1. Trang chủ
  2. » Khoa Học Tự Nhiên

Tài liệu Tuyển Tập Các Đề Thi Toán Của Các Nước Trên Thế Giới P1 ppt

301 1,5K 19

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 301
Dung lượng 1,93 MB

Nội dung

TRƯỜNG KHOA……… ………… o0o………… Tuyển tập các đề thi của các nước trên thế giới P1 - Cao Minh Quang PREFACE Collecting the Mathematics tests from the contests choosing the best students is not only my favorite interest but also many different people’s. This selected book is an adequate collection of the Math tests in the Mathematical Olympiads tests from 14 countries, from different regions and from the International Mathematical Olympiads tests as well. I had a lot of effort to finish this book. Besides, I’m also grateful to all students who gave me much support in my collection. They include students in class 11 of specialized Chemistry – Biologry, class 10 specialized Mathematics and class 10A 2 in the school year 2003 – 2004, Nguyen Binh Khiem specialized High School in Vinh Long town. This book may be lack of some Mathematical Olympiads tests from different countries. Therefore, I would like to receive both your supplement and your supplementary ideas. Please write or mail to me. • Address: Cao Minh Quang, Mathematic teacher, Nguyen Binh Khiem specialized High School, Vinh Long town. • Email: kt13quang@yahoo.com Vinh Long, April 2006 Cao Minh Quang ☺ The best problems from around the world Cao Minh Quang 2 Abbreviations AIME American Invitational Mathematics Examination ASU All Soviet Union Math Competitions BMO British Mathematical Olympiads CanMO Canadian Mathematical Olympiads INMO Indian National Mathematical Olympiads USAMO United States Mathematical Olympiads APMO Asian Pacific Mathematical Olympiads IMO International Mathematical Olympiads ☺ The best problems from around the world Cao Minh Quang 3 CONTENTS Page Preface . 1 Abbreviations 2 Contents . 3 PART I. National Olympiads 17 1. AIME (1983 – 2004) . 17 1.1. AIME 1983 18 1.2. AIME 1984 20 1.3. AIME 1985 21 1.4. AIME 1986 23 1.5. AIME 1987 24 1.6. AIME 1988 25 1.7. AIME 1989 26 1.8. AIME 1990 27 1.9. AIME 1991 28 1.10. AIME 1992 29 1.11. AIME 1993 30 1.12. AIME 1994 32 1.13. AIME 1995 33 1.14. AIME 1996 35 1.15. AIME 1997 36 1.16. AIME 1998 37 1.17. AIME 1999 39 1.18. AIME 2000 40 1.19. AIME 2001 42 1.20. AIME 2002 45 1.21. AIME 2003 48 1.22. AIME 2004 50 2. ASU (1961 – 2002) . 51 2.1. ASU 1961 52 2.2. ASU 1962 54 2.3. ASU 1963 55 2.4. ASU 1964 56 2.5. ASU 1965 57 2.6. ASU 1966 59 2.7. ASU 1967 60 2.8. ASU 1968 61 2.9. ASU 1969 63 2.10. ASU 1970 64 2.11. ASU 1971 65 2.12. ASU 1972 67 2.13. ASU 1973 68 2.14. ASU 1974 70 2.15. ASU 1975 72 2.16. ASU 1976 74 2.17. ASU 1977 76 2.18. ASU 1978 78 2.19. ASU 1979 80 2.20. ASU 1980 82 2.21. ASU 1981 84 ☺ The best problems from around the world Cao Minh Quang 4 2.22. ASU 1982 86 2.23. ASU 1983 88 2.24. ASU 1984 90 2.25. ASU 1985 92 2.26. ASU 1986 94 2.27. ASU 1987 96 2.28. ASU 1988 98 2.29. ASU 1989 . 100 2.30. ASU 1990 . 102 2.31. ASU 1991 . 104 2.32. CIS 1992 . 106 2.33. Russian 1995 . 108 2.34. Russian 1996 110 2.35. Russian 1997 112 2.36. Russian 1998 114 2.37. Russian 1999 116 2.38. Russian 2000 118 2.39. Russian 2001 121 2.40. Russian 2002 123 3. BMO (1965 – 2004) . 125 3.1. BMO 1965 126 3.2. BMO 1966 127 3.3. BMO 1967 128 3.4. BMO 1968 129 3.5. BMO 1969 130 3.6. BMO 1970 131 3.7. BMO 1971 132 3.8. BMO 1972 133 3.9. BMO 1973 134 3.10. BMO 1974 136 3.11. BMO 1975 137 3.12. BMO 1976 138 3.13. BMO 1977 139 3.14. BMO 1978 140 3.15. BMO 1979 141 3.16. BMO 1980 142 3.17. BMO 1981 143 3.18. BMO 1982 144 3.19. BMO 1983 145 3.20. BMO 1984 146 3.21. BMO 1985 147 3.22. BMO 1986 148 3.23. BMO 1987 149 3.24. BMO 1988 150 3.25. BMO 1989 151 3.26. BMO 1990 152 3.27. BMO 1991 153 3.28. BMO 1992 154 3.29. BMO 1993 155 3.30. BMO 1994 156 3.31. BMO 1995 157 3.32. BMO 1996 158 ☺ The best problems from around the world Cao Minh Quang 5 3.33. BMO 1997 159 3.34. BMO 1998 160 3.35. BMO 1999 161 3.36. BMO 2000 162 3.37. BMO 2001 163 3.38. BMO 2002 164 3.39. BMO 2003 165 3.40. BMO 2004 166 4. Brasil (1979 – 2003) 167 4.1. Brasil 1979 . 168 4.2. Brasil 1980 . 169 4.3. Brasil 1981 . 170 4.4. Brasil 1982 . 171 4.5. Brasil 1983 . 172 4.6. Brasil 1984 . 173 4.7. Brasil 1985 . 174 4.8. Brasil 1986 . 175 4.9. Brasil 1987 . 176 4.10. Brasil 1988 . 177 4.11. Brasil 1989 . 178 4.12. Brasil 1990 . 179 4.13. Brasil 1991 . 180 4.14. Brasil 1992 . 181 4.15. Brasil 1993 . 182 4.16. Brasil 1994 . 183 4.17. Brasil 1995 . 184 4.18. Brasil 1996 . 185 4.19. Brasil 1997 . 186 4.20. Brasil 1998 . 187 4.21. Brasil 1999 . 188 4.22. Brasil 2000 . 189 4.23. Brasil 2001 . 190 4.24. Brasil 2002 . 191 4.25. Brasil 2003 . 192 5. CanMO (1969 – 2003) . 193 5.1. CanMO 1969 194 5.2. CanMO 1970 195 5.3. CanMO 1971 196 5.4. CanMO 1972 197 5.5. CanMO 1973 198 5.6. CanMO 1974 199 5.7. CanMO 1975 200 5.8. CanMO 1976 201 5.9. CanMO 1977 202 5.10. CanMO 1978 203 5.11. CanMO 1979 204 5.12. CanMO 1980 205 5.13. CanMO 1981 206 5.14. CanMO 1982 207 5.15. CanMO 1983 208 5.16. CanMO 1984 209 5.17. CanMO 1985 210 ☺ The best problems from around the world Cao Minh Quang 6 5.18. CanMO 1986 211 5.19. CanMO 1987 212 5.20. CanMO 1988 213 5.21. CanMO 1989 214 5.22. CanMO 1990 215 5.23. CanMO 1991 216 5.24. CanMO 1992 217 5.25. CanMO 1993 218 5.26. CanMO 1994 219 5.27. CanMO 1995 220 5.28. CanMO 1996 221 5.29. CanMO 1997 222 5.30. CanMO 1998 223 5.31. CanMO 1999 224 5.32. CanMO 2000 225 5.33. CanMO 2001 226 5.34. CanMO 2002 227 5.35. CanMO 2003 228 6. Eötvös Competition (1894 – 2004) 229 6.1. Eötvös Competition 1894 . 230 6.2. Eötvös Competition 1895 . 230 6.3. Eötvös Competition 1896 . 230 6.4. Eötvös Competition 1897 . 230 6.5. Eötvös Competition 1898 . 231 6.6. Eötvös Competition 1899 . 231 6.7. Eötvös Competition 1900 . 231 6.8. Eötvös Competition 1901 . 231 6.9. Eötvös Competition 1902 . 232 6.10. Eötvös Competition 1903 . 232 6.11. Eötvös Competition 1904 . 232 6.12. Eötvös Competition 1905 . 232 6.13. Eötvös Competition 1906 . 233 6.14. Eötvös Competition 1907 . 233 6.15. Eötvös Competition 1908 . 233 6.16. Eötvös Competition 1909 . 233 6.17. Eötvös Competition 1910 . 234 6.18. Eötvös Competition 1911 . 234 6.19. Eötvös Competition 1912 . 234 6.20. Eötvös Competition 1913 . 234 6.21. Eötvös Competition 1914 . 235 6.22. Eötvös Competition 1915 . 235 6.23. Eötvös Competition 1916 . 235 6.24. Eötvös Competition 1917 . 235 6.25. Eötvös Competition 1918 . 236 6.26. Eötvös Competition 1922 . 236 6.27. Eötvös Competition 1923 . 236 6.28. Eötvös Competition 1924 . 236 6.29. Eötvös Competition 1925 . 237 6.30. Eötvös Competition 1926 . 237 6.31. Eötvös Competition 1927 . 237 6.32. Eötvös Competition 1928 . 237 6.33. Eötvös Competition 1929 . 238 ☺ The best problems from around the world Cao Minh Quang 7 6.34. Eötvös Competition 1930 . 238 6.35. Eötvös Competition 1931 . 238 6.36. Eötvös Competition 1932 . 238 6.37. Eötvös Competition 1933 . 239 6.38. Eötvös Competition 1934 . 239 6.39. Eötvös Competition 1935 . 239 6.40. Eötvös Competition 1936 . 240 6.41. Eötvös Competition 1937 . 240 6.42. Eötvös Competition 1938 . 240 6.43. Eötvös Competition 1939 . 240 6.44. Eötvös Competition 1940 . 241 6.45. Eötvös Competition 1941 . 241 6.46. Eötvös Competition 1942 . 241 6.47. Eötvös Competition 1943 . 242 6.48. Eötvös Competition 1947 . 242 6.49. Eötvös Competition 1948 . 242 6.50. Eötvös Competition 1949 . 242 6.51. Eötvös Competition 1950 . 243 6.52. Eötvös Competition 1951 . 243 6.53. Eötvös Competition 1952 . 243 6.54. Eötvös Competition 1953 . 244 6.55. Eötvös Competition 1954 . 244 6.56. Eötvös Competition 1955 . 244 6.57. Eötvös Competition 1957 . 244 6.58. Eötvös Competition 1958 . 245 6.59. Eötvös Competition 1959 . 245 6.60. Eötvös Competition 1960 . 245 6.61. Eötvös Competition 1961 . 246 6.62. Eötvös Competition 1962 . 246 6.63. Eötvös Competition 1963 . 246 6.64. Eötvös Competition 1964 . 247 6.65. Eötvös Competition 1965 . 247 6.66. Eötvös Competition 1966 . 247 6.67. Eötvös Competition 1967 . 248 6.68. Eötvös Competition 1968 . 248 6.69. Eötvös Competition 1969 . 248 6.70. Eötvös Competition 1970 . 249 6.71. Eötvös Competition 1971 . 249 6.72. Eötvös Competition 1972 . 249 6.73. Eötvös Competition 1973 . 250 6.74. Eötvös Competition 1974 . 250 6.75. Eötvös Competition 1975 . 250 6.76. Eötvös Competition 1976 . 251 6.77. Eötvös Competition 1977 . 251 6.78. Eötvös Competition 1978 . 251 6.79. Eötvös Competition 1979 . 252 6.80. Eötvös Competition 1980 . 252 6.81. Eötvös Competition 1981 . 252 6.82. Eötvös Competition 1982 . 253 6.83. Eötvös Competition 1983 . 253 6.84. Eötvös Competition 1984 . 253 6.85. Eötvös Competition 1985 . 254 ☺ The best problems from around the world Cao Minh Quang 8 6.86. Eötvös Competition 1986 . 254 6.87. Eötvös Competition 1987 . 254 6.88. Eötvös Competition 1988 . 255 6.89. Eötvös Competition 1989 . 255 6.90. Eötvös Competition 1990 . 255 6.91. Eötvös Competition 1991 . 256 6.92. Eötvös Competition 1992 . 256 6.93. Eötvös Competition 1993 . 256 6.94. Eötvös Competition 1994 . 257 6.95. Eötvös Competition 1995 . 257 6.96. Eötvös Competition 1996 . 257 6.97. Eötvös Competition 1997 . 258 6.98. Eötvös Competition 1998 . 258 6.99. Eötvös Competition 1999 . 258 6.100. Eötvös Competition 2000 . 258 6.101. Eötvös Competition 2001 . 259 6.102. Eötvös Competition 2002 . 259 7. INMO (1995 – 2004) . 260 7.1. INMO 1995 261 7.2. INMO 1996 262 7.3. INMO 1997 263 7.4. INMO 1998 264 7.5. INMO 1999 265 7.6. INMO 2000 266 7.7. INMO 2001 267 7.8. INMO 2002 268 7.9. INMO 2003 269 7.10. INMO 2004 270 8. Irish (1988 – 2003) 271 8.1. Irish 1988 272 8.2. Irish 1989 273 8.3. Irish 1990 274 8.4. Irish 1991 275 8.5. Irish 1992 276 8.6. Irish 1993 277 8.7. Irish 1994 278 8.8. Irish 1995 279 8.9. Irish 1996 280 8.10. Irish 1997 281 8.11. Irish 1998 282 8.12. Irish 1999 283 8.13. Irish 2000 284 8.14. Irish 2001 285 8.15. Irish 2002 286 8.16. Irish 2003 287 9. Mexican (1987 – 2003) 288 9.1. Mexican 1987 . 289 9.2. Mexican 1988 . 290 9.3. Mexican 1989 . 291 9.4. Mexican 1990 . 292 9.5. Mexican 1991 . 293 9.6. Mexican 1992 . 294 ☺ The best problems from around the world Cao Minh Quang 9 9.7. Mexican 1993 . 295 9.8. Mexican 1994 . 296 9.9. Mexican 1995 . 297 9.10. Mexican 1996 . 298 9.11. Mexican 1997 . 299 9.12. Mexican 1998 . 300 9.13. Mexican 1999 . 301 9.14. Mexican 2000 . 302 9.15. Mexican 2001 . 303 9.16. Mexican 2003 . 304 9.17. Mexican 2004 . 305 10. Polish (1983 – 2003) 306 10.1. Polish 1983 . 307 10.2. Polish 1984 . 308 10.3. Polish 1985 . 309 10.4. Polish 1986 . 310 10.5. Polish 1987 . 311 10.6. Polish 1988 . 312 10.7. Polish 1989 . 313 10.8. Polish 1990 . 314 10.9. Polish 1991 . 315 10.10. Polish 1992 . 316 10.11. Polish 1993 . 317 10.12. Polish 1994 . 318 10.13. Polish 1995 . 319 10.14. Polish 1996 . 320 10.15. Polish 1997 . 321 10.16. Polish 1998 . 322 10.17. Polish 1999 . 323 10.18. Polish 2000 . 324 10.19. Polish 2001 . 325 10.20. Polish 2002 . 326 10.21. Polish 2003 . 327 11. Spanish (1990 – 2003) . 328 11.1. Spanish 1990 329 11.2. Spanish 1991 330 11.3. Spanish 1992 331 11.4. Spanish 1993 332 11.5. Spanish 1994 333 11.6. Spanish 1995 334 11.7. Spanish 1996 335 11.8. Spanish 1997 336 11.9. Spanish 1998 337 11.10. Spanish 1999 338 11.11. Spanish 2000 339 11.12. Spanish 2001 340 11.13. Spanish 2002 341 11.14. Spanish 2003 342 12. Swedish (1961 – 2003) . 343 12.1. Swedish 1961 . 344 12.2. Swedish 1962 . 34 5 12.3. Swedish 1963 . 346 [...]... m2 + n2 2 The rectangle ABCD has AB = 4, BC = 3 The side AB is divided into 168 equal parts by points P1, P2, , P16 7 (in that order with P1 next to A), and the side BC is divided into 168 equal parts by points Q167, Q166, , Q1 (in that order with Q1 next to C) The parallel segments P1Q1, P2Q2, , P16 7Q167 are drawn Similarly, 167 segments are drawn between AD and DC, and finally the diagonal AC is... thereafter the loser starts the next game Find the probability that A wins the sixth game 12 A = (0, 0), B = (0, 420), C = (560, 0) P1 is a point inside the triangle ABC Pn is chosen at random from the midpoints of Pn-1A, Pn-1B, and Pn-1C If P7 is (14, 92), find the coordinates of P1 13 L, L' are straight lines 200 ft apart A and A' start 200 feet apart, A on L and A' on L' A circular building 100 ft in diameter... root is n + k, where n is an integer and 0 < k < 1/1000 Find n 13 Given distinct reals x1, x2, x3, , x40 we compare the first two terms x1 and x2 and swap them iff x2 < x1 Then we compare the second and third terms of the resulting sequence and swap them iff the later term is smaller, and so on, until finally we compare the 39th and 40th terms of the resulting sequence and swap them iff the last is smaller... other again 30 ☺ The best problems from around the world Cao Minh Quang 14 R is a 6 x 8 rectangle R' is another rectangle with one vertex on each side of R R' can be rotated slightly and still remain within R Find the smallest perimeter that R' can have 15 The triangle ABC has AB = 1995, BC = 1993, CA = 1994 CX is an altitude Find the distance between the points at which the incircles of ACX and BCX . TRƯỜNG KHOA……… ………… o0o………… Tuyển tập các đề thi của các nước trên thế giới P1 - Cao Minh Quang PREFACE Collecting the Mathematics. students is not only my favorite interest but also many different people’s. This selected book is an adequate collection of the Math tests in the Mathematical

Ngày đăng: 15/12/2013, 08:15

TỪ KHÓA LIÊN QUAN

w