-controlled preparation oxide: environmental fate and aquatic toxicity, Rev Environ Contam Toxicol., 2011, 213, 1-26 of Cu2O octahedron nanocrystals and studies on their optical absorption, J Colloid Interface Sci., 2005, 284, 510-515 S Huang, L Wang, L Liu, Y Hou, L Li Nanotechnology in agriculture, livestock, and aquaculture in China A review, Agron Sustain Dev., 2015, 35(2), 369–400 J Ren, W Wang, S Sun, L Zhang, L Wang, J Chang Crystallography facet-dependent antibacterial activity: the case of Cu2O, Ind Eng Chem Res., 2011, 50(17), 10366–10369 18 R A Khajouei, J Keramat, N R Hamdami, A.-V Ursu, C Delattre, C Laroche, C Gardarin, D Lecerf, J Desbrières, G Djelveh, P Michaud Extraction and characterization of an alginate from the Iranian brown seaweed Nizimuddinia zanardini, Inter J Biol Macromol., 2018, 118, 1073-1081 19 T A Fenoradosoa, G Ali, C.Delattre, C Laroche, antibacterial activity of cuprous oxide, Chem Commun., 2009, 9, 1076-1078 E Petit, A Wadouachi, P Michaud Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow, J Appl Phycol., 2010, 22, 131-137 11 B D Du, D V Phu, L A Quoc, N Q Hien 20 J Diaz-Visurraga, C Daza, C Pozo A Becerra, C 10 P Huan, F Gao, Q Lu Morphology effect on Synthesis and investigation of antimicrobial activity of Cu2O nanoparticles/zeolite, J Nanoparticles, 2017, Article ID 7056864, 1-6 12 L H Thanh, N K B Tam, V T Nga, H T Thuy, T V Hai, H T Son, N N Quynh, N T H Nga Study on the possibility of using microorganisms as biological agents to control fungal pathogens Neoscytalidium dimidiatum causing disease of brown spots on the dragon fruit, J Viet Env., 2016, 8(1), 41-44 13 D V Phu, V T K Lang, N T K Lan, Ng N Duy, N D Chau, B D Du, B D Cam, N Q Hien Synthesis and antimicrobial effects of colloidal silver nanoparticles in chitosan by γ-irradiation, J Exp Nanosci., 2010, 5(2), 169-179 14 B D Du, L T K Dung, V N D Khoa, N D Thang, L N A Tuan Chitinase-induced resistance against Neoscytalidium dimidiatum on dragon trees: the effect of oligochitosan prepared by the heterogeneous degradation of chitosan with H2O2 under hydrothermal conditions, Vietnam J Chem., 2015, 53(2), 161-165 15 W.Songping, M Shuyuan Preparation of micron size copper powder with chemical reduction method, Mater Lett., 2006, 60, 2438-2442 16 J P Chen, L L Lim Key factors in chemical reduction by hydrazine for recovery of precious metals,Chemosphere, 2002, 49, 363-370 V Plessing, A Garcia Study on antibacterial alginate-stabilized copper nanopar-ticles by FT-IR and 2D-IR correlation spectroscopy, Int J Nanomedicine, 2012, 7, 3597-3612 21 S S Sawant, A D Bhagwat, C M Mahajan Novel facile technique for synthesis of stable cuprous oxide (Cu2O) nanoparticles–an ageing effect, J Nano Elec Phys., 2016, 8(1), 01036-01039 22 S M Badawy, R A El-Khashab, A A Nayl Synthesis, characterization and catalytic activity of Cu/Cu2O nanoparticles prepared in aqueous medium, Bull Chem React Eng Catal., 2015, 10(2), 169174 23 N Jardón-Maximino, M Pérez-Alvarez, R SierraÁvila, C A Ávila-Orta, E Jiménez-Regalado Oxidation of copper nanoparticles protected with different coatings and stored under ambient conditions, J Nanomater., 2018, Article ID 9512768, pages 24 U T Phan Ngoc, D H Nguyen Synergistic antifungal effect of fungicide and chitosan-silver nanoparticles on Neoscytalidium dimidiatum, Green Process Synth., 2018, 7(2), 132-138 25 L N A Tuan, B D Du, L D T Ha, L T K Dzung, D V Phu, N Q Hien Induction of chitinase and brown spot disease resistance by oligochitosan and nanosilica-oligochitosan in dragon fruit plants, Agri Res., 2018, 8(2), 184-190 Corresponding author: Bui Duy Du Institute of Applied Materials Science Vietnam Academy of Science and Technology 1A TL29 Str., Thanh Loc ward District 12, Ho Chi Minh City 700000, Viet Nam E-mail: vina9802@gmail.com © 2019 Vietnam Academy of Science and Technology, Hanoi & Wiley-VCH Verlag GmbH & Co KGaA, Weinheim www.vjc.wiley-vch.de 323 ... độ gây nhạy cảm là mg/ml và nồng độ thử thách mg/ml 2.4.2 Khảo sát in vitro hiệu lực kháng nấm Neoscytalidium dimidiatum gây bệnh đốm nâu long theo nồng độ nano Cu2OCu/alginate 2.4.2.1 Khảo. .. DỤC VÀ ĐÀO TẠO VIỆN HÀN LÂM KHOA HỌC VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Nguyễn Duy Thắng TỔNG HỢP NANO CU2O- CU/ALGINATE VÀ KHẢO SÁT KHẢ NĂNG KHÁNG NẤM NEOSCYTALIDIUM. .. tài: ? ?Tổng hợp nano Cu2O- Cu/Alginate khảo sát khả kháng nấm Neoscytalidium dimidiatum gây bệnh đốm nâu long? ?? Mục tiêu của đề tài là xây dựng được quy trình tổng hợp nano Cu2OCu/alginate