1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Sáng kiến kinh nghiệm) một số phương pháp giải các bài toán về modul của số phức

25 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 25
Dung lượng 320,16 KB

Nội dung

MỤC LỤC 7.1 Cơ sở lí luận sáng kiến kinh nghiệm 7.1.1 Những kiến thức 7.1.2 Các dạng quỹ tích thường gặp điểm biểu diễn số phức…… 7.1.3 Tìm số phức có mơđun lớn nhất, nhỏ điểm biểu diễn số phức đường trịn, đường thẳng elip………………………………………6 7.1.4 Sử dụng mối quan hệ số phức số phức liên hợp 13 7.1.5 Một số toán trắc nghiệm modul số phức………………………….15 7.2 Thực trạng vấn đề trước thực SKKN 21 7.3 Các giải pháp thực để giải vấn đề .22 7.4 Hiệu sau áp dụng SKKN vào giảng dạy……………………………….23 7.5 Kết luận kiến nghị 23 BÁO CÁO KẾT QUẢ NGHIÊN CỨU, ỨNG DỤNG SÁNG KIẾN Lời giới thiệu Với việc đổi hình thức thi tốt nghiệp THPT xét tuyển Đại học nay, mơn Tốn kiểm tra đánh giá hình thức thi trắc nghiệm Mảng kiến thức số phức trước vốn học thi nhẹ nhàng, khai thác sâu hệ thống câu hỏi trắc nghiệm Một dạng toán hỏi nhiều tốn modul số phức Để giải tốn nhanh chóng, xác nhằm lựa chọn phương án trả lời đề bài, cần hướng dẫn cho học sinh có tư linh hoạt nhạy bén Ngồi u cầu địi hỏi học sinh cần hiểu sâu rộng kiến thức, người thầy phải biết cách dạy học sinh kĩ loại trừ, thử đáp án, chọn lựa đặc biệt kĩ sử dụng máy tính cầm tay để giải Đó lí tơi chọn đề tài Tên sáng kiến: Một số phương pháp giải toán modul số phức Tác giả sáng kiến: - Họ tên: Trần Thị Thu Hằng - Địa tác giả sáng kiến: Xã Đồng Thịnh, huyện Sông Lô, tỉnh Vĩnh Phúc - Số điện thoại: 0973318398 E_mai: tranthithuhanggv.c3songlo@vinhphuc.edu.vn Chủ đầu tư tạo sáng kiến: Trần Thị Thu Hằng Lĩnh vực áp dụng sáng kiến: Áp dụng thực tiễn giảng dạy học tập mơn Tốn học lớp 12, cụ thể tiết ơn luyện chủ đề Số phức, giải tích 12 Ngày sáng kiến áp dụng lần đầu áp dụng thử: Tháng năm 2018 Mô tả chất sáng kiến: 7.1 Cơ sở lí luận sáng kiến kinh nghiệm 7.1.1 Những kiến thức bản: 7.1.1.1 Một số phức biểu thức có dạng i = −1 Ký hiệu số phức z viết x + yi z = x + yi , , i số thoả mãn * i gọi đơn vị ảo * x gọi phần thực, kí hiệu Re(z) * y gọi phần ảo, kí hiệu Im(z) * Tập hợp số phức ký hiệu 7.1.1.2 Hai số phức Cho số phức z = x + yi z’ = x’ + y’i z = z’ ⇔ 7.1.1.3 Biểu diễn hình học số phức  x = x '   y = y ' Mỗi số phức biểu diễn điểm M(x; y) mặt phẳng toạ độ Oxy Ngược lại, điểm M(x;y) biểu diễn số phức z = x +ybi 7.1.1.4 Modul số phức: Cho số phức z = x + yi có điểm biểu diễn M(x; y), ta định nghĩa modul số phức z khoảng cách OM 7.1.1.5 Phép cộng phép trừ số phức Cho hai số phức z = a + bi z’ = a’ + b’i Ta định nghĩa:  z + z ' = ( a + a ') + (b + b ')i   z − z ' = ( a − a ') + (b − b ')i 7.1.1.6 Phép nhân số phức Cho hai số phức z = a + bi z’ = a’ + b’i Ta định nghĩa: zz ' = aa '− bb '+ ( ab '− a ' b)i 7.1.1.7 Số phức liên hợp Cho số phức z = a + bi Số phức z = a – bi gọi số phức liên hợp với số phức Tính chất số phức liên hợp: * z=z * z+ z'= z+ z' * z z ' = z z ' * 7.1.1.8 Phép chia số phức khác Cho số phức z = a + bi ≠ (tức a2+b2 > ) • Ta định nghĩa số nghịch đảo số phức z ≠ số z-1 xác định 1 z = z a +b z z-1= • Thương z' z phép chia số phức z’ cho số phức z ≠ xác định sau: z' z '.z = z '.z −1 = z z Với phép tính cộng, trừ, nhân chia số phức nói có đầy đủ tính chất giao hốn, phân phối, kết hợp phép cộng, trừ, nhân, chia số thực thông thường 7.1.1.9 Các đẳng thức bất đẳng thức modul số phức: * Đặc biệt: Khi * khoảng cách từ điểm M biểu diễn số phức z đến gốc tọa độ O mặt phẳng phức * khoảng cách từ điểm M biểu diễn số phức z đến điểm M’ biểu diễn số phức z’ *, * 7.1.2 Các dạng quỹ tích thường gặp điểm biểu diễn số phức 7.1.2.1 Quỹ tích điểm biểu diễn đường thẳng: Ta xét ví dụ mẫu sau: Ví dụ : Tìm tập hợp điểm M biểu diễn cho số phức z thỏa mãn Giải: Cách 1: (Tự luận) Đặt z = x + yi (x, y , ta có (3x + 1)2 + (3y – 1)2 = (-3x + 2)2 + (3y + 3)2 ⇔ 18x – 24y – 11 = Vậy quỹ tích điểm M đường thẳng: 18x – 24y – 11 = Cách 2: Sử dụng máy tính cầm tay Dự đốn: Quỹ tích điểm M đường thẳng có dạng ax + by + c = Ta tìm a, b, c sau: Vào mơi trường tính tốn số phức cách bấm tổ hợp phím CALC X = CALC X = CALC X = i Vậy quỹ tích điểm M đường thẳng: 18x – 24y – 11 = Nhận xét: Đây tốn khơng khó học sinh giỏi, với học sinh trung bình yếu biến đổi theo kiểu tự luận cách nhanh xác vài ba phút, chưa kể nhầm lẫn Bằng cách sử dụng máy tính cầm tay, kể học sinh yếu giải tốn vịng 20 giây Chú ý: Để có dự đốn ta cần chứng minh cho học sinh hiểu số phức z thỏa mãn điều kiện sau: |m' + a' + b'i| |m' + a' + b'i| Mà m = m’ m = - m’ quỹ tích điểm biểu diễn z đường thẳng 7.1.2.2 Quỹ tích điểm biểu diễn đường trịn: Ta xét ví dụ mẫu sau: Ví dụ 2: Tìm tập hợp điểm M biểu diễn cho số phức z thỏa mãn Giải: Dễ thấy quỹ tích điểm M đường trịn tâm I(a; b), bán kính R Ví dụ 3: Tìm tập hợp điểm M biểu diễn cho số phức z thỏa mãn Giải: Cách 1: (Tự luận) Đặt z = x + yi (x, y , ta có (x + 1)2 + (y – 1)2 = (-3x + 2)2 + (3y + 3)2 ⇔ -8x2 – 8y2 +14x – 20y – 11 = Vậy quỹ tích điểm M đường trịn: Cách 2: Sử dụng máy tính cầm tay Dự đốn: Quỹ tích điểm M đường trịn có dạng x + y2+ ax + by + c = Ta tìm a, b, c sau: Vào mơi trường tính tốn số phức cách bấm tổ hợp phím CALC X = CALC X = CALC X = i Vậy quỹ tích điểm M đường trịn: Nhận xét: Cũng dạng tốn có quỹ tích điểm biểu diễn đường thẳng, tốn khơng khó học sinh giỏi, với học sinh trung bình yếu biến đổi theo kiểu tự luận cách nhanh xác vài ba phút, chưa kể nhầm lẫn Bằng cách sử dụng máy tính cầm tay, kể học sinh yếu giải tốn vịng 20 giây Chú ý: Để có dự đốn ta cần chứng minh cho học sinh hiểu với số phức z thỏa mãn điều kiện sau: |m' + a' + b'i| |m' + a' + b'i| Mà m m’ m -m’ quỹ tích điểm biểu diễn z đường tròn 7.1.2.3 Quỹ tích điểm biểu diễn elip: Ta thường gặp tốn: Tìm quỹ tích điểm M biểu diễn cho số phức z thỏa mãn với a > c > Giải: Gọi F1(-c; 0), F2(c; 0) Từ điều kiện tốn, ta có MF1 + MF2 = 2a Dựa vào định nghĩa elip, ta dễ dàng nhận thấy quỹ tích M elip có phương trình : 7.1.3 Tìm số phức có mơđun lớn nhất, nhỏ điểm biểu diễn số phức đường tròn, đường thẳng elip Phương pháp chung: Bước Tìm tập hợp (G) điểm biểu diễn số phức z thoả mãn điều kiện, trình tìm biểu thức liên hệ phần thực phần ảo số phức z Bước • • • • • Sử dụng bất đẳng thức để đánh giá Phân tích biểu thức thành tổng bình phương để đánh giá Khảo sát hàm số để đánh giá Sử dụng phương pháp lượng giác hóa Dùng tính chất hình học để đánh giá cách: Tìm số phức z tương ứng với điểm biểu diễn M (G) cho khoảng cách tương ứng với điều kiện toán có giá trị lớn (hoặc nhỏ nhất) 7.1.3.1 Dạng 1: Tập hợp điểm biểu diễn số phức z đường thẳng (5 cách giải) z Ví dụ 4: Tìm z cho w = ( z + − i )( z + + 3i ) đạt giá trị nhỏ Biết số phức z thỏa mãn điều kiện số thực Giải: Giả sử z = x + yi (x, y ), w = ( x + + ( y − 1) i ).( x + + ( − y ) i ) = x + y + x − y + + 2( x − y + ) i Ta có w∈ R ⇔ x − y + = Vậy tập hợp điểm biểu diễn số phức z đường thẳng (d): Cách 1: (Hình học) Giả sử M(x; y) điểm biểu diễn z z ⇔ OM ⇔ OM ⊥ (d ) , ta M(-2; 2) ⇔ z = −2 + 2i x− y+4=0 Cách (Phân tích thành tổng bình phương) Ta có z = x + y = x + ( + x ) = 2( x + ) + ≥ 2 Vậy z = 2 ⇔ x = −2 ⇒ y = ⇔ z = −2 + 2i z = x + y = x + ( + x ) = x + x + 16 Cách (Phương pháp hàm số) Xét hàm số f(x) = x + x + 16 hàm bậc có a > nên hàm số đạt ⇒ z = 2 ⇔ z = −2 + 2i Cách 4: (Dùng BĐT Bunhiacopxki) ( x − y + = ⇔ x − y = −4 ⇒ 16 = ( x − y ) ≤ x + y 2 ) ⇒ x + y ≥ ⇒ z = x + y ≥ 2 ⇒ z = 2 ⇔ x = − y = −2 ⇔ z = −2 + 2i Cách 5:( Dùng máy tính cầm tay CASIO Fx 570 VN Plus) Vào môi trường khảo sát hàm số cách bấm tổ hợp phím Nhận thấy nhỏ = x = -2, nên y = hay z = -2 + 2i Ví dụ 5: Tìm modul nhỏ số phức z – + 2i Biết số phức z thỏa mãn điều kiện Giải: Tập hợp điểm M(x; y) biểu diễn z đường thẳng: x-y+2=0 Cách 1: (Hình học) Ta thấy nhỏ có giá trị khoảng cách từ điểm I(3; -2) đến đường thẳng x – y + = Cách (Phân tích thành tổng bình phương) Ta có = Cách (Phương pháp hàm số) = ⇒ z = Xét hàm số hàm bậc có a > nên hàm số đạt 2 Cách 4: (Dùng BĐT Bunhiacopxki) ( x − y + = ⇔ ( x − 3) − ( y + 2) = −7 ⇒ 49 = (( x − 3) − ( y + 2)) ≤ ( x − 3) + ( y − 2) ⇒ z − + 2i ≥ 2 ) Cách 5: (Dùng máy tính cầm tay CASIO Fx 570 VN Plus) Vào môi trường khảo sát hàm số cách bấm tổ hợp phím Nhận thấy nhỏ = x = -2 nên nhỏ 7.1.3.2 Dạng 2: Tập hợp điểm biểu diễn số phức z đường trịn ( cách giải) Ví dụ 6: Trong số phức z thoả mãn điều kiện z − − 4i = Tìm số phức z có môđun lớn nhất, nhỏ Giải: Giả sử điểm M(x; y) biểu diễn số phức z=x+yi Khi tập hợp điểm M đường trịn I(2;4), bán kính R= , có phương trình: ( x − 2) + ( y − 4)2 = Cách 1: (Sử dụng BĐT Bunhiacopxki) Ta có z = OM = x + y = ( x − 2) + ( y − 4) + x + y − 20 = x + y − 15 = [ ( x − 2) + 2( y − 4) ] + 25 (2) Áp dụng bất đẳng thức Bunhiacopxki ta có: ( x − 2) + 2( y − 4) ≤ (12 + 2 ) ( x − 2) + ( y − 4)  = ⇒ −5 ≤ ( x − 2) + 4( y − 4) ≤ 5 ≤ z ≤3 Từ (2), (3) ta suy ra: (3) Vậy: x = z = ⇔  ⇒ z = + 2i y = x = z max = ⇔  ⇒ z = + 6i y = Cách 2: (Định lý dấu tam thức bậc 2) t= Đặt x2 + y2 Do ( ( x − ) + ( y − 4) ) = ⇔ x + y + 15 = 4( x + y ) x + y ≤ x + y = 5.t Ta có Vậy , Suy t + 15 ≤ 5t ⇔ ≤ t ≤ x = z = ⇔  ⇒ z = + 2i y = x = z max = ⇔  ⇒ z = + 6i y = Cách 3: ( Phương pháp lượng giác hóa) x − = sin t , y − = cos t Đặt Ta có : Do ( x + y = + sin t ) + (4 + cos t ) = 25 + ( sin t + cos t ) − ≤ sin t + cos t ≤ ⇒ ≤ x + y ≤ 45 ⇔ ≤ z ≤ Vậy x = z = ⇔  ⇒ z = + 2i y = x = z max = ⇔  ⇒ z = + 6i y = Cách (Phương pháp hình học) Giả sử M(x;y) điểm biểu diễn số phức z, 10 z ⇔ OM , z max ⇔ OM max Ta có phương trình đường thẳng OI là: 2x − y = Đường thẳng OI cắt (C) hai điểm phân biệt A, B có toạ độ nghiệm hệ phương trình: ( x − ) + ( y − ) =  x = 3, x = ⇔   y = 6, y = ⇒ A(1;2), B (3;6) 2 x − y = Với điểm M thuộc đường trịn (C) Vậy: OA ≤ OM ≤ OB x = z = ⇔  ⇒ z = + 2i y = Hay ≤ z ≤3 x = z max = ⇔  ⇒ z = + 6i y = Cách (Phương pháp hình học) Đường thẳng OI cắt đường tròn (C) điểm A, B hình vẽ Ta có z ⇔ OM ⇔ M trùng với điểm A (C) gần O Ta có Kẻ OI = + 16 = AH ⊥ Ox theo định lý Ta lét ta có: AH OA − = = = ⇒ AH = ⇒ OH = ⇒ z = + 2i OI 2 M trùng với điểm B (C) xa O Kẻ BK ⊥ Ox , theo định lý Ta lét ta có: OI = = = ⇒ BK = ⇒ OK = ⇒ z = + 6i BK OB + Ví dụ 7: Cho hai số phức trị nhỏ z1 − z2 z1 , z2 thỏa mãn 11 z1 + = 5, z2 + − 3i = z2 − − 6i Tìm giá Giải: Chúng ta giải phương pháp nêu trên, chọn phương pháp hình học để trình bày lời giải Ta có • Quỹ tích điểm biểu diễn số phức z đường tròn tâm I(-5; 0), bán kính R = • Quỹ tích điểm biểu diễn số phức z đường thẳng ∆ : x + y − 35 = Dễ thấy đường thẳng Min z1 − z2 = d − R = 7.1.3.3 ∆ không cắt (C ) d(I; ∆ ) = Theo hình vẽ ta thấy Dạng 3: Cho số phức z thỏa mãn Tìm z cho đạt min, max Hướng giải: Ngồi phương pháp trên, ta cịn áp dụng tính chất sau: Đặt T = , ta có Chứng minh: Gọi M điểm biểu diễn z, -A điểm biểu diễn số phức –A, -B điểm biểu diễn số phức –B Khi M thuộc đường trịn tâm –A, bán kính k Ta thấy M1BM2B Áp dụng tính chất ta dễ dàng giải tốn sau: Ví dụ 8: Cho Đáp số: Ví dụ 9: Đáp số: Ví dụ 10: Cho đạt GTNN Giải: Dễ thấy GTNN , để tìm z, ta xét hệ 12 Nhận xét: Từ dạng tốn ta có cách giải dạng toán sau: Cho số phức z thỏa mãn Tìm z cho đạt min, max Giải: , ta xem , = k’ , ta xem , Đặt T = , ta quay dạng tốn Ví dụ 11: Cho số phức z thỏa mãn Giải: Áp dụng ta có ,T= Từ 7.1.3.4 Dạng 4: Tập hợp điểm biểu diễn số phức z đường elíp (4 cách giải) Ví dụ 12: Tìm số phức z cho môđun z đạt giá trị nhỏ nhất, lớn Biết số z + + z −1 = phức z thoả mãn điều kiện: Giải: Ta thấy tập hợp điểm M elip có phương trình là: x2 y + =1 x2 z = OM = x + y = + Cách 1: (Phân tích thành bình phương) Ta có Do x2 y x2 + =1 ⇒ ≤ ≤1⇒ ≤ z ≤ 4 Vậy : z = ⇔ z = ± 3i z max = ⇔ z = ±2 13 ⇒ Cách 2:(Đánh giá) Giả sử M(x;y) điểm biểu diễn z Khi đó: x2 y2 + =1  x2 y2   x2 y2   ≤ 4  = ⇒ OM ≤ OM = x + y = 4 + + 4      x2 y2   x2 y2   ≥ 3  = ⇒ OM ≥ OM = x + y = 3 + +     Từ đó, ta 3≤ z ≤2 Cách 3: (Lượng giác hóa) Đặt Ta có: Do z = ⇔ z = ± 3i Vậy: x = sin t , y = cos t , t ∈ [ 0;2π ) OM = x + y = sin t + cos t = + sin t ≤ sin t ≤ 1, ∀t ⇒ ≤ OM ≤ ⇒ ≤ z ≤ Vậy: z max = ⇔ z = ±2 z = ⇔ z = ± 3i z max = ⇔ z = ±2 Cách 4: (Hình học) Theo hình vẽ ta thấy Vậy : • • ⇔ M ≡B ⇔M≡A B’ A’ ⇔ z = ± 3i ⇔ z = ±2 7.1.4 Sử dụng mối quan hệ số phức số phức liên hợp Với số phức z, ngồi số mối quan hệ quen thuộc ta nêu thêm số quan hệ sau với số phức liên hợp nó: • • • z số thực • z số ảo 14 Ví dụ 13: Cho số phức z thỏa mãn số ảo Tìm Giải: số ảo Ví dụ 14: Cho số phức z thỏa mãn i.z + số ảo, tìm z? Giải: Do i.z + số ảo nên Vậy z = Ví dụ 15: Cho số phức z thỏa mãn tìm phần thực Giải: Ta có: 2.Re( Vậy Re( Ví dụ 16: Cho số phức thỏa mãn có phần thực Tính Giải: Từ giả thiết, ta có Ví dụ 17: Cho số phức z1, z2 thỏa mãn Tìm phần ảo Giải: Vì Ta có Vậy w số thực Ví dụ 18: Cho số phức a, b, c thỏa mãn Tính w = a2 + b2 + c2 Giải: Ta có w = a2 + b2 + c2 = (a + b + c)2 – 2(ab + bc + ca) = -2abc( = -2abc() = -2abc = Ví dụ 19: Cho số phức z thỏa mãn: z6 – z5 + z4 – z3 + z2 – z + = Tìm phần thực w = z – z2 + z Giải: Ta có Mặt khác: z6 – z5 + z4 – z3 + z2 – z + = nên (z3 - 1)(z3 – z + 1) + = Dễ thấy Ví dụ 19: Cho số phức z thỏa mãn: Tìm giá trị lớn nhỏ 15 Giải: Ta có Từ Vậy: • Giá trị lớn , đạt z = ( • Giá trị nhỏ , đạt z = ( 7.1.5 Một số toán trắc nghiệm modul số phức Trong phần tơi đưa số tốn trắc nghiệm để minh họa cho tính linh hoạt đa dạng tư nhằm chọn đáp án Bài 1: Cho số phức z thỏa mãn Tổng GTLN GTNN A 10 B C D 13 Hướng dẫn: Dựa vào định nghĩa elip tập hợp điểm biểu diễn z elip có bán trục lớn 5, bán trục bé nên Đáp án C Bài 2: Cho số phức a, b, c thỏa mãn Khi w = a2 + b2 + c2 có giá trị A B C D Hướng dẫn: Theo ví dụ 18 phía ta có đáp án D Cách khác: Ta chọn số a, b, c thỏa mãn điều kiện trên, nhận thấy nghiệm phức phương trình z3 – = ( z3 + = 0) thỏa mãn đủ điều kiện Thay nghiệm vào biểu thức a + b2 + c2 bấm máy tính , ta có kết Bài 3: Cho số phức z thỏa mãn = Tìm giá trị nhỏ với w = z – + 2i A B C D Hướng dẫn: = 16 • Với (1), ta có • Với (2), ta có đường thẳng chứa điểm biểu diễn z có phương trình Do có giá trị nhỏ với khoảng cách từ điểm (2; -2) đến đường thẳng nên Kết luận Đáp án C Bài 4: Nếu số phức z phần thực A B C D Hướng dẫn: Cách 1: Tự luận Re đáp án B Cách 2: Chọn z = -3 thay vào ta có kết Bài 5: Cho số phức a b thỏa mãn a + b = + 6i Tính A 52 B 56 Tìm GTLN M = A B C 28 D 48 C D Hướng dẫn: Cộng vế ta có: Đáp án A Theo câu 1, ta có Cách khác: chọn a = + 3i, b = + 3i, a, b thỏa mãn điều kiện lớn Đáp án A Bài 6: Cho số phức z thỏa mãn Gọi M m GTLN GTNN biểu thức Tính giá trị M.m A B C D Hướng dẫn: Đặt z = x + yi, ta có x2 + y2 = hay y2 = – x2 = Sử dụng máy tính cầm tay: chức 17 Ta thấy: f(x) lớn có giá trị xấp xỉ hình bên f(x) nhỏ có giá trị xấp xỉ hình bên Nhân giá trị ta đáp án A Bài 7: Cho số phức z thỏa mãn Gọi M m GTLN GTNN biểu thức Tính modul w = M + m.i A B C D Hướng dẫn: Dễ thấy tập hợp điểm biểu diễn z đường tròn (x – 3)2 + (y – 4)2 = Ta có: P = 4x + 2y + = 4(x – 3) + 2(y – 4) + 23 ⇔ P - 23 = 4(x – 3) + 2(y – 4) Đáp án B Bài 8: Cho số phức z thỏa mãn Gọi M m GTLN GTNN biểu thức Tính M + m A B C D Hướng dẫn: Ở bậc z cao nên ta khéo léo giảm bậc z biến đổi sau: Ta có = = 4x2 - + Dùng máy tính cầm tay , ta thấy Vậy: Min P = 0.75 18 Vậy: Max P = Vậy M + m = Đáp án D Bài 9: Cho số phức a, b, c thỏa mãn a.b.c = Tính GTNN biểu thức A Pmin = ` B Pmin = C Pmin = D Pmin = Hướng dẫn: Đáp án C Bài 10: Cho số phức z thỏa mãn Tìm GTNN biểu thức A Pmin = ` B Pmin = C Pmin = D Pmin = Hướng dẫn: = Dùng máy tính cầm tay ta thấy Min P = z = -1 Đáp án B Bài 11: Cho số phức z thỏa mãn Tìm giá trị lớn A B C D Hướng dẫn: Tập hợp điểm biểu diễn z hình trịn: Dễ thấy giá trị lớn Đáp án C Bài 12: Gọi z số phức có phần thực lớn thỏa mãn cho biểu thức P = đạt GTNN Tìm phần thực z 19 A Re(z) = B Re(z) = C Re(z) = D Re(z) = Hướng dẫn: Tập hợp điểm biểu diễn z parabol: y = (x – 2)2, P = Để P đạt GTNN f(t) = t2 – 3t + đạt GTNN Đáp án C Bài 13: Giả sử z1 , z2 số phức khác không, thỏa mãn điểm biểu diễn tương ứng A B z1 , z2 z12 − z1 z2 + z22 = gọi A, B Khẳng định sau C D Hướng dẫn: Ta có z13 + z23 = ( z1 + z2 )( z12 − z1 z2 + z22 ) = , suy ra: z13 = − z23 ⇒ z1 = z2 ⇒ z1 = z2 ⇒ OA = OB Lại có ( z1 − z2 ) = ( z12 − z1 z2 + z22 ) − z1 z2 = − z1 z2 Suy AB=OA=OB nên ⇒ ∆OAB z1 − z2 = z1 z2 ⇒ AB = OA.OB = OA2 Đáp án C Cách khác: Chọn Khi dễ thấy z12 − z1 z2 + z22 = Bài 14: Cho số phức z+ A ≤3 z z≠0 OA = OB = AB = nên Đáp án C z3 + thỏa mãn z+ B >3 z = z3 Khẳng định sau z+ C 20 =9 z z+ D =3 z a= z+ Hướng dẫn: Đặt ( a ≥ 0) z Ta có: ( z + )3 = z + + 6( z + ) z z z a = z+ ≤ z + + z + = + 6a z z z Suy ra: Do a − 6a − ≤ ⇔ (a − 3)(a + 3a + 3) ≤ a + 3a + > a= z+ Vì , nên ≤3 z Đáp án A Bài 15: Gọi S tập hợp số phức z thỏa mãn Kí hiệu z 1, z2 hai số phức thuộc S số phức có modul nhỏ lớn Tính giá trị biểu thức P = A B C D Hướng dẫn: Tập hợp điểm biểu diễn z thỏa mãn phần bên (kể biên) đường trịn tâm I 1(0; 1) bán kính R1 = Tập hợp điểm biểu diễn z thỏa mãn phần bên (kể biên) đường trịn tâm I2(2; 2) bán kính R1 = Theo hình vẽ ta nhận thấy • z1 có modul nhỏ nên điểm biểu diễn z1 B(0; -2) hay z1 = -2i • z2 có modul lớn nên điểm biểu diễn z1 Vậy Đáp án A 7.2 Thực trạng vấn đề trước thực SKKN Tháng 3/2018, trước thực việc giảng dạy phương pháp lớp 12A2, cho học sinh thử làm đề trắc nghiệm với nội dung sau: Câu 1: Tập hợp điểm biểu diễn số phức z thỏa mãn đường sau đây: A Đường thẳng B Đường tròn C.Đường parabol 21 D Đường elip Câu 2: Trong số phức z thỏa mãn Số phức z có modul nhỏ có dạng a + bi, a + b bằng: A B C -4 D z −i =1 z+i Câu 3: Gọi D tập hợp số phức z thỏa mãn A Trục hoành C Đường phân giác y = x B Trục tung D Đường phân giác y = x Khi D là: Câu 4: Trong mặt phẳng Oxy, cho ba điểm A, B, C điểm biểu diễn số phức A z1 , z2 , z3 uuu r uuur uuur OA + OB = OC biết B z1 = z2 + z3 Đẳng thức sau ? uuu r uuur uuur OA + OC = OB C uuur uuur uuu r OB + OC = OA D uuur uuur uuur r OA + OB + OC = Câu 5: Cho số phức z thỏa mãn = Tìm giá trị lớn A B C D Kết thống kê thu sau Học lực Lớp Giỏi Khá Trung bình Yếu Kém 12A2(32) thực nghiệm (6,2%) 12 (43,8%) 15 (40,6%) (9,4%) 12A3 (36) đối chứng (8,3%) 14 (39,9%) 15 (41,7%) (11,1%) Bảng 7.1 : Kết thống kê học sinh đầu năm 7.3 Các giải pháp thực để giải vấn đề: • Tổ chức cho học sinh học theo nhóm đối tượng, phân chia thành nhóm có trình độ tương đương để thiết kế giáo án phù hợp • Đối với nhóm học sinh giỏi hướng dẫn, gợi ý để em tìm nhiều cách giải nhất, sau giáo viên bổ sung tổng hợp • Thực trắc nghiệm khách quan để kiểm tra, đánh giá điều chỉnh phương pháp học học sinh điều chỉnh nội dung giảng, phương pháp dạy giáo viên 22 7.4 Hiệu sau áp dụng SKKN vào giảng dạy Sau giảng dạy kĩ phương pháp lớp 12A2, 12A3cũng kiểm tra với đề có độ khó tương tự đề nêu phần kết thực khả quan nhiều, thể qua thống kê sau: +) Tỉ lệ trung bình trung bình HS Số Tỉ lệ (%) trung bình Số từ trung Tỉ lệ bình trở xuống Lớp thực nghiệm 24 75 25 Lớp đối chứng 23 63,8 13 36,2 Bảng 7.2 : Kết thống kê từ kiểm tra HS 7.5 Kết luận kiến nghị 7.5.1 Kết luận SKKN viết qua nhiều suy ngẫm, đúc rút từ thực tế giảng dạy thân nên mang tính thực tiễn cao Ta thấy cịn mở rộng phạm vi nghiên cứu SKKN Nhưng hạn chế số lượng trang viết SKKN, nên chưa thể truyền tải hết kinh nghiệm cịn ấp ủ, thai nghén Tuy vậy, viết nhỏ thể tương đối nhiều điều cần thiết 7.5.2 Kiến nghị * SKKN nên áp dụng đối tượng học sinh giỏi * SKKN mở rộng dạng toán Trên tơi trình bày nội dung SKKN mình, viết chắn cịn nhiều thiếu sót, mong nhận phê bình, góp ý hữu ích quý vị - Về khả áp dụng sáng kiến: Sáng kiến áp dụng tiết dạy luyện tập tự chọn chủ đề số phức, áp dụng tiết chuyên đề Như kiến nghị nêu, sáng kiến nên áp dụng cho đối tượng học sinh khá, giỏi Những thông tin cần bảo mật: Muốn bảo mật sáng kiến dự định phát triển thành nội dung luận văn thạc sĩ tác giả Các điều kiện cần thiết để áp dụng sáng kiến: 23 Sáng kiến nên áp dụng tiết luyện tập, tự chọn chuyên đề ôn thi THPTQG, học sinh giỏi 10 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tác giả theo ý kiến tổ chức, cá nhân tham gia áp dụng sáng kiến lần đầu, kể áp dụng thử (nếu có) theo nội dung sau: 10.1 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tác giả: Khi áp dụng sáng kiến vào dạy học thấy sáng kiến đem lại hiệu dạy học tốt hơn, học sinh hiểu rõ lí thuyết vận dụng tốt vào giải tập có liên quan 10.2 Đánh giá lợi ích thu dự kiến thu áp dụng sáng kiến theo ý kiến tổ chức, cá nhân: Có kết khả quan: Học sinh vận dụng phương pháp hiệu cho lời giải ngắn gọn, nhanh chóng, xác 11 Danh sách tổ chức/cá nhân tham gia áp dụng thử áp dụng sáng kiến lần đầu (nếu có): Số Tên tổ chức/cá TT nhân Nguyễn Thị Hường Địa Phạm vi/Lĩnh vực áp dụng sáng kiến Trường THPT Sông Lô Dạy tự chọn dạy chuyên đề Xã Đồng Thịnh, Huyện Lớp 12A3 Sông Lô, Vĩnh Phúc Nguyễn Đức Thịnh Trường THPT Sông Lô Dạy tự chọn dạy chuyên đề Xã Đồng Thịnh, Huyện 12A2 Sông Lô, Vĩnh Phúc , ngày tháng năm , ngày tháng năm 24 , ngày tháng năm Thủ trưởng đơn vị/ CHỦ TỊCH HỘI ĐỒNG Tác giả sáng kiến Chính quyền địa phương SÁNG KIẾN CẤP CƠ SỞ (Ký, ghi rõ họ tên) (Ký tên, đóng dấu) (Ký tên, đóng dấu) Trần Thị Thu Hằng 25 ... diễn số phức z = x +ybi 7.1.1.4 Modul số phức: Cho số phức z = x + yi có điểm biểu diễn M(x; y), ta định nghĩa modul số phức z khoảng cách OM 7.1.1.5 Phép cộng phép trừ số phức Cho hai số phức. .. nêu thêm số quan hệ sau với số phức liên hợp nó: • • • z số thực • z số ảo 14 Ví dụ 13: Cho số phức z thỏa mãn số ảo Tìm Giải: số ảo Ví dụ 14: Cho số phức z thỏa mãn i.z + số ảo, tìm z? Giải: Do...2 Tên sáng kiến: Một số phương pháp giải toán modul số phức Tác giả sáng kiến: - Họ tên: Trần Thị Thu Hằng - Địa tác giả sáng kiến: Xã Đồng Thịnh, huyện Sông Lô, tỉnh Vĩnh Phúc - Số điện thoại:

Ngày đăng: 15/06/2021, 19:55

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w