1. Trang chủ
  2. » Cao đẳng - Đại học

Huong dan giai de tuyen sinh 10 mon Toan nam hoc20112012

3 5 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 3
Dung lượng 81,87 KB

Nội dung

Tính vận tốc của xe lúc đầu, tính thời gian dự định và chiều dài quảng đường AB.. Hướng dẫn: Gọi S là độ dài quãng đường AB; v,t lần lượt là vận tốc và thời gian dự định.[r]

(1)HƯỚNG DẪN GIẢI ĐỀ THI TUYỂN SINH LỚP 10 THPT NĂM HỌC 2011-2012 Câu 1: a) Thực phép tính: 16.25  20 b) Giải phương trình sau: 27 x  9  13 x Đáp số: a) 30 b) x=1 Câu 2: Giải các phương trình sau a) x  x  0 b) x  10  x  Hướng dẫn, đáp số x 3, x  a) b) Điều kiện: x 0 Phương trình tương đương: x  x  12 0  t 4 t  t  12 0    t  3(loai ) Với t=4 suy Đặt t  x , ĐK: t 0 Đưa phương trình: x=16 Câu 3: Một ôtô dự định từ A đến B thời gian định Nếu xe chạy nhanh 10km thì đến nơi sớm dự định Nếu xe chạy chậm lại 10 km thì đến nơi chậm dự định Tính vận tốc xe lúc đầu, tính thời gian dự định và chiều dài quảng đường AB Hướng dẫn: Gọi S là độ dài quãng đường AB; v,t là vận tốc và thời gian dự định Ta có S=v.t (1) + Nếu xe chạy nhanh dự định 10 km, đó vận tốc là: v+10 (km/h) và thời gian để hết đoạn đường AB là t-3 (giờ) Suy ra: S=(v+10)(t-3) (2) + Nếu xe chạy chậm dự định 10 km, đó vận tốc là: v-10 (km/h) và thời gian để hết đoạn đường AB là t+5 ( giờ) Suy ra: S=(v-10)(t+5) (3) vt (v  10)(t  3) 10t  3v 30   Từ (1), (2), (3), ta có hệ: vt (v  10)(t  5)  10t  5v 50 Giải hệ ta v=40 (km/h), t=15 (giờ) Suy S=600 (km) Bài 4: Cho tam giác ABC vuông A, biết AB=4cm, đường cao AH=2cm Tính các góc và các cạnh còn lại tam giác ABC Hướng dẫn: (2) 2 2 + BH  AB  AH   2 + + BH BC  AB  BC  AC  BC  AB  sinB  AB 42   BH 3 64  16  3 AC /    B 30o BC / + o o o o + C 90  B 90  30 60 Bài 5: Cho đường tròn (O;R) đường kính AB M là điểm trên đường tròn ( M không trùng với A, B) Tiếp tuyến đường tròn (O) M cắt các tiếp tuyến đường tròn (O) A và B C và D a) Chứng minh: CD=CA+DB và tam giác COD vuông b) Tính AC.BD theo R o · c) Biết BAM 60 , chứng minh: tam giác BDM đều, tính diện tích tam giác BDM theo R Hướng dẫn: a) + CM, CA là hai tiếp tuyến với (O) nên CM=CA Tương tự DM=DA Do đó DB+CA=MC+MD=CD + Tứ giác ABDC có góc A và B vuông nên µ D µ 180o C Theo tính chất hai tiếp tuyến cắt nhau, ta có OC là đường phân giác góc ACB, nên 1· · · OCM  ·ACM ODM  BDM 2 , tương tự Do đó: 1 · · · OCM  ODM  ( ·ACM  BDM )  180o 90o 2 Suy tam giác OCD vuông O b) Trong tam giác vuông OCD có đường cao OM : CM DM OM  CA.DB OM R c) Tam giác AMB vuông M, · · BAM 60o  ·ABM 30o  MBD 60o Tam giác BMD cân có góc 60 nên nó là tam giác Bài 6: Tìm GTLN, GTNN biểu thức: A 2 x   x Hướng dẫn: TXĐ: * Ta có  x 0  x 5  x 5   x  (3) + +  x 0, x    5;  , đẳng thức xảy x  x 2.( 5), x    5;  A  Suy Do đó A đạt GTNN  x  2 2 * Ta chứng minh bất đẳng thức sau: (ac  bd ) ( a  b )(c  d ) , đẳng thức xảy c d  a b Thật vậy: 2 2 2 2 2 2 2 2 Ta có ( ac  bd ) (a  b )(c  d )  a c  b d  2acbd a c  b c  a d  b d  a b bc ad   b c  a d  2acbd  (bc  ad ) 0 (đúng) Đẳng thức xảy c d (đpcm) 2 2 2 Áp dụng BĐT trên ta có A (2 x 1  x ) (2 1 )( x  (5  x )) 25 x  x2   (1) 2  A 0 A  A 5 Suy ra: Do đó A đạt GTLN khi:   x 4(5  x ) 5 x 20  x 2  x     x 2  TXD  x 0  x 0 Ta có (1) Với x=2 thì A>=0 Vậy A đạt GTLN x=2 (4)

Ngày đăng: 11/06/2021, 06:28

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w