1. Trang chủ
  2. » Luận Văn - Báo Cáo

Nghiên cứu chế tạo vật liệu agtio2, ag nitio2 bằng phương pháp chiếu xạ tia co 60 ứng dụng làm xúc tác quang hóa phân hủy chất màu hữu cơ

131 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 131
Dung lượng 2,71 MB

Nội dung

ĐẠI HỌC QUỐC GIA TP HỒ CHÍ MINH TRƯỜNG ĐẠI HỌC BÁCH KHOA VÕ THỊ THU NHƯ NGHIÊN CỨU CHẾ TẠO VẬT LIỆU Ag/TiO2, Ag-Ni/TiO2 BẰNG PHƯƠNG PHÁP CHIẾU XẠ TIA Co-60 ỨNG DỤNG LÀM XÚC TÁC QUANG HOÁ PHÂN HUỶ CHẤT MÀU HỮU CƠ LUẬN ÁN TIẾN SĨ KỸ THUẬT TP HỒ CHÍ MINH NĂM 2019 ĐẠI HỌC QUỐC GIA TP HCM TRƯỜNG ĐẠI HỌC BÁCH KHOA VÕ THỊ THU NHƯ NGHIÊN CỨU CHẾ TẠO VẬT LIỆU Ag/TiO2, Ag-Ni/TiO2 BẰNG PHƯƠNG PHÁP CHIẾU XẠ TIA Co-60 ỨNG DỤNG LÀM XÚC TÁC QUANG HOÁ PHÂN HUỶ CHẤT MÀU HỮU CƠ Chuyên ngành: Kỹ thuật hoá học Mã số chuyên ngành: 62520301 Phản biện độc lập 1: PGS TS Nguyễn Thị Phương Phong Phản biện độc lập 2: PGS TS Nguyễn Đình Thành Phản biện 1: PGS TS Phạm Nguyễn Kim Tuyến Phản biện 2: GS TS Phan Thanh Sơn Nam Phản biện 3: TS Bùi Duy Du NGƯỜI HƯỚNG DẪN: PGS.TS NGUYỄN QUỐC HIẾN PGS.TS ĐỖ QUANG MINH LỜI CAM ĐOAN Tác giả xin cam đoan cơng trình nghiên cứu thân tác giả Các kết nghiên cứu kết luận luận án trung thực, không chép từ nguồn hình thức Việc tham khảo nguồn tài liệu (nếu có) thực trích dẫn ghi nguồn tài liệu tham khảo quy định Tác giả luận án Chữ ký Võ Thị Thu Như i TÓM TẮT LUẬN ÁN Biến tính TiO2 kim loại có khả gia tăng hoạt tính xúc tác quang hóa TiO2, mở rộng vùng hoạt động TiO2 từ vùng tử ngoại đến khả kiến Các kết nghiên cứu cho thấy Ag, Au, Pt, Pd, Rh, Cu Ni kim loại biến tính vào TiO2 cho kết hoạt tính xúc tác quang TiO2 tốt Luận án chế tạo thành công vật liệu Ag/TiO2 phương pháp chiếu xạ tia Co-60 lần chế tạo thành công vật liệu TiO2 đồng biến tính Ag Ni với hỗ trợ xạ gamma từ nguồn Co-60 Đồng thời, xác định đặc trưng cấu trúc hoạt tính xúc tác quang hóa phân hủy chất hữu hai vật liệu Các vật liệu xúc tác Ag/TiO2 Ag-Ni/TiO2 điều chế sở TiO2 (P25) có kích thước hạt 20 - 40 nm phương pháp chiếu xạ tia Co-60 Thành phần pha, kích thước hạt, diện tích bề mặt riêng, lượng vùng cấm, lượng liên kết,…của vật liệu xác định phương pháp: nhiễu xạ tia X (XRD), kính hiển vi điện tử quét (SEM), kính hiển vi điện tử truyền qua (TEM), diện tích bề mặt BET, phổ tán sắc lượng tia X (EDX), phổ quang điện tử tia X (XPS),… Kết phân tích cấu trúc vật liệu Ag/TiO2 với hàm lượng Ag biến tính khoảng tỉ lệ khối lượng Ag/TiO2 từ 0,5 - 2,0% cho thấy vật liệu có cấu trúc pha TiO2 anatase rutile với kích thước 20 - 40 nm Ag kim loại kích thước khoảng 1- nm Năng lượng vùng cấm mẫu Ag/TiO2 (bằng 3,330; 3,312; 3,167 3,295 eV) thấp so với TiO2 ban đầu (bằng 3,348 eV) Kết phân tích cấu trúc mẫu vật liệu Ag-Ni/TiO2 với tỉ lệ khối lượng Ag/TiO2 Ni/TiO2 từ 0,75 – 3,0% cho thấy cấu trúc pha pha anatase rutile TiO2 ban đầu cịn Ag Ni kim loại với kích thước nano khoảng 1-3 nm, lượng vùng cấm mẫu Ag-Ni/TiO2 (bằng 3,180; 3,151; 3,123; 3,102; 3,024 eV) thấp so với mẫu TiO2 ban đầu Hoạt tính xúc tác quang hóa hai vật liệu chế tạo thể với hai chất hữu methyl red rhodamine B Kết cho thấy Ag/TiO2 Ag-Ni/TiO2 có hoạt tính xúc tác quang hố cao TiO2 ban đầu điều kiện phản ứng Nguyên nhân ii Ag/TiO2 có hoạt tính xúc tác quang hố cao TiO2 hạt nano Ag biến tính vào cấu trúc TiO2 hình thành nên mức lượng làm giảm lượng vùng cấm TiO2 TiO2 trở nên hoạt tính Ngồi hạt nano Ag cịn chất bắt giữ điện tử quang sinh, làm giảm khả tái hợp lỗ trống - điện tử quang sinh TiO2 biến tính đồng thời hai kim loại Ag Ni có hoạt tính xúc tác quang cao TiO2 Ag/TiO2 Vì hai kim loại Ag Ni làm chất bắt giữ điện tử quang sinh tốt trường hợp có Ag Do dẫn đến kết hiệu suất phân hủy quang hóa chất hữu vật liệu Ag-Ni/TiO2 cao Ag/TiO2 Các vật liệu Ag/TiO2 Ag-Ni/TiO2 chiếu sáng, điện tử vùng hóa trị bị kích thích dịch chuyển lên vùng dẫn, hình thành cặp điện tử - lỗ trống quang sinh (e- h+) Các điện tử quang sinh vùng dẫn lỗ trống quang sinh vùng hóa trị phản ứng oxy hố khử với chất hấp thụ bề mặt vật liệu Trong trường hợp này, điện tử quang sinh khử O2 tạo gốc O2- lỗ trống quang sinh oxy hóa H2O bề mặt chất xúc tác để tạo gốc •OH H2O + h+ → •OH + H+ O2 + e - → O2 Các phản ứng làm ngăn cản khả tái kết hợp điện tử lỗ trống quang sinh Các gốc oxy hố •OH, O2- có khả phân huỷ chất hữu ô nhiễm thành hợp chất trung gian cuối phân huỷ hoàn toàn thành CO2 H2O iii ABSTRACT TiO2 modified by metal can enhance the photocatalytic activity and extend the active region of TiO2 from ultraviolet to visible light Noble metals including Ag, Au, Pt, Pd, Rh, Cu and Ni have been reported to be very effective in enhancing photocatalysis of TiO2 This thesis studied the preparation and characterization of Ag/TiO2 photocatalysts by  irradiation method The first time, TiO2 were modified by Ag and Ni supported by  irradiation from the Co-60 source The resulted photocatalysts were further investigated the photocatalytic activity toward the degradation of organic compounds The Ag/TiO2 and Ag-Ni/TiO2 catalysts were prepared based on the commercial TiO2 substrates (P25) with size ranging from 20 - 40 nm by the assistance of Co-60 irradiation The characteristics of Ag nano/TiO2 material such as: crystal phase, particle size, specific surface area, band gap, binding energy… has been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, the diffuse reflectance spectra (DRS), energy dispersive X-ray (EDX), X-ray photoemission spectroscopy (XPS) The modified Ag/TiO2 nanoparticles composing of 0.5 to 2.0 wt% of Ag in the composition revealed the co-existence of the TiO2 anatase and rutile phase with size of 20 - 40 nm and the Ag metallic phase with size of 1-3 nm The band gaps were of 3.330; 3.312; 3.167 and 3.295 eV which were lower than that of the pristine TiO2 substrates (3,348 eV) The characteristics of Ag-Ni/TiO2 material composing of 0.75 to 3.0 wt% of Ag and Ni in the composition indicated two phases of anatase and rutile of TiO2 and Ag and Ni metallic phase with size of 1-3 nm The band gap was of 3.180; 3.151; 3.123; 3.102 and 3.024 eV which were lower than that of TiO2 The photocatalytic activity of the obtained Ag/TiO2 and Ag-Ni/TiO2 nanoparticles prepared by the support of Co-60 irradiation was investigated toward the degradation of methyl red (MR) and rhodamine B (RB) in aqueous solution The results showed iv that both the Ag/TiO2 and Ag-Ni/TiO2 nanoparticles exhibited higher photocatalytic activities compared to that of the pristine TiO2 nanoparticles under the same controlled reaction condition The reason was attributed to the ability of nano-size doped metal in lowering the band gap energy and thus shifting the optical response to the visible light region In addition, the nano-size doped Ag particles also prevented the capacity of the instinct recombination of photogenerated electrons and holes inside the catalysts, thereby increasing the catalytic efficiency Noteworthy, the Ag/Ni modified TiO2 nanoparticles exhibited the highest photocatalytic activity compared to the Ag modified TiO2 and the pristine TiO2 under the same controlled reaction condition It was accounted for the synergetic ability of both Ag and Ni metals in capturing photogenerated eletrons better than in case of solely Ag modified TiO2 As a result, the Ag-Ni/TiO2 displayed the highest photocatalytic efficiency toward the organic compound degradation In principle, in the photocatalysts the electrons move from the valence band to the conduction band under light excitation, leading to the formation of electron – hole pairs, denoting as e- and h+ The e- is represented for the electron in the conduction band whereas the h+ is assigned to the electron vacancy in the valance band, respectively Both these entities can migrate to the catalyst surface where they can enter in redox reactions with other species presenting on the surface of the catalysts In most cases, h+ can react easily with surface bound H2O molecules to produce •OH radicals, whereas, e- can react with O2 molecules to form superoxide radical anions of oxygen H2O + h+ → •OH + H+ O2 + e - → O2 These reactions prevent the recombination of the generated electrons and the holes The •OH and O2- produced in the above manner can then react with the organic compounds to form other species and finally, decomposes into CO2 and H2O v LỜI CÁM ƠN Em xin bày tỏ lòng biết ơn sâu sắc đến PGS.TS Nguyễn Quốc Hiến PGS.TS Đỗ Quang Minh tận tình hướng dẫn giúp đỡ cho em hoàn thành Luận án Tiến sĩ Xin chân thành cảm ơn trung tâm Nghiên cứu Triển khai Cơng nghệ Bức xạ, phịng thí nghiệm Công nghệ Môi trường – trường Đại học Sư phạm Kỹ thuật Tp.HCM, Viện nghiên cứu hạt nhân Đà Lạt trường Đại học Bách Khoa Tp.HCM hỗ trợ trang thiết bị để giúp nghiên cứu thành công luận án Xin cảm ơn quý thầy cô bạn bè trường đại học Bách Khoa TP Hồ Chí Minh trường đại học Sư phạm Kỹ thuật TP Hồ Chí Minh giúp đỡ, khích lệ tơi hồn thành luận án Xin cảm ơn q thầy Hội đồng đánh giá Luận án Tiến sĩ, thầy phản biện độc lập góp ý quý giá, giúp chỉnh sửa luận án Xin bày tỏ lịng biết ơn đến gia đình ln an ủi, động viên, hỗ trợ mặt để tơi hồn thành luận án vi MỤC LỤC LỜI CAM ĐOAN .i TÓM TẮT LUẬN ÁN ii ABSTRACT iv LỜI CÁM ƠN vi MỤC LỤC vii DANH MỤC CÁC HÌNH ẢNH xi DANH MỤC BẢNG BIỂU xiv DANH MỤC CÁC TỪ VIẾT TẮT .xv MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Xúc tác quang hóa bán dẫn 1.2 Các vật liệu xúc tác quang hóa .6 1.3 Vật liệu xúc tác quang hóa TiO2 1.3.1 Cấu trúc pha tinh thể TiO2 tính chất TiO2 .8 1.3.2 TiO2 làm xúc tác quang hóa 10 1.3.2.1 Cơ chế phản ứng TiO2 làm chất xúc tác quang hóa .11 1.3.2.2 Các yếu tố ảnh hưởng đến khả xúc tác quang hóa TiO2 .12 1.2 Tổng quan vật liệu TiO2 biến tính 15 1.2.1 Cơ chế xúc tác quang hóa sở TiO2 biến tính 15 1.2.2 Các phương pháp biến tính TiO2 16 1.2.2.1 Phương pháp sol-gel .16 1.2.2.2 Phương pháp thủy nhiệt 17 1.2.2.3 Phương pháp nhũ tương .18 1.2.2.4 Phương pháp khử 19 1.2.3 Nguồn xạ, đơn vị đo xạ sở khoa học trình chiếu xạ chế tạo nano kim loại 20 1.2.3.1 Nguồn xạ gamma Co-60 20 1.2.3.2 Các đơn vị đo xạ 21 1.2.3.3 Các trình xảy chiếu xạ chế tạo vật liệu nano kim loại .22 vii 1.2.3.4 Xác định liều xạ khử kim loại .24 1.2.3.5 Áp dụng công nghệ xạ điều chế vật liệu nano .25 1.3 Tình hình nghiên cứu sử dụng TiO2 biến tính làm chất xúc tác quang hóa nước 27 1.4 Tình hình nghiên cứu sử dụng TiO2 biến tính làm chất xúc tác quang hóa giới 29 1.4.1 TiO2 biến tính với kim loại 29 1.4.2 TiO2 biến tính với phi kim 32 1.4.3 TiO2 biến tính đồng thời với nhiều nguyên tố 33 1.4.4 Vật liệu xúc tác quang hóa Ag/TiO2 34 1.4.5 Vật liệu xúc tác quang hóa Ag-Ni/TiO2 35 1.3 Hợp chất màu hữu methyl red rhodamine B 36 1.3.1 Rhodamine B .36 1.3.2 Methyl red 37 1.4 Hướng nghiên cứu luận án 39 CHƯƠNG THỰC NGHIỆM VÀ PHƯƠNG PHÁP NGHIÊN CỨU 41 Hóa chất vật liệu 41 2.2 Dụng cụ thiết bị thí nghiệm 41 2.3 Các quy trình chế tạo vật liệu .43 2.3.1 Quy trình chế tạo Ag/TiO2 phương pháp chiếu xạ .43 2.3.2 Quy trình chế tạo Ag-Ni/TiO2 phương pháp chiếu xạ 44 2.4 Các phương pháp phân tích tính chất vật liệu 45 2.4.1 Xác định cấu trúc tinh thể vật liệu 45 2.4.2 Hình thái kích thước hạt 46 2.4.3 Thành phần hóa học vi cấu trúc vật liệu 46 2.4.4 Năng lượng liên kết EB (eV) 47 2.4.5 Phổ khuếch tán phản xạ (DRS) lượng vùng cấm (Eg) 48 2.4.6 Diện tích bề mặt riêng 48 2.4.7 Xác định hàm lượng kim loại Ag Ni mẫu phương pháp phổ hấp thụ nguyên tử (AAS) 49 2.4.8 Phân tích LC/MS 50 2.5 Khảo sát khả xúc tác quang hóa phân huỷ chất hữu vật liệu 50 viii Vo Thi Thu Nhu, Huynh Nguyen Anh Tuan, Nguyen Pham Tu Ngan, Do Quang Minh, Nguyen Quoc Hien, “Optimization of photocatalytic degradation of Rhodamine B by Ag nano/TiO2 synthesized using -irradiation method”, Proceedings of the 5th International Workshop on Nanotechnology and Application (IWNA 2015), 11-14 November 2015, Vung Tau, Viet Nam, pp 540-543, 2015 100 TÀI LIỆU THAM KHẢO [1] B Ohtani, New and Future Developments in Catalysis: Chapter Principle of Photocatalysis and Design of Active Photocatalysts Elsevier Inc Chapters, 2013 [2] S Banerjee et al, "New insights into the mechanism of visible light photocatalysis," The journal of physical chemistry letters, vol 5, no 15, pp 2543-2554, 2014 [3] D Chen et al, "Heterogeneous photocatalysis in environmental remediation," Asia‐Pacific Journal of Chemical Engineering, vol 8, no 5‐6, pp 505-550, 2000 [4] R Matthews, "Environment: photochemical and photocatalytic processes Degradation of organic compounds," in Photochemical conversion and storage of solar energy: Springer, 1991, pp 427-449 [5] L Zhang et al., "Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities," Langmuir, vol 19, no 24, pp 10372-10380, 2003 [6] A Wold, "Photocatalytic properties of titanium dioxide (TiO2)," Chemistry of materials, vol 5, no 3, pp 280-283, 1993 [7] M R Hoffmann et al, "Environmental applications of semiconductor photocatalysis," Chemical reviews, vol 95, no 1, pp 69-96, 1995 [8] A Emeline et al, "Photostimulated generation of defects and surface reactions on a series of wide band gap metal-oxide solids," The Journal of Physical Chemistry B, vol 103, no 43, pp 9190-9199, 1999 [9] M Anpo, "Use of visible light Second-generation titanium oxide photocatalysts prepared by the application of an advanced metal ionimplantation method," Pure and Applied Chemistry, vol 72, no 9, pp 17871792, 2000 [10] J Talat-Mehrabad et al, "Synthesis, characterization, and photocatalytic activity of co-doped Ag–, Mg–TiO2-P25 by photodeposition and impregnation methods," Desalination and Water Treatment, vol 57, no 22, pp 1045110461, 2016 [11] N Riaz et al, "Photodegradation of Orange II under visible light using Cu– Ni/TiO2: effect of calcination temperature," Chemical Engineering Journal, vol 185, pp 108-119, 2012 [12] H Y Chuang and D H Chen, "Fabrication and photocatalytic activities in visible and UV light regions of Ag/TiO2 and NiAg/TiO2 nanoparticles," Nanotechnology, vol 20, no 10, p 105704, 2009 101 [13] E Grabowska et al., "Modification of titanium (IV) dioxide with small silver nanoparticles: application in photocatalysis," The Journal of Physical Chemistry C, vol 117, no 4, pp 1955-1962, 2013 [14] B I Kharisov et al, Radiation synthesis of materials and compounds, CRC Press, 2016 [15] Y Ma et al, "Titanium dioxide-based nanomaterials for photocatalytic fuel generations," Chemical reviews, vol 114, no 19, pp 9987-10043, 2014 [16] O Carp et al, "Photoinduced reactivity of titanium dioxide," Progress in solid state chemistry, vol 32, no 1-2, pp 33-177, 2004 [17] A Hagfeldt and M Graetzel, "Light-induced redox reactions in nanocrystalline systems," Chemical reviews, vol 95, no 1, pp 49-68, 1995 [18] A Mills and S Le Hunte, "An overview of semiconductor photocatalysis," Journal of Photochemistry and Photobiology A: Chemistry, vol 108, no 1, pp 1-35, 1997 [19] A Di Paola et al, "A survey of photocatalytic materials for environmental remediation," Journal of Hazardous Materials, vol 211, pp 3-29, 2012 [20] K Sivula et al, "WO3− Fe2O3 photoanodes for water splitting: A host scaffold, guest absorber approach," Chemistry of materials, vol 21, no 13, pp 28622867, 2009 [21] H Han and R Bai, "Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method," Industrial & Engineering Chemistry Research, vol 48, no 6, pp 2891-2898, 2009 [22] B O'regan and M Grätzel, "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films," nature, vol 353, no 6346, p 737, 1991 [23] W Wunderlich et al, "electronic properties of nano porous TiO2 and ZnO thin films - comparison of simulations and experiments", Journal of Ceramic Processing & Research, vol 5, no 4, pp 343-354, 2004 [24] M Landmann et al, "The electronic structure and optical response of rutile, anatase and brookite TiO2," Journal of physics: condensed matter, vol 24, no 19, p 195503, 2012 [25] M Gopal et al, "Room temperature synthesis of crystalline metal oxides," Journal of materials science, vol 32, no 22, pp 6001-6008, 1997 [26] Q Zhang et al, "Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis," Applied Catalysis B: Environmental, vol 26, no 3, pp 207-215, 2000 102 [27] A Sclafani et al, "Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion," Journal of physical chemistry, vol 94, no 2, pp 829-832, 1990 [28] A Fujishima and K Honda, "Electrochemical photolysis of water at a semiconductor electrode," nature, vol 238, no 5358, p 37, 1972 [29] N M Mahmoodi and M Arami, "Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis," Journal of Photochemistry and Photobiology B: Biology, vol 94, no 1, pp 20-24, 2009 [30] B Seger and P V Kamat, "Fuel cell geared in reverse: photocatalytic hydrogen production using a TiO2/Nafion/Pt membrane assembly with no applied bias," The Journal of Physical Chemistry C, vol 113, no 43, pp 18946-18952, 2009 [31] K Tanaka et al, "Effect of crystallinity of TiO2 on its photocatalytic action," Chemical Physics Letters, vol 187, no 1-2, pp 73-76, 1991 [32] J Yu et al, "Enhanced photocatalytic activity of TiO2 powder (P25) by hydrothermal treatment," Journal of Molecular Catalysis A: Chemical, vol 253, no 1-2, pp 112-118, 2006 [33] C Y Hsiao et al, "Heterogeneous photocatalysis: degradation of dilute solutions of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst," Journal of Catalysis, vol 82, no 2, pp 418-423, 1983 [34] R W Matthews, "Photocatalytic oxidation of chlorobenzene in aqueous suspensions of titanium dioxide," Journal of Catalysis, vol 97, no 2, pp 565568, 1986 [35] M Barbeni et al, "Photodegradation of 4-chlorophenol catalyzed by titanium dioxide particles," Nouveau Journal de Chimie, vol 8, no 015, pp 547-50, 1984 [36] K I Okamoto et al, "Heterogeneous photocatalytic decomposition of phenol over TiO2 powder," Bulletin of the Chemical Society of Japan, vol 58, no 7, pp 2015-2022, 1985 [37] A Zielińska-Jurek et al, "Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light," Applied Catalysis B: Environmental, vol 101, no 3-4, pp 504514, 2011 [38] Z Wu et al, "Visible light induced electron transfer process over nitrogen doped TiO2 nanocrystals prepared by oxidation of titanium nitride," Journal of Hazardous Materials, vol 157, no 1, pp 57-63, 2008 103 [39] P Cozzoli et al, "Photocatalytic activity of organic-capped anatase TiO2 nanocrystals in homogeneous organic solutions," Materials Science and Engineering: C, vol 23, no 6-8, pp 707-713, 2003 [40] A J Hoffman et al, "Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids," Environmental science & technology, vol 28, no 5, pp 776-785, 1994 [41] A D McNaught and A D McNaught, Compendium of chemical terminology Blackwell Science Oxford, 1997 [42] S M Gupta and M Tripathi, "A review of TiO2 nanoparticles," Chinese Science Bulletin, vol 56, no 16, p 1639, 2011 [43] M Viana et al, "Preparation of nano and microcrystals of silver using titania xerogel matrix as template," Journal of sol-gel science and technology, vol 59, no 1, pp 19-24, 2011 [44] C A Emilio et al, "Phenol photodegradation on platinized-TiO2 photocatalysts related to charge-carrier dynamics," Langmuir, vol 22, no 8, pp 3606-3613, 2006 [45] U I Gaya, "Heterogeneous photocatalysis using inorganic semiconductor solids" Springer Science & Business Media, 2013 [46] S Cassaignon et al, "Titanium dioxide in photocatalysis," Nanomaterials: A Danger or a Promise, Springer, 2013, pp 153-188 [47] H Zhang et al, "Photoelectrocatalytic materials for environmental applications," Journal of materials chemistry, vol 19, no 29, pp 5089-5121, 2009 [48] M Ilieva et al, "TiO2/WO3 hybrid structures produced through a sacrificial polymer layer technique for pollutant photo-and photoelectrooxidation under ultraviolet and visible light illumination," Journal of Applied Electrochemistry, vol 42, no 2, pp 121-129, 2012 [49] Y Bessekhouad et al, "Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant," Journal of Photochemistry and Photobiology A: Chemistry, vol 163, no 3, pp 569-580, 2004 [50] H Lin et al, "Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol," Applied Catalysis B: Environmental, vol 68, no 1-2, pp 1-11, 2006 [51] X Liu et al, "Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis," Journal of Alloys and Compounds, vol 509, no 41, pp 9970-9976, 2011 104 [52] R Daghrir et al, "Modified TiO2 for environmental photocatalytic applications: a review," Industrial & Engineering Chemistry Research, vol 52, no 10, pp 3581-3599, 2013 [53] J Du et al, "A facile sol–gel method for synthesis of porous Nd-doped TiO2 monolith with enhanced photocatalytic activity under UV–Vis irradiation," Microporous and Mesoporous Materials, vol 182, pp 87-94, 2013 [54] C Burda et al, "Enhanced nitrogen doping in TiO2 nanoparticles," Nano letters, vol 3, no 8, pp 1049-1051, 2003 [55] A Zaleska, "Doped-TiO2: a review," Recent patents on engineering, vol 2, no 3, pp 157-164, 2008 [56] Y Yang et al, "Photocatalytic mechanisms of modified titania under visible light," Research on chemical intermediates, vol 37, no 1, pp 91-102, 2011 [57] R Zheng et al, "Novel thermally stable phosphorus-doped TiO2 photocatalyst synthesized by hydrolysis of TiCl4," Journal of Molecular Catalysis A: Chemical, vol 319, no 1-2, pp 46-51, 2010 [58] Y Zhang et al., "C-doped hollow TiO2 spheres: in situ synthesis, controlled shell thickness, and superior visible-light photocatalytic activity," Applied Catalysis B: Environmental, vol 165, pp 715-722, 2015 [59] W Yu et al., "Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2," Applied Surface Science, vol 319, pp 107-112, 2014 [60] P Biswas, "Sol-Gel Derived Optical materials, S," Kumar and associates, vol 4, pp 531-554, 1997 [61] E H D Faria et al, "Sol-Gel TiO2 thin films sensitized with the mulberry pigment cyanidin," Materials Research, vol 10, no 4, pp 413-417, 2007 [62] D Tobaldi et al, "Sol–gel synthesis, characterisation and photocatalytic activity of pure, W-, Ag-and W/Ag co-doped TiO2 nanopowders," Chemical Engineering Journal, vol 214, pp 364-375, 2013 [63] D Kapusuz et al, "Sol–gel synthesis and photocatalytic activity of B and Zr co-doped TiO2," Journal of Physics and Chemistry of Solids, vol 74, no 7, pp 1026-1031, 2013 [64] H Li et al., "A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method," Applied Surface Science, vol 344, pp 112-118, 2015 [65] D X M Vargas et al, "Photocatalytic degradation of trichloroethylene in a continuous annular reactor using Cu-doped TiO2 catalysts by sol–gel synthesis," Applied Catalysis B: Environmental, vol 179, pp 249-261, 2015 105 [66] D V Aware and S S Jadhav, "Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method," Applied Nanoscience, vol 6, no 7, pp 965-972, 2016 [67] W Zhang et al, "Effects of indium doping on properties of xIn-0.1% Gd-TiO2 photocatalyst synthesized by sol-gel method," Journal of Physics and Chemistry of Solids, vol 104, pp 45-51, 2017 [68] D Tobaldi et al, "Nanosized titania modified with tungsten and silver: Microstructural characterisation of a multifunctional material," Applied Surface Science, vol 287, pp 276-281, 2013 [69] A Nakahira et al, "Synthesis of nanotube from a layered H2Ti4O9·H2O in a hydrothermal treatment using various titania sources," Journal of materials science, vol 39, no 13, pp 4239-4245, 2004 [70] W X Liu et al, "Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation," Research on chemical intermediates, vol 35, no 3, pp 321-328, 2009 [71] S Guo et al., "Synthesis of phosphorus-doped titania with mesoporous structure and excellent photocatalytic activity," Materials Research Bulletin, vol 48, no 9, pp 3032-3036, 2013 [72] J Zhu et al, "Fe3+-TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization," Journal of Photochemistry and Photobiology A: Chemistry, vol 180, no 1-2, pp 196-204, 2006 [73] J Zhou et al, "Photodegradation of benzoic acid over metal-doped TiO2," Industrial & Engineering Chemistry Research, vol 45, no 10, pp 3503-3511, 2006 [74] A Zielińska-Jurek et al, "Preparation of Ag/Cu-doped titanium (IV) oxide nanoparticles in w/o microemulsion," Physicochemical Problems of Mineral Processing, vol 45, pp 113-126, 2010 [75] V Vamathevan et al, "Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles," Journal of Photochemistry and Photobiology A: Chemistry, vol 148, no 1-3, pp 233-245, 2002 [76] X Li and F Li, "Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment," Environmental science & technology, vol 35, no 11, pp 2381-2387, 2001 [77] T Ohno et al, "Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder," Journal of Photochemistry and Photobiology A: Chemistry, vol 127, no 1-3, pp 107-110, 1999 106 [78] J F Wishart and B M Rao, Recent trends in radiation chemistry World Scientific, 2010 [79] J Belloni et al, "Radiation-induced synthesis of mono-and multi-metallic clusters and nanocolloids," New Journal of Chemistry, vol 22, no 11, pp 1239-1255, 1998 [80] E Gachard et al, "Radiation-induced and chemical formation of gold clusters," New Journal of Chemistry, vol 22, no 11, pp 1257-1265, 1998 [81] G Dey et al, "Radiolytic reduction of Fe (II) in 2-propanol," Chemical Physics Letters, vol 431, no 1-3, pp 83-87, 2006 [82] M M Esfahani et al, "Bimetallic Au-Pt nanoparticles synthesized by radiolysis: Application in electro-catalysis," Gold Bulletin, vol 43, no 1, pp 49-56, 2010 [83] F.L Toma et al, "Development of photocatalytic active TiO2 surfaces by thermal spraying of nanopowders," Journal of Nanomaterials, vol 2008, p 58, 2008 [84] J Belloni, "Nucleation, growth and properties of nanoclusters studied by radiation chemistry: application to catalysis," Catalysis Today, vol 113, no 34, pp 141-156, 2006 [85] W Abidi and H Remita, "Gold based nanoparticles generated by radiolytic and photolytic methods," Recent patents on engineering, vol 4, no 3, pp 170-188, 2010 [86] Y Rao et al, "Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles," Radiation Physics and Chemistry, vol 79, no 12, pp 1240-1246, 2010 [87] A Abedini et al, "Influence of dose and ion concentration on formation of binary Al–Ni alloy nanoclusters," Radiation Physics and Chemistry, vol 81, no 10, pp 1653-1658, 2012 [88] T Li et al, "γ-Irradiation-induced preparation of Ag and Au nanoparticles and their characterizations," Materials Chemistry and Physics, vol 105, no 2-3, pp 325-330, 2007 [89] A Abedini et al, "Room temperature radiolytic synthesized Cu/CuAlO2-Al2O3 nanoparticles," International journal of molecular sciences, vol 13, no 9, pp 11941-11953, 2012 [90] N M Nghĩa and N T Huệ, "Nghiên cứu tính chất quang xúc tác TiO2 pha tạp Fe phủ hạt silica – gel," Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên Công nghệ, vol 32, no 4, pp 24-29, 2016 [91] N.Q Tuấn et al, "Nghiên cứu chất quang xúc tác TiO2 biến tính Fe2O3 phương pháp sol-gel " Tạp chí hố học Việt Nam, vol 47, no 3, pp 292-299, 2008 107 [92] V H Sơn and L P Sơn, "Tổng hợp nano TiO2 cấu trúc anatase pha tạp neodymium phương pháp sol-gel," Tạp chí hóa học Việt Nam, vol 52, no 4, 2014 [93] N V Hưng et al, "Ảnh hưởng Nd3+ đến cấu trúc hoạt tính quang xúc tác bột Nd-TiO2 kích thước nano điều chế phương pháp thuỷ nhiệt thủy phân," Tạp chí Khoa học Công nghệ, vol 50, no 3, pp 367-374, 2012 [94] H T K Xuân et al, “Nghiên cứu biến tính TiO2 anatase KF khảo sát hoạt tính quang hóa vùng khả kiến”," Tạp chí phát triển khoa học công nghệ - ĐH Quốc Gia TP.HCM, vol 13, no T1, pp 22-28, 2010 [95] L T Khoa et al., "Nghiên cứu hoạt tính quang xúc tác TiO2 fluor hóa phương pháp sốc nhiệt phẩm nhuộm khác nhau," Tạp chí Phát triển Khoa học Công nghệ, vol 18, no 3T, pp 121-131, 2016 [96] N T Loan et al , "Nghiên cứu chế tạo vật liệu khử khuẩn Ag/TiO2 kích thước nano đánh giá hiệu lực diệt khuẩn E Coli " Tạp chí hóa học Việt Nam, vol 48, no 4C, pp 366-370, 2010 [97] N V Dũng et al, " Đánh giá hiếu suất làm khơng khí vật liệu xúc tác quang N-TiO2 phủ lên ống thạch anh xốp," Vietnam Journal of Science and Technology, vol 51, no 2, p 217, 2013 [98] J C S Wu and C H Chen, "A visible-light response vanadium-doped titania nanocatalyst by sol–gel method," Journal of Photochemistry and Photobiology A: Chemistry, vol 163, no 3, pp 509-515, 2004 [99] W Choi et al, "The role of metal ion dopants in quantum-sized TiO2: correlation between photoreactivity and charge carrier recombination dynamics," The Journal of Physical Chemistry, vol 98, no 51, pp 1366913679, 1994 [100] B Xin et al, "Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+/TiO2 photocatalysts," Applied Surface Science, vol 253, no 9, pp 4390-4395, 2007 [101] R Li et al, "Magnetoswitchable controlled photocatalytic system using ferromagnetic Fe-doped titania nanorods photocatalysts with enhanced photoactivity," Separation and Purification Technology, vol 66, no 1, pp 171176, 2009 [102] P Vijayan et al, "Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2, 4, 6-trichlorophenol," Catalysis Today, vol 141, no 1-2, pp 220-224, 2009 [103] M A Khan and O B Yang, "Enhanced photoresponse towards visible light in Ru doped titania nanotube," Applied Surface Science, vol 255, no 6, pp 36873690, 2009 108 [104] Z M El-Bahy et al, "Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue)," Journal of Hazardous Materials, vol 166, no 1, pp 138-143, 2009 [105] S Ghasemi et al, "Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid," Journal of Hazardous Materials, vol 172, no 2-3, pp 1573-1578, 2009 [106] S Hussain and A Siddiqa, "Iron and chromium doped titanium dioxide nanotubes for the degradation of environmental and industrial pollutants," International Journal of Environmental Science & Technology, vol 8, no 2, pp 351-362, 2011 [107] M W Xu et al, "Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition," Materials Letters, vol 59, no 17, pp 21942198, 2005 [108] C C Pan and J C Wu, "Visible-light response Cr-doped TiO2− XNX photocatalysts," Materials Chemistry and Physics, vol 100, no 1, pp 102-107, 2006 [109] A V Rupa et al, "Titania and noble metals deposited titania catalysts in the photodegradation of tartazine," Catalysis letters, vol 132, no 1-2, pp 259-267, 2009 [110] J Papp et al, "Titanium (IV) oxide photocatalysts with palladium," Chemistry of materials, vol 5, no 3, pp 284-288, 1993 [111] K R Thampi et al, "Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure," nature, vol 327, no 6122, p 506, 1987 [112] K Adachi et al, "Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide," Solar Energy, vol 53, no 2, pp 187190, 1994 [113] W Wong and M Malati, "Doped TiO2 for solar energy applications," Solar Energy, vol 36, no 2, pp 163-168, 1986 [114] N L Wu and M S Lee, "Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution," International Journal of Hydrogen Energy, vol 29, no 15, pp 1601-1605, 2004 [115] S Demirci et al, "Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances," Applied Surface Science, vol 390, pp 591-601, 2016 [116] M Suwarnkar et al, "Enhanced photocatalytic activity of Ag doped TiO2 nanoparticles synthesized by a microwave assisted method," Ceramics International, vol 40, no 4, pp 5489-5496, 2014 109 [117] S Sakthivel et al, "Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst," Water research, vol 38, no 13, pp 3001-3008, 2004 [118] M S Lee et al, "Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent," Journal of Molecular Catalysis A: Chemical, vol 242, no 1-2, pp 135-140, 2005 [119] S Kim et al, "Visible light active platinum-ion-doped TiO2 photocatalyst," The Journal of Physical Chemistry B, vol 109, no 51, pp 24260-24267, 2005 [120] J Xu et al, "Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity," Journal of Alloys and Compounds, vol 484, no 1-2, pp 73-79, 2009 [121] J Xu et al, "Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light," Materials Letters, vol 63, no 28, pp 2442-2444, 2009 [122] H U Lee et al., "Efficient visible-light induced photocatalysis on nanoporous nitrogen-doped titanium dioxide catalysts," Chemical Engineering Journal, vol 228, pp 756-764, 2013 [123] Y Ao et al, "A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light," Applied Surface Science, vol 256, no 9, pp 2754-2758, 2010 [124] D Lin et al, "Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays," Transactions of Nonferrous Metals Society of China, vol 19, no 6, pp 1583-1587, 2009 [125] J C Yu et al, "Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders," Chemistry of materials, vol 14, no 9, pp 3808-3816, 2002 [126] S Sakthivel and H Kisch, "Daylight photocatalysis by carbon‐modified titanium dioxide," Angewandte Chemie International Edition, vol 42, no 40, pp 4908-4911, 2003 [127] P Yang et al, "Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis," Materials Letters, vol 57, no 4, pp 794-801, 2002 [128] F Vasiliu et al., "Fe-and Eu-doped TiO2 photocatalytical materials prepared by high energy ball milling," Topics in Catalysis, vol 52, no 6-7, pp 544-556, 2009 [129] K Song et al, "Photocatalytic activity of (copper, nitrogen)‐codoped titanium dioxide nanoparticles," Journal of the American Ceramic Society, vol 91, no 4, pp 1369-1371, 2008 110 [130] J Xu et al, "A novel Ce, C-codoped TiO2 nanoparticles and its photocatalytic activity under visible light," Applied Surface Science, vol 256, no 3, pp 884888, 2009 [131] C Liu et al, "Characterization and activity of visible-light-driven TiO2 photocatalyst codoped with nitrogen and cerium," Journal of solid state chemistry, vol 181, no 4, pp 913-919, 2008 [132] J Choi et al, "Combinatorial doping of TiO2 with platinum (Pt), chromium (Cr), vanadium (V), and nickel (Ni) to achieve enhanced photocatalytic activity with visible light irradiation," Journal of Materials Research, vol 25, no 1, pp 149158, 2010 [133] C He et al, "Influence of silver doping on the photocatalytic activity of titania films," Applied Surface Science, vol 200, no 1-4, pp 239-247, 2002 [134] H Gerischer and A Heller, "Photocatalytic oxidation of organic molecules at TiO2 particles by sunlight in aerated water," Journal of the Electrochemical Society, vol 139, no 1, pp 113-118, 1992 [135] P D Cozzoli et al, "Role of metal nanoparticles in TiO2/Ag nanocompositebased microheterogeneous photocatalysis," The Journal of Physical Chemistry B, vol 108, no 28, pp 9623-9630, 2004 [136] J Yu et al, "Fabrication and characterization of Ag–TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity," Applied Catalysis B: Environmental, vol 60, no 3-4, pp 211-221, 2005 [137] A Alem and H Sarpoolaky, "The effect of silver doping on photocatalytic properties of titania multilayer membranes," Solid State Sciences, vol 12, no 8, pp 1469-1472, 2010 [138] N Sobana et al, "Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2," Separation and Purification Technology, vol 62, no 3, pp 648-653, 2008 [139] C Sahoo et al, "Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2," Desalination, vol 181, no 1-3, pp 91-100, 2005 [140] H Wang et al, "Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions," Ultrasonics Sonochemistry, vol 15, no 4, pp 386-392, 2008 [141] T J Whang et al, "Laser-induced silver nanoparticles on titanium oxide for photocatalytic degradation of methylene blue," International journal of molecular sciences, vol 10, no 11, pp 4707-4718, 2009 111 [142] S Kalpagam and T Kannadasan, "Preparation of titanium dioxide nanoparticles and its application in wastewater treatment," Journal of Chemical, Biological and Physical Sciences (JCBPS), vol 4, no 3, p 1936, 2014 [143] N Bahadur et al, "Effect of nominal doping of Ag and Ni on the crystalline structure and photo-catalytic properties of mesoporous titania," Materials Chemistry and Physics, vol 124, no 1, pp 600-608, 2010 [144] Q Chen et al, "Visible-light-responsive Ag–Si codoped anatase TiO2 photocatalyst with enhanced thermal stability," Materials Chemistry and Physics, vol 125, no 3, pp 825-832, 2011 [145] K Ubonchonlakate et al, "P aeruginosa inactivation with silver and nickel doped TiO2 film coat on glass fiber riving," in Advanced Materials Research, vol 150, pp 1726-1731, 2011 [146] R W Sabnis, Handbook of biological dyes and stains: synthesis and industrial applications John Wiley & Sons, 2010 [147] N Barka et al, "Factors influencing the photocatalytic degradation of Rhodamine B by TiO2-coated non-woven paper," Journal of Photochemistry and Photobiology A: Chemistry, vol 195, no 2-3, pp 346-351, 2008 [148] P Botek et al, "Determination of banned dyes in spices by liquid chromatography-mass spectrometry," Czech Journal of Food Science, vol 25, no 1, pp 17-24, 2007 [149] H Xu et al., "Photocatalytic activity of La2O3-modified silver vanadates catalyst for Rhodamine B dye degradation under visible light irradiation," Chemical Engineering Journal, vol 160, no 1, pp 33-41, 2010 [150] T S Natarajan et al, "Study on UV-LED/TiO2 process for degradation of Rhodamine B dye," Chemical Engineering Journal, vol 169, no 1-3, pp 126134, 2011 [151] F Chen et al, "Highly selective deethylation of rhodamine B: Adsorption and photooxidation pathways of the dye on the TiO2/SiO2 composite photocatalyst," International Journal of Photoenergy, vol 5, no 4, pp 209-217, 2003 [152] H M Sung-Suh et al, "Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation," Journal of Photochemistry and Photobiology A: Chemistry, vol 163, no 1-2, pp 37-44, 2004 [153] H Lachheb et al., "Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania," Applied Catalysis B: Environmental, vol 39, no 1, pp 75-90, 2002 112 [154] (2012, Oct) Viện vệ sinh y tế công cộng Tp.HCM [ONLINE] http://www.iph.org.vn/attachments/article/436/Metyl%20red.pdf [155] M Mahmoud et al, "Photocatalytic degradation of methyl red dye," South African Journal of Science, vol 105, no 7-8, pp 299-303, 2009 [156] S Thota et al, "Visible Light Induced Photocatalytic Degradation of Methyl Red with Codoped Titania," Journal of Catalysts, vol 2014, 2014 [157] N Q Hien et al, "Radiation synthesis and characterization of hyaluronan capped gold nanoparticles," Carbohydrate polymers, vol 89, no 2, pp 537541, 2012 [158] B D Du et al., "Preparation of colloidal silver nanoparticles in poly (Nvinylpyrrolidone) by γ-irradiation," Journal of Experimental Nanoscience, vol 3, no 3, pp 207-213, 2008 [159] T Đ Lâm et al, Các phương pháp phân tích hố lý vật liệu, Nhà xuất khoa học tự nhiên công nghệ, 2017 [160] B Xin et al, "Effects of simultaneously doped and deposited Ag on the photocatalytic activity and surface states of TiO2," The Journal of Physical Chemistry B, vol 109, no 7, pp 2805-2809, 2005 [161] J Chastain et al, Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data Physical Electronics Division, Perkin-Elmer Corporation Eden Prairie, Minnesota, 1992 [162] Y Wu et al, "Low temperature catalytic performance of nanosized TiNiO for oxidative dehydrogenation of propane to propene," Applied Surface Science, vol 252, no 14, pp 5220-5226, 2006 [163] Y Cao et al, "Preparation of Ag‐doped TiO2 nanoparticles for photocatalytic degradation of acetamiprid in water," Journal of chemical technology and biotechnology, vol 83, no 4, pp 546-552, 2008 [164] M Rauf and S S Ashraf, "Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution," Chemical Engineering Journal, vol 151, no 1-3, pp 10-18, 2009 [165] L Macedo et al, "Degradation of leather dye on TiO2: a study of applied experimental parameters on photoelectrocatalysis," Journal of Photochemistry and Photobiology A: Chemistry, vol 185, no 1, pp 86-93, 2007 [166] M K Seery et al, "Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis," Journal of Photochemistry and Photobiology A: Chemistry, vol 189, no 2-3, pp 258-263, 2007 113 [167] N Riaz et al, "Photocatalytic degradation of DIPA using bimetallic Cu-Ni/TiO2 photocatalyst under visible light irradiation," The Scientific World Journal, vol 2014, 2014 114 ... tạo tạo thành công vật liệu Ag/ TiO2 Ag- Ni/TiO2 phương pháp chiếu xạ tia  từ nguồn Co- 60 Vật liệu chế tạo có hiệu ứng xúc tác quang hóa phân hủy hiệu chất hữu nhiễm nước Phương pháp chiếu xạ phương. .. bố chế tạo vật liệu TiO2 biến tính đồng thời Ag Ni phương pháp chiếu xạ tia ? ?Co- 60 Việc tiến hành đề tài: ? ?Nghiên cứu chế tạo Ag/ TiO2, Ag- Ni/TiO2 phương pháp chiếu xạ tia ? ?Co- 60 ứng dụng làm xúc. .. HỌC BÁCH KHOA VÕ THỊ THU NHƯ NGHIÊN CỨU CHẾ TẠO VẬT LIỆU Ag/ TiO2, Ag- Ni/TiO2 BẰNG PHƯƠNG PHÁP CHIẾU XẠ TIA ? ?Co- 60 ỨNG DỤNG LÀM XÚC TÁC QUANG HOÁ PHÂN HUỶ CHẤT MÀU HỮU CƠ Chuyên ngành: Kỹ thuật hoá

Ngày đăng: 17/06/2021, 16:23

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w