1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Luận văn thạc sĩ một số biện pháp khắc phục khó khăn của học sinh trong học tập nội dung giới hạn và tính liên tục của hàn số ở lớp 11 trung học phổ thông​

169 15 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 169
Dung lượng 0,91 MB

Nội dung

ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM LƯƠNG THANH HOA MỘT SỐ BIỆN PHÁP KHẮC PHỤC KHÓ KHĂN CỦA HỌC SINH TRONG HỌC TẬP NỘI DUNG GIỚI HẠN VÀ TÍNH LIÊN TỤC CỦA HÀM SỐ Ở LỚP 11 THPT LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC THÁI NGUYÊN - 2019 Số hóa Trung tâm Học liệu Cơng nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM LƯƠNG THANH HOA MỘT SỐ BIỆN PHÁP KHẮC PHỤC KHÓ KHĂN CỦA HỌC SINH TRONG HỌC TẬP NỘI DUNG GIỚI HẠN VÀ TÍNH LIÊN TỤC CỦA HÀM SỐ Ở LỚP 11 THPT Ngành: Lý luận Phương pháp dạy học mơn Tốn Mã số: 8140111 LUẬN VĂN THẠC SĨ KHOA HỌC GIÁO DỤC Người hướng dẫn khoa học: TS Đỗ Thị Trinh THÁI NGUYÊN - 2019 Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn LỜI CAM ĐOAN Tên Lương Thanh Hoa, học viên cao học chuyên ngành: Lý luận phương pháp dạy học mơn Tốn, Trường Đại học Sư phạm - Đại học Thái Nguyên, khóa học 2017 - 2019 Tôi xin cam đoan: Luận văn cơng trình nghiên cứu thực cá nhân, thực hướng dẫn khoa học TS Đỗ Thị Trinh Các số liệu có nguồn gốc rõ ràng, tuân thủ nguyên tắc kết trình bày luận văn thu thập trình nghiên cứu trung thực, chưa công bố trước Tôi xin chịu trách nhiệm nghiên cứu Thái Nguyên, tháng 11 năm 2019 Tác giả luận văn Lương Thanh Hoa Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn LỜI CẢM ƠN Đề tài "Một số biện pháp khắc phục khó khăn học sinh học tập nội dung giới hạn tính liên tục hàm số lớp 11 THPT" nội dung chương trình dạy học mơn Tốn bậc trung học phổ thông, kết trình nghiên cứu thân tác giả sau thời gian học tập nghiên cứu chuyên ngành Lý luận phương pháp dạy học mơn Tốn Để có kết này, ngồi nỗ lực, cố gắng thân, trình tiến hành nghiên cứu hồn thiện đề tài, tơi nhận động viên, giúp đỡ, hướng dẫn tận tình thầy giáo Khoa Tốn, Phịng Sau đại học Trường Đại học Sư phạm Thái Nguyên thầy cô trực tiếp giảng dạy, giúp đỡ cho tơi q trình học tập nghiên cứu trường Đặc biệt, xin bày tỏ biết ơn sâu sắc tới TS Đỗ Thị Trinh - Cô giáo trực tiếp giúp đỡ, hướng dẫn cho tơi suốt q trình nghiên cứu hồn thiện luận văn Dù cố gắng nhiều, song lý khách quan chủ quan, luận văn khơng thể tránh khỏi thiếu sót Rất mong nhận góp ý, dẫn giúp đỡ quý thầy cô giáo, bạn đồng nghiệp Xin trân trọng cảm ơn! Thái Nguyên, tháng 11 năm 2019 Tác giả Lương Thanh Hoa Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC TỪ VIẾT TẮT VÀ GIẢI THÍCH THUẬT NGỮ .iv DANH MỤC CÁC BẢNG, HÌNH v MỞ ĐẦU 1 Lí chọn đề tài Mục đích nghiên cứu Giả thuyết khoa học Nhiệm vụ nghiên cứu Phạm vi nghiên cứu Phương pháp nghiên cứu Cấu trúc luận văn Chương 1: CƠ SỞ LÍ LUẬN VÀ THỰC TIỄN 1.1 Cơ sở lý luận 1.1.1 Định hướng đổi PPDH 1.1.2 Cơ sở lý luận 1.2 Cơ sở thực tiễn 30 1.2.1 Nội dung Giới hạn tính liên tục hàm số phân phối chương trình mơn Tốn trường THPT 30 1.2.2 Mục tiêu dạy học Giới hạn tính liên tục hàm số lớp 11 THPT 31 1.2.3 Khảo sát thực trạng việc dạy học nội dung Giới hạn tính liên tục hàm số trường phổ thơng 32 1.2.4 Một số điều cần lưu ý dạy học nội dung Giới hạn tính liên tục hàm số 35 1.2.5 Khó khăn sai lầm mà HS thường gặp phải học tập nội dung giới hạn liên tục hàm số lớp 11 trường THPT 36 KẾT LUẬN CHƯƠNG 48 Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn Chương 2: MỘT SỐ BIỆN PHÁP KHẮC PHỤC KHÓ KHĂN CỦA HỌC SINH TRONG HỌC TẬP NỘI DUNG GIỚI HẠN VÀ TÍNH LIÊN TỤC CỦA HÀM SỐ Ở LỚP 11 THPT 49 2.1 Định hướng xây dựng số biện pháp sư phạm khắc phục khó khăn HS học tập nội dung Giới hạn tính liên tục hàm số 49 2.2 Một số biện pháp sư phạm nhằm khắc phục khó khăn sai lầm học tập nội dung Giới hạn tính liên tục hàm số 50 2.2.1 Biện pháp 1: Hình thành biểu tượng khái niệm trừu tượng dạy học nội dung Giới hạn tính liên tục hàm số việc sử dụng phần mềm hỗ trợ dạy học mơn Tốn 51 2.2.2 Biện pháp 2: Tăng cường khai thác sử dụng phản ví dụ dạy học khái niệm định lí giới hạn tính liên tục hàm số nhằm mục đích giúp HS tiếp nhận củng cố nội hàm khái niệm trừu tượng, ý nghĩa điều kiện áp dụng định lí 57 2.2.3 Biện pháp 3: Rèn luyện cho HS kỹ tìm lời giải theo quy trình Polya 61 2.2.4 Biện pháp 4: Xây dựng hệ thống tập có tính chất phân bậc cho nội dung cụ thể dạy học chuyên đề Giới hạn tính liên tục hàm số; với mục đích giúp HS tiếp nhận củng cố khái niệm trừu tượng 67 KẾT LUẬN CHƯƠNG 83 Chương 3: THỰC NGHIỆM SƯ PHẠM 84 3.1 Mục đích, yêu cầu nội dung thực nghiệm sư phạm 85 3.1.1 Mục đích, yêu cầu 85 3.1.2 Nội dung đối tượng thực nghiệm 85 3.2 Tổ chức thực nghiệm sư phạm 85 3.2.1 Giáo án thực nghiệm (Phụ lục 2) 85 3.2.2.Tiến trình thực nghiệm 85 3.3 Kết thực nghiệm sư phạm 87 3.3.1 Đánh giá định tính 87 3.3.2 Đánh giá định lượng 87 Số hóa Trung tâm Học liệu Cơng nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn KẾT LUẬN CHƯƠNG 89 KẾT LUẬN 90 TÀI LIỆU THAM KHẢO 92 PHỤ LỤC Số hóa Trung tâm Học liệu Cơng nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn DANH MỤC CÁC TỪ VIẾT TẮT VÀ GIẢI THÍCH THUẬT NGỮ Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn DANH MỤC CÁC BẢNG, HÌNH Bảng 3.1 87 Hình 3.1 Biểu đồ tỉ lệ điểm kiểm tra sau thực nghiệm 88 Số hóa Trung tâm Học liệu Cơng nghệ thơng tin – ĐHTN http://lrc.tnu.edu.vn MỞ ĐẦU Lí chọn đề tài Một mục tiêu giáo dục mà Đảng ta đặt Nghị số 29-NQ/TW ngày tháng 11 năm 2013 “Phát triển giáo dục đào tạo, nâng cao dân trí, đào tạo nhân lực, bồi dưỡng nhân tài Chuyển mạnh trình giáo dục từ chủ yếu trang bị kiến thức sang phát triển toàn diên lực phẩm chất người học Học đôi với hành; lý luận gắn với thực tiễn; giáo dục nhà trường kết hợp với giáo dục gia đình giáo dục xã hội” Để đạt mục tiêu giáo dục trên, với thay đổi nội dung, cần có đổi phương pháp giáo dục Nhu cầu định hướng đổi phương pháp dạy học cho thấy việc dạy học không đơn giản cung cấp tri thức có sẵn mà phải giúp cho HS có tư duy, khả sáng tạo, lực tổng hợp chuyển đổi ứng dụng thơng tin vào hồn cảnh để giải vấn đề đặt ra, thích ứng với thay đổi sống, có lực hợp tác chuyển đổi lực Một phần quan trọng Tốn học Giải tích, Douglas (1986) viết: “Giải tích tảng Tốn học, Giải tích đường, trung tâm Toán học, sở cho việc nghiên cứu nhiều ngành khoa học kỹ thuật khác” Trong nội dung Giải tích lớp 11, vai trị hai chủ đề Giới hạn Đạo hàm nêu rõ SGK Đại số Giải tích 11 (nâng cao): “Giới hạn vấn đề Giải tích Có thể nói: Khơng có giới hạn khơng có Giải tích, hầu hết khái niệm Giải tích liên quan đến giới hạn” Khi HS tiếp thu tri thức Giới hạn Đạo hàm xảy trình biến đổi chất nhận thức HS (vì ta biết Đại số đặc trưng kiểu tư “hữu hạn”, “rời rạc”, “tĩnh tại” học Giải tích, kiểu tư chủ yếu vận dụng liên quan đến “vô hạn”, “liên tục”, “biến thiên” Giải tích lớp 11 đóng vai trị quan trọng tốn học phổ thơng lẽ: Khái niệm Giới hạn sở; hàm số liên tục vật liệu để xây dựng khái niệm đạo hàm, vi phân tích phân Đó nội dung bao trùm chương trình Giải tích THPT Số hóa Trung tâm Học liệu Công nghệ thông tin – ĐHTN http://lrc.tnu.edu.vn Hoạt động 2: Hàm số liên tục khoảng Hoạt động GV HĐTP 1: Định nghĩa hàm liên tục khoảng GV gọi HS đọc định nghĩa hàm số liên tục đoạn GV ghi tóm tắt định nghĩa bảng Yêu cầu HS phát biểu định nghĩa trường khoảng GV gọi HS nêu nhận xét đồ thị hàm liên tục không tục HĐTP 2: Một số định lý GV liên hệ sang mục III Để biết hàm số có liên tục hợp khoảng hay khơng Hoạt động GV ta phải chứng minh liên tục điểm thuộc khoảng Người ta chứng minh hàm số đa thức liên tục điểm thuộc R Yêu cầu HS phát biểu định lý 1, GV đưa ví dụ áp dụng định lý Yêu cầu HS thảo luận tìm hướng giải ví dụ GV gọi đại diện nhóm nêu định hướng hỏi giúp tốn GV đặt vài câu hướng + Trước tiên ta phải tìm TXĐ hàm số? + Muốn xét tính liên tục hàm số ta sử dụng định lý nào? Hoạt động GV GV yêu cầu hs thực hoạt động nhóm HĐ SGK Sau làm xong câu a GV yêu cầu HS độc lập tiến hành làm câu b c vào GV gọi HS có câu trả lời nhanh lên bảng trình bày lời giải GV nêu chỉnh sửa lầm HS (nếu có) Hs ý theo dõi định lý SGK Sau giải ví dụ 1: GV hướng dẫn nhận HS theo dõi định lý SGK Hoạt động GV GV gọi HS nêu định lý GV vẽ hình minh họa giúp HS hiểu rõ định lý GV đưa dạng phát biểu khác định lý Củng cố định lý GV đưa ví dụ GV định hướng cho HS + Bài toán ta sử dụng định lý để chứng minh phương trình có nghiệm Trước tiên ta xét hàm số f x   x  x  Các em có nhận xét tính liên tục hàm số này? + Hãy tìm hai số a, b cho f(a) f(b) trái dấu ? + Từ định lý suy nghiệm thuộc khoảng a;b  vừa tìm Hoạt động GV GV yêu cầu nhóm thảo luận đưa kết GV gọi đại diện nhóm trả lời chỉnh sửa sai lầm (nếu có) GV đưa 1phản ví dụ nhằm mục đích để HS mắc sai lầm, thơng qua sai lầm HS, GV giúp HS hiểu f(a).f(b)0 phương trình f(x)=0 có nghiệm nghiệm IV Củng cố hướng dẫn nhà - Xem lại cách xét tính liên tục hàm số điểm TXĐ - Xem lại toán chứng minh tồn nghiệm Bài tập nhà: Câu Xét tính liên tục hàm số đúng? A f x 0; 2 C f x ( ) ( ) Câu Tìm giá trị nhỏ a liên tục x  A - Câu Tìm giá trị lớn a liên tục A amax = B amax = x = Câu Xét tính liên tục hàm số f (x )= í sau đúng? D amax = x £ C x > Khẳng định liên tục (- ¥ ;1) gián đoạn x = Câu Tìm khoảng liên tục hàm số đề sau sai? A Hàm số liên tục x 1 B Hàm số liên tục khoảng (- ¥ , - 1); (1; + ¥ ) C Hàm số liên tục x 1 D Hàm số liên tục khoảng (- 1,1) Câu Hàm số khơng liên tục điểm có hồnh độ bao nhiêu? A x  B x = C x  D x  Câu Cho hàm số A điểm thuộc C điểm trừ x = Câu Cho hàm số A điểm thuộc C điểm trừ x  Câu Số điểm gián đoạn hàm số h (x )= í x A Câu 10 ì ï x ï ï ï f (x )= í ï ï ï îï m x + x > A.S=- Câu 11 Cho hàm số f (x ) = x là: A Câu 12 Cho hàm số f x ( ) = Có thể nói số nghiệm phương trìn f [- 1;4]: B Có nghiệm A Vơ nghiệm C Có nghiệm Câu 13 Có tất giá trị để phương trình x - x + (2 m x x ,x , x3 thỏa mãn x1 < - 1< D Có hai nghiệm nguyên tham số m thuộc khoảng (10;10) - )x + m - = có ba nghiệm phân biệt < x3 ? A.19 B.18 C.4 D.3 Dụng ý sư phạm: Trong giáo án sử dụng phản ví dụ để đưa “khó khăn, sai lầm liên quan đến việc nắm chất khái niệm, định lí” đồng thời đưa hệ thống tập phân bậc nhằm giúp HS hiểu rõ ghi nhớ định nghĩa cách tốt ... SỐ BIỆN PHÁP KHẮC PHỤC KHÓ KHĂN CỦA HỌC SINH TRONG HỌC TẬP NỘI DUNG GIỚI HẠN VÀ TÍNH LIÊN TỤC CỦA HÀM SỐ Ở LỚP 11 THPT 49 2.1 Định hướng xây dựng số biện pháp sư phạm khắc phục khó khăn. .. khăn HS học tập nội dung Giới hạn tính liên tục hàm số 49 2.2 Một số biện pháp sư phạm nhằm khắc phục khó khăn sai lầm học tập nội dung Giới hạn tính liên tục hàm số 50 2.2.1 Biện pháp 1:...ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC SƯ PHẠM LƯƠNG THANH HOA MỘT SỐ BIỆN PHÁP KHẮC PHỤC KHÓ KHĂN CỦA HỌC SINH TRONG HỌC TẬP NỘI DUNG GIỚI HẠN VÀ TÍNH LIÊN TỤC CỦA HÀM SỐ Ở LỚP 11

Ngày đăng: 09/06/2021, 08:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w