1. Trang chủ
  2. » Luận Văn - Báo Cáo

Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic

76 682 5
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 76
Dung lượng 1,56 MB

Nội dung

Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic

Trang 1

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐẠI HỌC KỸ THUẬT CÔNG NGHIỆP

-

LUẬN VĂN THẠC SỸ KỸ THUẬT

NGÀNH: TỰ ĐỘNG HOÁ

ĐỀ TÀI:

ĐIỀU KHIỂN TRƯỢT BỘ BIẾN ĐỔI GIẢM ÁP KIỂU QUADRATIC

Học viên: PHAN THÀNH CHUNG

Người hướng dẫn khoa học: PGS.TSKH NGUYỄN PHÙNG QUANG

THÁI NGUYÊN 2009

Trang 2

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

ĐẠI HỌC THÁI NGUYÊN

TRƯỜNG ĐHKT CÔNG NGHIỆP

*****

CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM

Độc lập - Tự do - Hạnh phúc -

THUYẾT MINH

LUẬN VĂN THẠC SỸ KỸ THUẬT

Học viên: Phan Thành Chung Lớp: CHTĐH-K10

Trang 3

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

LỜI CAM ĐOAN

Tôi xin cam đoan những nghiên cứu dưới đây là của tôi , nếu sai tôi xin chịu hoàn toàn trách nhiệm

Người cam đoan

Phan Thành Chung

Trang 4

Luận văn tốt nghiệp Cao học 3

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

LỜI NÓI ĐẦU

Trong lĩnh vực kỹ thuật điện ngày nay, điện tử công suất là lĩnh vực kỹ thuật hiện đại Với những bước tiến nhảy vọt trong kỹ thuật chế tạo linh kiện bán dẫn, các linh kiện điện tử công suất: điôt công suất, Tiristor, GTO, Triac, IGBT, SID, MCT ra đời và hoàn thiện có tính năng dòng điện, điện áp, tốc độ chuyển mạch ngày càng được nâng cao làm cho kỹ thuật điện truyền thống thay đổi một cách sâu sắc Song song với những tiến bộ đó các chiến lược điều khiển khác nhau cũng được áp dụng để điều khiển các bộ biến đổi theo các cấu trúc khác nhau nhằm tạo ra bộ biến đổi thông minh, linh hoạt và có các chỉ tiêu kinh tế - kỹ thuật, năng lượng tối ưu

Bộ biến đổi DC – DC giảm áp kiểu Quadratic (Quadratic Buck converter) có giá trị trung bình điện áp ra phụ thuộc vào bình phương điện áp vào, thường được sử dụng ở mạch một chiều trung gian thiết bị biến đổi điện năng công suất nhỏ, cấu trúc mạch của bộ biến đổi giảm áp kiểu Quadratic vốn không phức tạp nhưng vấn đề điều khiển nó nhằm đạt được hiệu suất biến đổi cao và đảm bảo ổn định luôn là mục tiêu của các công trình nghiên cứu Bản chất mạch của bộ biến đổi giảm áp kiểu Quadratic có các phần tử phi tuyến do vậy chọn điều khiển trượt với bản chất là đưa ra luật điều khiển rơle hai vị trí tác động nhanh đến đối tượng điều khiển sẽ phù hợp cho việc điều khiển bộ biến đổi trên

Thực hiện luận văn tốt nghiệp trong khuôn khổ chương trình đào tạo Thạc sỹ ngành tự động hóa của trường Đại học Kỹ thuật Công nghiệp Thái Nguyên, Tôi được

giao đề tài: ’’ Điều khiển trượt bộ biến đổi DC – DC giảm áp kiểu quadratic”

Mục tiêu của đề tài luận văn là nghiên cứu điều khiển trượt cho bộ biến đổi giảm áp kiểu Quadratic, khảo sát đánh giá tính hiệu quả của điều khiển trượt đối với bộ biến đổi và biện pháp nhằm nâng cao chất lượng hệ thống

Luận văn phân tích các quá trình động học đối tượng thông qua mô hình toán học từ đó đưa ra và chứng minh tính phù hợp của các phương án điều khiển, cuối cùng

Trang 5

Luận văn tốt nghiệp Cao học 4

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

là tiến hành phân tích kiểm chứng, hoàn thiện trên phần mềm mô phỏng Matlab- Simulink

Đề tài có tính cấp thiết để tối ưu hóa chỉ tiêu kinh tế kỹ thuật cho bộ biến đổi giảm áp Thiết kế nguyên lý đã thực hiện trong bản luận văn hoàn toàn có thể triển khai áp dụng chế tạo bộ biến đổi trên thực tế với những linh kiện sẵn có, thông dụng

Luận văn được trình bày trong 4 chương:

- Chương 1: Bộ biến đổi DC – DC giảm áp kiểu Quadratic - Chương 2: Nguyên lý điều khiển trượt

- Chương 3: Điều khiển trượt bộ biến đổi DC – DC giảm áp kiểu quadratic

- Chương 4: Mô phỏng kiểm chứng trên nền MATLAB – Simulink

Sau thời gian thực hiện, đến nay bản luận văn của tôi đã hoàn thành với kết quả tốt Trước thành công này tôi xin gửi lời cảm ơn chân thành tới thầy PGS.TSKH Nguyễn Phùng Quang, người đã trực tiếp hướng dẫn, giúp đỡ tôi hoàn thành đề tài này, tôi cũng xin được bày tỏ lòng biết ơn tới các anh các chị trong Trung tâm Công nghệ cao Trường Đại học Bách khoa Hà Nội cũng như gia đình, bạn bè đã tạo điều kiện giúp đỡ tôi trong quá trình làm luận văn

Ngày tháng 08 năm 2009

Học viên

Phan Thành Chung

MỤC LỤC

Trang 6

Luận văn tốt nghiệp Cao học 5

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Trang

1.3.4 Bộ biến đổi giảm áp kiểu quadratic (Quadratic buck converter) 17

2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm được 37

Chương 3

ĐIỀU KHIỂN BỘ BIẾN ĐỔI DC-DC GIẢM ÁP KIỂU QUADRATIC

Trang 7

Luận văn tốt nghiệp Cao học 6

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Trang 8

Luận văn tốt nghiệp Cao học 7

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Các mạch điện tử công suất nói chung hoạt động ở một trong hai chế độ sau: tuyến tính (linear) và chuyển mạch (switching)

- Chế độ tuyến tính sử dụng đoạn đặc tính khuếch đại của linh kiện tích cực, trong khi chế độ xung chỉ sử dụng linh kiện tích cực như một khóa (van) với hai trạng thái đóng (bão hòa) và ngắt Chế độ tuyến tính cho phép mạch có thể được điều chỉnh

Trang 9

Luận văn tốt nghiệp Cao học 8

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

một cách liên tục nhằm đáp ứng một yêu cầu điều khiển nào đó Tuy nhiên, chế độ tuyến tính thường sinh ra tổn thất công suất tương đối cao so với công suất của toàn mạch, và dẫn đến hiệu suất của mạch không cao Hiệu suất không cao không phải là vấn đề được quan tâm đối với các mạch công suất nhỏ, và đặc biệt là các mạch điều khiển có yêu cầu về chất lượng, về đáp ứng được đặt lên hàng đầu Nhưng vấn đề hiệu suất được đặc biệt quan tâm đối với các mạch công suất lớn, với các lý do khá hiển nhiên Chế độ chuyển mạch cho phép giảm khá nhiều các tổn thất công suất trên các linh kiện tích cực, đặc biệt là các linh kiện công suất, do đó được ưa thích hơn trong các mạch công suất lớn

Ví dụ cụ thể để minh họa Giả sử ta cần thực hiện một bộ biến đổi điện áp từ 12 VDC sang 5 VDC, dòng tải tối đa là 1 A Với giải pháp tuyến tính, dùng một vi mạch ổn áp 7805 Với dòng tải I bất kỳ, hiệu suất của mạch một cách lý tưởng sẽ là η = Pra/Pvào = (5.I)/(12.I) = 41.7% (ta nói lý tưởng vì chúng ta coi như bản thân vi mạch ổn áp không tiêu thụ dòng điện) Với giải pháp chuyển mạch, ta có thể dùng mạch giảm áp có tên gọi buck converter để thực hiện việc này và có thể đạt được hiệu suất trên 90% với mạch này một cách dễ dàng Nhưng cần chú ý rằng chất lượng điện áp tại ngõ ra của giải pháp tuyến tính tốt hơn so với giải pháp chuyển mạch Do đó, điều quan trọng ở đây là chúng ta chọn giải pháp thích hợp cho từng bài toán

- Kỹ thuật chuyển mạch thực tế bao gồm: chuyển mạch cứng (hard-switching) và chuyển mạch mềm (soft-switching) Với kỹ thuật chuyển mạch cứng, các khóa (van) được yêu cầu đóng (hay ngắt) khi điện áp đặt vào (hay dòng điện chảy qua) linh kiện đang có giá trị lớn (định mức) Linh kiện sẽ phải trải qua một giai đoạn chuyển mạch để đi đến trạng thái đóng (hay ngắt), và giai đoạn này sẽ sinh ra tổn thất công suất trên linh kiện tương tự như ở chế độ tuyến tính Tổn thất công suất trong giai đoạn này được gọi là tổn thất (tổn hao) chuyển mạch Điều này có nghĩa là khi tần số làm việc càng lớn (càng có nhiều lần đóng/ngắt linh kiện trong một đơn vị thời gian) thì tổn

Trang 10

Luận văn tốt nghiệp Cao học 9

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

thất chuyển mạch càng lớn, và đó là một trong những lý do khiến tần số làm việc của mạch bị giới hạn Kỹ thuật chuyển mạch mềm cho phép mở rộng giới hạn tần số của các bộ biến đổi chuyển mạch, nhờ việc đóng/ngắt khóa (van) ở điện áp bằng 0 (ZVS: zero-voltage-switching) và/hoặc ở dòng điện bằng 0 (ZCS: zero-current-switching) Nhưng tại sao cần nâng cao tần số làm việc của các bộ biến đổi chuyển mạch? Việc nâng cao tần số làm việc sẽ giúp giảm kích thước và khối lượng của các linh kiện, và tăng mật độ công suất

1.2 Phân loại các bộ biến đổi bán dẫn

Có nhiều cách phân loại các bộ biến đổi chuyển mạch trong điện tử công suất, nhưng có lẽ cách thông dụng nhất là dựa vào tính chất dòng điện ngõ vào và ngõ ra Về nguyên tắc, chúng ta chỉ có dòng điện một chiều (DC) hay xoay chiều (AC), do vậy có 4 tổ hợp khác nhau đối với bộ đôi dòng điện ngõ vào và ngõ ra (theo quy ước thông thường, tôi viết ngõ vào trước, sau đó đến ngõ ra): DC-DC, DC-AC, AC-DC, và AC-AC Bộ biến đổi AC-DC chính là bộ chỉnh lưu (rectifier) mà chúng ta đã khá quen thuộc, còn bộ biến đổi DC-AC được gọi là bộ nghịch lưu (inverter) Hai loại còn lại được gọi chung là bộ biến đổi (converter)

Trang 11

Luận văn tốt nghiệp Cao học 10

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 1.1 Minh họa cách phân loại các bộ biến đổi

Bộ biến đổi AC-AC thường được thực hiện bằng cách dùng một bộ biến đổi AC-DC tạo nguồn cung cấp cho một bộ biến đổi DC-AC Thời gian gần đây có một số bộ biến đổi AC-AC thực hiện việc biến đổi giữa 2 nguồn AC một cách trực tiếp, không có tầng liên kết DC (DC-link), và chúng được gọi là các bộ biến đổi ma trận (matrix converter) hay các bộ biến đổi trực tiếp (direct converter) Tên gọi bộ biến đổi ma trận xuất phát từ thực tế là bộ biến đổi sử dụng một ma trận các khóa (van) 2 chiều để kết nối trực tiếp một pha ngõ ra bất kỳ với một pha ngõ vào bất kỳ (tất nhiên theo một quy luật nào đó để đảm bảo yêu cầu đặt ra đối với bộ biến đổi)

1.3 Các bộ biến đổi DC-DC

Bộ biến đổi DC-DC là bộ biến đổi công suất bán dẫn, có hai cách để thực hiện các bộ biến đổi DC-DC kiểu chuyển mạch: dùng các tụ điện chuyển mạch, và dùng các điện cảm chuyển mạch Giải pháp dùng điện cảm chuyển mạch có ưu thế hơn ở các mạch công suất lớn

Các bộ biến đổi DC-DC cổ điển dùng điện cảm chuyển mạch bao gồm: buck (giảm áp), boost (tăng áp), và buck-boost/inverting (đảo dấu điện áp) Hình 1.1 thể hiện sơ đồ nguyên lý của các bộ biến đổi này Với những cách bố trí điện cảm, khóa chuyển mạch, và diode khác nhau, các bộ biến đổi này thực hiện những mục tiêu khác nhau, nhưng nguyên tắc hoạt động thì đều dựa trên hiện tượng duy trì dòng điện đi qua điện cảm

Trang 12

Luận văn tốt nghiệp Cao học 11

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 1.2 Các bộ biến đổi DC-DC chuyển mạch cổ điển

1.3.1 Bộ biến đổi giảm áp (buck converter)

Bộ biến đổi buck hoạt động theo nguyên tắc sau: khi khóa (van) đóng, điện áp chênh lệch giữa ngõ vào và ngõ ra đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời gian Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp cảm ứng đủ để diode phân cực thuận Điện áp đặt vào điện cảm lúc này ngược dấu với khi khóa (van) đóng, và có độ lớn bằng điện áp ngõ ra cộng với điện áp rơi trên diode, khiến cho dòng điện qua điện cảm giảm dần theo thời gian Tụ điện ngõ ra có giá trị đủ lớn để dao động điện áp tại ngõ ra nằm trong giới hạn cho phép Ở trạng thái xác lập, dòng điện đi qua điện cảm sẽ thay đổi tuần hoàn, với giá trị của dòng điện ở cuối chu kỳ trước bằng với giá trị của dòng điện ở đầu chu kỳ sau Xét trường hợp dòng điện tải có giá trị đủ lớn để dòng điện qua điện cảm là liên tục Vì điện cảm không tiêu thụ năng lượng (điện cảm lý tưởng), hay công suất trung bình trên điện cảm là bằng 0, và dòng điện trung bình của điện cảm là khác 0, điện áp rơi trung bình trên điện cảm phải là 0 Gọi T là chu kỳ chuyển mạch (switching cycle), T1 là thời gian đóng khóa (van), và T2 là thời gian ngắt khóa (van) Như vậy, T = T1 + T2 Giả sử điện áp rơi trên diode, và dao động điện áp ngõ ra là khá nhỏ so với giá trị của điện áp ngõ vào và ngõ ra Khi đó, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là (T1/T)×(Vin − Vout), còn điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là −(T2/T)×Vout

Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn là:

Trang 13

Luận văn tốt nghiệp Cao học 12

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

(T1/T)×(Vin − Vout) − (T2/T)×Vout = 0 hay

(T1/T)×Vin − ((T1 + T2)/T)×Vout = 0, (T1/T)×Vin = Vout

Giá trị D = T1/T thường được gọi là chu kỳ nhiệm vụ (duty cycle) Như vậy, Vout = Vin×D D thay đổi từ 0 đến 1 (không bao gồm các giá trị 0 và 1), do đó 0 < Vout< Vin

Với các bộ biến đổi buck, vấn đề thường được đặt ra như sau: cho biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của điện cảm, tụ điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn định được điện áp ngõ ra

Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi thay đổi của chu kỳ nhiệm vụ D: Dmin = Vout/Vin,max, và Dmax = Vout/Vin,min

Thông thường, các bộ biến đổi buck chỉ nên làm việc ở chế độ dòng điện liên tục qua điện cảm Tại biên của chế độ dòng điện liên tục và gián đoạn, độ thay đổi dòng điện sẽ bằng 2 lần dòng điện tải Như vậy, độ thay đổi dòng điện cho phép bằng 2 lần dòng điện tải tối thiểu Điện cảm phải đủ lớn để giới hạn độ thay đổi dòng điện ở giá trị này trong điều kiện xấu nhất, tức là khi D = Dmin (vì thời gian giảm dòng điện là T2, với điện áp rơi không thay đổi là Vout) Một cách cụ thể, chúng ta có đẳng thức sau:

(1 − Dmin)×T×Vout = Lmin×2×Iout,min

Trang 14

Luận văn tốt nghiệp Cao học 13

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Hai thông số cần được lựa chọn ở đây là Lmin và T Nếu chúng ta chọn tần số chuyển mạch nhỏ, tức là T lớn (T = 1/f, f là tần số chuyển mạch), thì Lmin cũng cần phải lớn

Thành phần xoay chiều của dòng điện qua điện cảm sẽ đi qua tụ điện ngõ ra Với dòng điện qua điện cảm có dạng tam giác, điện áp trên tụ điện ngõ ra sẽ là các đoạn đa thức bậc hai nối với nhau (xét trong một chu kỳ chuyển mạch) Lượng điện tích được nạp vào tụ điện khi dòng điện qua điện cảm lớn hơn dòng điện trung bình sẽ là ΔI×T/2 Nếu biểu diễn theo điện dung và điện áp trên tụ điện thì lượng điện tích này bằng C×ΔV Trong đó, ΔI là biên độ của thành phần xoay chiều của dòng điện qua điện cảm, còn ΔV là độ thay đổi điện áp trên tụ khi nạp (cũng như khi xả, xét ở trạng thái xác lập) Như vậy, chúng ta có thể xác định giá trị của tụ điện dựa vào đẳng thức sau:

ΔI×T/2 = C×ΔV

ΔI đã được xác định ở trên, bằng 2 lần dòng điện tải tối thiểu, và T đã được chọn ở bước trước đó Tùy theo giá trị độ dao động điện áp ngõ ra cho phép ΔV mà chúng ta chọn giá trị C cho thích hợp

1.3.2 Bộ biến đổi tăng áp (boost converter)

Bộ biến đổi boost hoạt động theo nguyên tắc sau: khi khóa (van) đóng, điện áp ngõ vào đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời gian Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp cảm ứng đủ để diode phân cực thuận Ở điều kiện làm việc bình thường, điện áp ngõ ra có giá trị lớn hơn điện áp ngõ vào, do đó điện áp đặt vào điện cảm lúc này ngược dấu

Trang 15

Luận văn tốt nghiệp Cao học 14

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

với với khi khóa (van) đóng, và có độ lớn bằng chênh lệch giữa điện áp ngõ ra và điện áp ngõ vào, cộng với điện áp rơi trên diode Dòng điện qua điện cảm lúc này giảm dần theo thời gian Tụ điện ngõ ra có giá trị đủ lớn để dao động điện áp tại ngõ ra nằm trong giới hạn cho phép

Tương tự như trường hợp của bộ biến đổi buck, dòng điện qua điện cảm sẽ thay đổi tuần hoàn và điện áp rơi trung bình trên điện cảm trong một chu kỳ sẽ bằng 0 nếu dòng điện qua điện cảm là liên tục (nghĩa là dòng điện tải có giá trị đủ lớn)

Gọi T là chu kỳ chuyển mạch (switching cycle), T1 là thời gian đóng khóa (van), và T2 là thời gian ngắt khóa (van) Như vậy, T = T1 + T2 Giả sử điện áp rơi trên diode, và dao động điện áp ngõ ra là khá nhỏ so với giá trị của điện áp ngõ vào và ngõ ra Khi đó, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là (T1/T)×Vin, còn điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là (T2/T)×(Vin − Vout)

Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn là: (T1/T)×Vin + (T2/T)×(Vin − Vout) = 0

hay

(T1/T + T2/T)×Vin − ( T2/T)×Vout = 0 ⇔ Vin = (T2/T)×Vout

Với cách định nghĩa chu kỳ nhiệm vụ D = T1/T, T2/T = 1 − D, ta có Vin = (1 − D)×Vout, hay Vout = Vin/(1 − D) D thay đổi từ 0 đến 1 (không bao gồm các giá trị 0 và 1), do đó 0 < Vin < Vout

Tương tự như với bộ biến đổi buck, một trong những bài toán thường gặp là như sau: cho biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của

Trang 16

Luận văn tốt nghiệp Cao học 15

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

điện cảm, tụ điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn định được điện áp ngõ ra

Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi thay đổi của chu kỳ nhiệm vụ D: Dmin = 1 − Vin,max/Vout, và Dmax = 1 − Vin,min/Vout

Lý luận tương tự như với bộ biến đổi buck, độ thay đổi dòng điện cho phép sẽ bằng 2 lần dòng điện tải tối thiểu Trường hợp xấu nhất ứng với độ lớn của điện áp trung bình đặt vào điện cảm khi khóa (van) ngắt đạt giá trị lớn nhất, tức là hàm số Vin/Vout×(Vin − Vout) đạt giá trị nhỏ nhất khi D thay đổi từ Dmin đến Dmax (chú ý là hàm số này có giá trị âm trong khoảng thay đổi của D) Gọi giá trị của D và Vin tương ứng với giá trị nhỏ nhất đó là Dth và Vin,th (giá trị tới hạn), đẳng thức sau được dùng để chọn giá trị chu kỳ (hay tần số) chuyển mạch và điện cảm:

(1 − Dth)×T×(Vin,th − Vout) = Lmin×2×Iout,min

Việc lựa chọn giá trị cho tụ điện ngõ ra hoàn toàn giống như đối với trường hợp bộ biến đổi buck

1.3.3 Bộ biến đổi đảo áp (buck-boost converter)

Bộ biến đổi buck-boost hoạt động dựa trên nguyên tắc: khi khóa (van) đóng, điện áp ngõ vào đặt lên điện cảm, làm dòng điện trong điện cảm tăng dần theo thời gian Khi khóa (van) ngắt, điện cảm có khuynh hướng duy trì dòng điện qua nó sẽ tạo điện áp cảm ứng đủ để diode phân cực thuận Tùy vào tỷ lệ giữa thời gian đóng khóa (van) và ngắt khóa (van) mà giá trị điện áp ra có thể nhỏ hơn, bằng, hay lớn hơn giá trị

Trang 17

Luận văn tốt nghiệp Cao học 16

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

điện áp vào Trong mọi trường hợp thì dấu của điện áp ra là ngược với dấu của điện áp vào, do đó dòng điện đi qua điện cảm sẽ giảm dần theo thời gian

Với các giả thiết tương tự như các trường hợp trên, ở chế độ dòng điện qua điện cảm là liên tục, điện áp rơi trung bình trên điện cảm sẽ bằng 0

Với cách ký hiệu T = T1 + T2 như trên, điện áp rơi trung bình trên điện cảm khi đóng khóa (van) là (T1/T)×Vin, còn điện áp rơi trung bình trên điện cảm khi ngắt khóa (van) là − (T2/T)×Vout

Điều kiện điện áp rơi trung bình trên điện cảm bằng 0 có thể được biểu diễn: (T1/T)×Vin − (T2/T)×Vout = 0

Như vậy:

(T1/T)×Vin = (T2/T)×Vout ⇔ D×Vin = (1 − D)×Vout

Khi D = 0.5, Vin = Vout Với những trường hợp khác, 0 < Vout < Vin khi 0 < D < 0.5, và 0 < Vin < Vout khi 0.5 < D < 1 (chú ý là ở đây chỉ xét về độ lớn, vì chúng ta đã biết Vin và Vout là ngược dấu) Như vậy, bộ biến đổi này có thể tăng áp hay giảm áp, và đó là lý do mà nó được gọi là bộ biến đổi buck-boost

Xét cùng một loại bài toán thường gặp như những trường hợp trên, tức là: cho biết phạm vi thay đổi của điện áp ngõ vào Vin, giá trị điện áp ngõ ra Vout, độ dao động điện áp ngõ ra cho phép, dòng điện tải tối thiểu Iout,min, xác định giá trị của điện cảm, tụ điện, tần số chuyển mạch và phạm vi thay đổi của chu kỳ nhiệm vụ, để đảm bảo ổn định được điện áp ngõ ra

Trang 18

Luận văn tốt nghiệp Cao học 17

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Phạm vi thay đổi của điện áp ngõ vào và giá trị điện áp ngõ ra xác định phạm vi thay đổi của chu kỳ nhiệm vụ D: Dmin = Vout/(Vin,max + Vout), và Dmax = Vout/(Vin,min + Vout)

Lý luận tương tự như với bộ biến đổi buck, độ thay đổi dòng điện cho phép sẽ bằng 2 lần dòng điện tải tối thiểu Trường hợp xấu nhất ứng với độ lớn của điện áp trung bình đặt vào điện cảm khi khóa (van) ngắt đạt giá trị lớn nhất, tức là khi D = Dmin Như vậy đẳng thức dùng để chọn chu kỳ (tần số) chuyển mạch và điện cảm L giống như của bộ biến đổi buck:

(1 − Dmin)×T×Vout = Lmin×2×Iout,min

Cách chọn tụ điện ngõ ra cho bộ biến đổi này cũng không khác gì so với những trường hợp trên

1.3.4 Bộ biến đổi giảm áp kiểu quadratic (Quadratic buck converter)

Bộ biến đổi giảm áp kiểu quadratic thường được sử dụng ở mạch một chiều trung gian thiết bị biến đổi điện năng công suất nhỏ Bộ biến đổi có tên gọi như vậy là do tính chất bậc hai của của hàm truyền tĩnh phụ thuộc theo hằng số giá trị điều khiển vào trung bình Yếu tố bậc hai làm gia tăng tính hiệu chỉnh của trạng thái bền vững cân bằng khi đầu vào tiến đến giới hạn giới hạn bão hoà Ta tổng hợp và biểu thị mô hình của bộ biến đổi quadratic trên hình 1.2

1.3.4.1 Mô hình của bộ biến đổi

Trang 19

Luận văn tốt nghiệp Cao học 18

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

(1.1)

Hình 1.3: Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn

Mạch bao gồm hai điện cảm L1, L2 và hai Tụ C1, C2 và các điôt, khóa Q thực hiện bằng tranzitor trường với 2 trạng thái đóng (0) và mở (1) Với hai trạng thái đóng mở lý tưởng của Q, kết hợp hai trường hợp cụ thể cho mạch ở dạng khai triển:

Trang 20

Luận văn tốt nghiệp Cao học 19

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 1.4 Lý tưởng đóng cắt cho mạch giảm áp quadratic

,/ ,

L ix

E L CxvE

 

(1.3)

Trang 21

Luận văn tốt nghiệp Cao học 20

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

 

  



Trang 22

Luận văn tốt nghiệp Cao học 21

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Tại các điểm cân bằng này, thông số trạng thái phụ thuộc theo hằng số điện áp ra x4, chúng được viết là:

Trang 23

Luận văn tốt nghiệp Cao học 22

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

4( )

H UxU (1.9)

Hình 1.5: Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic

Trang 24

Luận văn tốt nghiệp Cao học 23

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

là sự ổn định của hệ thống vòng lặp điều khiển trượt với các điều kiện nhiễu

2.2 Các hệ thống cấu trúc biến

Hệ thống cấu trúc biến là một hệ thống trong đó mô hình trạng thái động chịu ảnh hưởng lớn trên miền của không gian trạng thái, trên đó các phép toán của hệ được tìm thấy một cách tường tận Bản chất không liên tục của mô hình chính là thông số đặc tính, và những thay đổi đột ngột gây ra hoặc do sự tác động tự ý lên các thành phần

Trang 25

Luận văn tốt nghiệp Cao học 24

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

của toán tử, sự kích hoạt tự động của một hay nhiều bộ chuyển mạch trong hệ thống, hoặc do sự thay đổi các giá trị tạm thời của từng tham số hệ thống xác định

Lớp của các hệ thống cấu trúc biến tương đối rộng đối với các nghiên cứu chi tiết, hơn nữa lại ít được quan tâm trong lĩnh vực Điện tử Công suất (Power Electronics) Vì lý do này, ta sẽ chỉ nghiên cứu các hệ thống cấu trúc biến được điều khiển bởi một hoặc nhiều chuyển mạch Vị trí của các chuyển mạch này sẽ cấu thành nên tập các đầu vào điều khiển

Ngoài ra, ta giới hạn thêm đối với các nhóm hệ thống mà các mô tả hoặc cấu trúc có điểm tương đồng về số chiều với hệ kết quả cũng như về bản chất của trạng thái mô tả trong hệ

2.2.1 Điều khiển đối với các hệ thống điều chỉnh bằng chuyển mạch đơn

Ta xét quá trình điều khiển các hệ thống được biểu diễn bởi các mô hình không gian trạng thái phi tuyến theo dạng:

   .

Trang 26

Luận văn tốt nghiệp Cao học 25

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Đặc điểm chính của hệ mà ta quan tâm là bản chất giá trị nhị phân của biến đầu vào điều khiển Không làm mất tính tổng quát, ta giả sử đầu vào điều khiển này lấy giá trị trên tập rời rạc [0, 1] Chú ý rằng nếu tập các giá trị có thể nhận được của biến đầu vào vô hướng u là tập rời rạc [W1,W2] với WiR, i=1,2 thì theo phép biến đổi tọa độ khả đảo dưới đây ta có: 2

u Wv

 ,

và u=W2+v(W1`+W2) sẽ tạo ra biến đầu vào điều khiển mới v là một hàm đầu vào điều khiển giá trị nhị phân lấy giá trị trên tập [0, 1]

Ví dụ 2.1: Mạch điện dưới đây biểu diễn bộ biến đổi công suất từ một chiều sang

một chiều (DC-to-DC Power Converter), còn gọi là Bộ biến đổi Boost (Boost Converter), được điều khiển bởi một chuyển mạch đơn

Hình 2.1: Bộ biến đổi Boost một chiều - một chiều chuyển mạch bằng khóa bán dẫn

Lý tưởng hóa khóa đóng mở Q ta có sơ đồ được biểu thị trên hình 2.2

Trang 27

Luận văn tốt nghiệp Cao học 26

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 2.2: Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng

Phương trình vi phân điều khiển mô tả mạch là:

 

xxxiv

Trang 28

Luận văn tốt nghiệp Cao học 27

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Ta có:  

với h: n

RRlà một hàm đầu ra vô hướng trơn của hệ Ta định nghĩa:

  n | 0

Một trong các đặc tính căn bản trong thiết kế luật điều khiển phản hồi cho các hệ thống điều chỉnh bởi các chuyển mạch trong thực tế là đặc tính của hàm vô hướng trơn h(x) là một phần của vấn đề thiết kế Việc lựa chọn hàm đầu ra h(x), và theo đó, là đa

Trang 29

Luận văn tốt nghiệp Cao học 28

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

dạng trượt S, phụ thuộc hoàn toàn vào mong muốn của ta đối với từng mục tiêu điều khiển xác định trong hệ

Ví dụ 2.2: Trong ví dụ trước về Bộ biến đổi Boost, một mặt trượt có thể

được đề xuất biểu diễn dưới dạng hàm đầu ra: h x   v vx2Vd

Với v Vd là giá trị trung bình của điện áp cân bằng đầu ra mong muốn Nếu ta buộc h(x) bằng 0, dẫu chỉ là cục bộ, dọc theo quỹ đạo điều khiển của hệ thống, thì điện áp đầu ra về lý tưởng sẽ đồng nhất với với điện áp mong muốn cũng mang tính cục bộ, một mặt trượt khác ta cũng quan tâm đến trong trường hợp riêng, được cho bởi:

, đặt h(x) là một hàm vô hướng lấy giá trị trên R

Ta định nghĩa đạo hàm có hướng của h(x) theo phương f(x) là lượng vô hướng và ký hiệu bởi hTf x( )

Trang 30

Luận văn tốt nghiệp Cao học 29

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Trong hệ tọa độ cục bộ ta có:

 

f xfx

 (2.5)

2.2.4 Điều khiển tương đương và trượt động lý tưởng

Giả thiết rằng nhờ việc chọn luật chuyển mạch u[0,1] hợp lý, khiến trạng thái x của hệ tiến triển cục bộ và được giới hạn trên đa dạng trượt S Khi điều kiện

xSđược thoả mãn, ta giả thiết là điều đó đạt được với một đối tượng điều khiển xác định Nói cách khác, giả sử rằng ta có thể đạt được tính bất biến của S theo các quỹ đạo của trạng thái hệ bằng cách cho các đảo mạch đầu vào điều khiển hợp lý u lấy giá trị trên tập [0,1], mà không cần quan tâm tới độ nhanh chậm khi các đảo mạch này được thực hiện như yêu cầu Không quá khó để nhận ra rằng khi các quỹ đạo trạng thái cắt xiên với các mặc trượt, thì các đảo mạch đầu vào điều khiển cần thiết phải có tần số vô hạn, sở dĩ như vậy là vì các chuyển mạch tần số hữu hạn có thể khiến quỹ đạo bị lệch tạm thời ra khỏi mặt trượt Sự tiến triển của trạng thái dọc theo mặt S diến ra sau đó như thể nó được tạo ra bời một đầu vào điều khiển trơn , thay vì đầu vào điều khiển chuyển mạch Sự tương đương giữa đầu vào điều khiển chuyển mạch tần số vô hạn và điều khiển phản hồi trơn được biết đến như là ý tưởng điều khiển tương đương

Trang 31

Luận văn tốt nghiệp Cao học 30

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 2.3: Minh họa điều khiển tương đương ueq

Ta định nghĩa điều khiển tương đương như một luật điều khiển phản hồi trơn, ký hiệu bởi ueq(x) mà duy trì cục bộ sự tiến triển của quỹ đạo trạng thái được giới hạn một cách lý tưởng với đa dạng trơn S với trạng thái đầu của hệ x(t0)=x0 được xác định riêng trên S, tức là khi h(x)=0

Hàm tọa độ h(x) thỏa mãn điều kiện bất biến dưới đây:

L h xux

L h x

  (2.7)

Trường véctơ được điều khiển, f(x)+g(x)ueq(x) và sự tiến triển tương ứng của quỹ đạo trạng thái của hệ trên đa dạng trơn S, được biểu diễn dưới dạng:

Trang 32

Luận văn tốt nghiệp Cao học 31

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

L h xf xg x

L h x

x  (2.8)

Chú ý rằng với bất kỳ điều kiện đầu nào, mà không vượt ra ngoài đa dạng trơn S, dưới tác động của ueq(x), theo cách mà hàm h(x) bằng hằng từ đạo hàm của y là đồng nhất và cục bộ bằng 0 Giá trị hằng của y = h(x) chỉ nhận giá trị 0 khi trạng thái đầu x0 được xác định trên S Hệ vòng lặp kín được phản hồi bằng điều khiển tương đương có thể được biểu diễn theo một cách khác như mô tả dưới đây:

qua không gian tiếp tuyến con lên đa dạng S theo dạng song song với miền g(x) hoặc theo hướng của trường điều khiển đầu vào g(x)

Thực ra, đặt v là một trường véctơ trong không gian tiếp tuyến với Rn

Trang 33

Luận văn tốt nghiệp Cao học 32

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Thêm vào đó, véctơ hàng thứ n,  h/ xTlà trực giao với ảnh qua M(x) của các trường véctơ nằm trong không gian tiếp tuyến Rn

Điều này đủ để chỉ ra rằng bất kỳ dạng 1 trong miền của  h/ xT sẽ triệt tiêu tất cả các véctơ cột của M(x)

Dạng một trong miền của  h/ xT được viết lại dưới dạng:   hTx

 với  x là một hàm vô hướng khác 0 tùy ý Thực chất ra:

 

Rõ ràng là:M2(x)=M(x) kéo theo M(x)G(x) =0

2.2.5 Tính tiếp cận được của các mặt trượt

Cho x là một điểm đại diện trên quỹ đạo trạng thái, nằm trong một lân cận mở của đa dạng S (lân cận này bắt buộc chứa các giao điểm với đa dạng trượt) Không làm mất tính tổng quát, giả sử rằng tại điểm đó, hàm tọa độ mặt h(x) của đa dạng S là xác định dương, nghĩa là h(x) > 0 ta có thể xác định được trên mặt S Mục tiêu của ta là đưa ra một tác động điều khiển hợp lý mà đảm bảo rằng quỹ đạo của hệ thống tới và cắt qua đa dạng S Đạo hàm theo thời gian h(x) tại điểm x được cho bởi:

Trang 34

Luận văn tốt nghiệp Cao học 33

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Vì có giả thiết rằng Lgh(x)>0 nên ta phải chọn một điều khiển làm triệt tiêu các hiệu ứng gia tăng dương khi nó vượt qua đạo hàm của h Do đó ta phải cho u = 0 Đạo hàm theo thời gian của h(x) với đầu vào điều khiển này trùng hợp hoàn toàn với đạo hàm theo hướng Lfh(x) Để kéo theo Lgh(x)>0 trong một lân cận mở của S, Lfh(x) cần thiết phải xác định âm trong một lân cận của S

Nếu bây giờ ta giả thiết điểm x nằm phía “dưới” mặt phẳng, nghĩa là h(x) < 0, thì dễ thấy để quỹ đạo tới và cắt ngang qua đa dạng trượt S, đạo hàm thời gian của h(x) phải xác định dương Nói cách khác, Lfh(x)+[Lgh(x)]u>0 Từ Lg(x)>0 và Lfh(x) <0, ta phải chọn u =1 tăng hiệu ứng gia tăng dương của Lgh(x) so với đạo hàm thời gian h(x) Nhưng, bên cạnh đó, cần thiết các hạng tử dương là đại lượng có thể vượt qua được các hiệu ứng gia tăng âm được biểu diễn bởi Lfh(x) theo đạo hàm thời gian

Ta kết luận rằng, giả thiết Lfh(x) >0 trong một lân cận mở của S, điều kiện cần cho sự tồn tại của chế độ trượt trong S là Lgh(x)> -Lfh(x)>0 Nói cách khác, chia bất phương trình trên cho lượng xác định dương Lgh(x), cần phải thỏa mãn:

  

L h xL h x

   

Chú ý rằng bất phương trình này phải thỏa mãn trong một lân cận mở của Rnchứa một giao không rỗng với S Trường hợp riêng, nếu bất phương trình này thỏa mãn

Trang 35

Luận văn tốt nghiệp Cao học 34

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

với xSthì nó cũng thỏa trong một lân cận mở của S trong Rn

, kéo theo các đặc tính trơn của trường véctơ liên quan và của hàm tọa độ mặt h(x).

Theo giả thiết rằng Lgh(x)> 0 xung quanh S, dễ thấy rằng điều kiện cần vừa đưa ra ở trên cũng chính là điều kiện đủ

Thực chất ra, nếu điểm đại diện được xác định phía “trên” đa dạng trượt S, bất phương trình chỉ ra rằngLfh(x)< 0, và nó đủ để cho u = 0 tiếp đó

( ) 0

h x  trong bất cứ lân cận mở nào của S Quỹ đạo trạng thái do vậy tiến tới, cắt ngang đa dạng S từ bất cứ điểm lân cận nào nằm phía trên mặt S Nếu điểm đại diện được định phía “dưới” S, bất phương trình thiết lập được Lf(x)+Lgh(x)>0và vì thế, việc chọn u =1 buộc điều kiện

Tuy nhiên, để tránh nhầm lẫn, ta chú ý nếu Lgh(x)<0 cục bộ, ta có thể định nghĩa lại S như một hàm tọa độ mặt trượt –h(x) thay vì h(x), khi này tất cả các phân tích phía trên đều hợp lệ

Điều kiện Lgh(x)>0 đặc biệt quan trọng và nó quyết định các cơ chế chuyển mạch nhằm đạt được một cách cục bộ lên chế độ trượt trên đa dạng trượt S Ta coi điều kiện này như là một điều kiện ngang của trường đầu vào điều khiển g(x) liên quan đến đa dạng trượt S Chú ý rằng: nếu Lgh(x)=0 trên một khoảng mở xung quanh đa dạng trượt, hệ thống là không thể điều khiển được và lượng h x.( )không thể đổi dấu của nó

Trang 36

Luận văn tốt nghiệp Cao học 35

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

xung quanh lân cận của S Vì thế, điều kiện ngang là một điều kiện cần cho việc tồn tại cục bộ của một chế độ trượt

Dựa trên thực tế lượng –Lfh(x)/Lgh(x) trùng hợp với điều khiển tương đương đã nói đến, ta thấy rằng:

Điều kiện cần và đủ cho việc tồn tại cục bộ của một chế độ trượt trên một đa dạng trượt S = {x |h(x) = 0} là điều khiển tương đương u thỏa mãn: 0ueq x 1,

Điều kiện ngang Lgh(x)>0, hoặc tổng quát hơn, L h xg ( )0 chỉ ra rằng hàm tọa độ mặt trượt h(x) được coi như một hàm đầu ra của hệ, y = h(x), thì hàm này phải thỏa mãn bậc tương đối bằng một, xung quanh giá trị y = 0 Chú ý rằng, với y = 0 thì điểm "không động" hoàn toàn trùng hợp với trượt động lý tưởng cho bởi:

.         

L h x

L h x

Dưới giả thiết điều kiện ngang thỏa mãn theo: Lgh(x)>0

Trong một khoảng mở đủ rộng của mặt trượt S, luật điều khiển buộc các quỹ đạo trạng thái tiến tới mặt trượt và có thể “cắt ngang” được mặt này, cho bởi:

  

if h xu

if h x

  

 

  

 hay 1  1

u  sign h x  (2.15)

Trang 37

Luận văn tốt nghiệp Cao học 36

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn Hình 2.4 Minh họa điều khiển trượt

Một cách hiển nhiên là, bất cứ một xâm nhập ban đầu nào của quỹ đạo trạng thái tới “hướng khác” của đa dạng trượt đều gây nên tác động điều khiển tức thời đòi hỏi cái chuyển mạch phải thay đổi vị trí của nó đến duy nhất một giá trị phù hợp khác Hệ quả là, quỹ đạo bị buộc phải quay lại mặt và có thể cắt ngang nó một lần nữa kèm với sự thay đổi tương ứng vị trí của cái chuyển mạch kết quả của chuyển động này kết quả nằm trong một lân cận nhỏ tùy ý của mặt trượt được đặc trưng bởi chuyển động “zig-zag” mà tần số của nó, về mặt lý thuyết, lớn vô hạn và được gọi là chế độ trượt hoặc chuyển động trượt Hiện tượng đường đặc tính cắt qua mặt trượt được gọi là hiện tượng

Trang 38

Luận văn tốt nghiệp Cao học 37

Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

Chattering hay bang-bang

2.2.6 Các điều kiện bất biến cho các nhiễu loạn tìm được

Một trong các đặc trưng chính của các chế độ trượt, hay điều khiển chế độ trượt, là tính bền vững của chúng đối với các đầu vào nhiễu loạn bên ngoài tác động tới thuộc tính của hệ thống Trong phần này, chúng ta sẽ tìm hiểu các loại điều kiện cần phải thỏa mãn bởi các nhiễu loạn để chúng có thể tự động bị loại trừ từ các mô tả của trượt động lý tưởng

Xét hệ phi tuyến kèm nhiễu dưới đây:

Giả sử tiếp ta có thể tạo ra một chế độ trượt trên mặt trượt S bất kể sự có mặt của trường nhiễu ( )x Sự tồn tại của một chế độ trượt đồng nghĩa với sự tồn tại của một điều khiển tương đương ueq, mà lý tưởng hóa, hoặc có thể cục bộ, đảm bảo các quỹ đạo trạng thái nằm trên đa dạng trượt S Điều khiển tương đương này cần phải là một hàm số của trường nhiễu chưa biết và được cho bởi:

L h xL h xux

L h x

 

Động lực học trượt lý tưởng, với xS, sẽ đạt được là:

Ngày đăng: 12/11/2012, 10:15

HÌNH ẢNH LIÊN QUAN

1.3.4.1 Mô hình của bộ biến đổi 18 - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
1.3.4.1 Mô hình của bộ biến đổi 18 (Trang 6)
Hình 1.3: Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 1.3 Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn (Trang 19)
Hình 1.3: Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 1.3 Bộ biến đổi giảm áp kiểu quadratic đóng cắt bằng thiết bị bán dẫn (Trang 19)
1.3.4.2 Mô hình dạng chuẩn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
1.3.4.2 Mô hình dạng chuẩn (Trang 20)
1.3.4.2 Mô hình dạng chuẩn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
1.3.4.2 Mô hình dạng chuẩn (Trang 20)
Hình 1.4  Lý tưởng đóng cắt cho mạch giảm áp quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 1.4 Lý tưởng đóng cắt cho mạch giảm áp quadratic (Trang 20)
Hình 1.5: Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 1.5 Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic (Trang 23)
Hình 1.5: Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 1.5 Đặc tuyến hàm truyền bộ biến đổi giảm áp kiểu Quadratic (Trang 23)
Hình 2.1: Bộ biến đổi Boost một chiều - một chiều  chuyển mạch bằng khóa bán dẫn  - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 2.1 Bộ biến đổi Boost một chiều - một chiều chuyển mạch bằng khóa bán dẫn (Trang 26)
Hình 2.1: Bộ biến đổi Boost một chiều - một chiều   chuyển mạch bằng khóa bán dẫn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 2.1 Bộ biến đổi Boost một chiều - một chiều chuyển mạch bằng khóa bán dẫn (Trang 26)
Hình 2.2: Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 2.2 Bộ biến đổi Boost một chiều - một chiều với chuyển mạch lý tưởng (Trang 27)
Hình 2.3: Minh họa điều khiển tương đương u eq - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 2.3 Minh họa điều khiển tương đương u eq (Trang 31)
Hình 2.4 Minh họa điều khiển trượt - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 2.4 Minh họa điều khiển trượt (Trang 37)
Mô hình bộ biến đổi giảm áp kiểu quadratic đã được làm rõ trong chương 1,  ta  thấy  rằng  cấu  tạo  bộ  biến  đổi  hết sức  đơn  giản  tuy  nhiên  việc  điều  khiển  khóa chuyển mạch u để đạt được điện áp ra đạt yêu cầu là hết sức khó khăn do  tính phi t - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
h ình bộ biến đổi giảm áp kiểu quadratic đã được làm rõ trong chương 1, ta thấy rằng cấu tạo bộ biến đổi hết sức đơn giản tuy nhiên việc điều khiển khóa chuyển mạch u để đạt được điện áp ra đạt yêu cầu là hết sức khó khăn do tính phi t (Trang 41)
Hình 4.1 Sơ đồ bộ biến đổi giảm áp kiểu quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.1 Sơ đồ bộ biến đổi giảm áp kiểu quadratic (Trang 50)
Mô hình hóa mạch động lực bộ biến đổi trên Matlab-simulink: - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
h ình hóa mạch động lực bộ biến đổi trên Matlab-simulink: (Trang 50)
Hình 4.1 Sơ đồ b ộ biến đổi giảm áp kiểu quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.1 Sơ đồ b ộ biến đổi giảm áp kiểu quadratic (Trang 50)
Hình 4.2 Bộ  biến đổi giảm áp kiểu quadratic mô hình hóa trên Matlab-Simulink - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.2 Bộ biến đổi giảm áp kiểu quadratic mô hình hóa trên Matlab-Simulink (Trang 51)
Hình 4.4 Điều chỉnh ngưỡng tác động”Rơ le” - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.4 Điều chỉnh ngưỡng tác động”Rơ le” (Trang 54)
Hình 4.6 Điều khiển trượt cho bộ biến đổi giảm áp kiểu quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.6 Điều khiển trượt cho bộ biến đổi giảm áp kiểu quadratic (Trang 55)
Hình 4.6 Điều khiển trượt cho b ộ biến đổi giảm áp kiểu quadratic - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.6 Điều khiển trượt cho b ộ biến đổi giảm áp kiểu quadratic (Trang 55)
Hình 4.5 Luật điều khiển trượt xây dựng trên Matlab-Simulink - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.5 Luật điều khiển trượt xây dựng trên Matlab-Simulink (Trang 55)
Hình 4.7 Dòng điện qua cuộn cảm L 1 - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.7 Dòng điện qua cuộn cảm L 1 (Trang 56)
mối liên hệ đó được thể hiện rõ trong giản đồ trên hình 4.9. Khi bắt đầu, dòng điện i1 bằng  không, do h x( ) _i1i 1 &gt;0    và  tín  hiệu  điều  khiển  u  =1,  khóa  FET  mở  dẫn  dòng  qua cuộn cảm L 1 vào bộ biến đổi, dòng điện qua L1 tăng lên một c - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
m ối liên hệ đó được thể hiện rõ trong giản đồ trên hình 4.9. Khi bắt đầu, dòng điện i1 bằng không, do h x( ) _i1i 1 &gt;0 và tín hiệu điều khiển u =1, khóa FET mở dẫn dòng qua cuộn cảm L 1 vào bộ biến đổi, dòng điện qua L1 tăng lên một c (Trang 57)
Hình 4.8:  Hiện tượng “Chattering” của dòng điện qua L 1 - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.8 Hiện tượng “Chattering” của dòng điện qua L 1 (Trang 57)
Hình 4.9: Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiể nu - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.9 Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiể nu (Trang 58)
Hình 4.9:  Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiển u - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.9 Mối liên hệ giữa hiện tượng trượt và tín hiệu điều khiển u (Trang 58)
Hình 4.11: Tín hiệu điều khiể nu cho bộ biến đổi - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.11 Tín hiệu điều khiể nu cho bộ biến đổi (Trang 59)
Hình 4.10: Biên độ trượt của dòng điện i1 phụ thuộc và ngưỡng đặt cho rơle - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.10 Biên độ trượt của dòng điện i1 phụ thuộc và ngưỡng đặt cho rơle (Trang 59)
Hình 4.10:  Biên độ trượt của dòng điện i 1  phụ thuộc và ngưỡng đặt cho rơ le - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.10 Biên độ trượt của dòng điện i 1 phụ thuộc và ngưỡng đặt cho rơ le (Trang 59)
Hình 4.11:  Tín hiệu điều khiển u cho bộ biến đổi - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.11 Tín hiệu điều khiển u cho bộ biến đổi (Trang 59)
Tương tự, điện áp ra trên tụ C2 được biểu thị bằng đường đặc tính trên hình 4.12 với quá trình quá độ rất nhỏ t &lt; 0.005s, và bám sát giá trị cân bằng theo yêu cầu - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
ng tự, điện áp ra trên tụ C2 được biểu thị bằng đường đặc tính trên hình 4.12 với quá trình quá độ rất nhỏ t &lt; 0.005s, và bám sát giá trị cân bằng theo yêu cầu (Trang 62)
Hình 4.15: Sơ đồ khối hệ thống - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.15 Sơ đồ khối hệ thống (Trang 63)
Hình - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
nh (Trang 64)
Hình 4.16: Tổng hợp bộ biến đổi  trên Simulink - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.16 Tổng hợp bộ biến đổi trên Simulink (Trang 64)
Hình 4.17: Bộ điều chỉnh PID và cửa sổ nhập dữ liệu - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.17 Bộ điều chỉnh PID và cửa sổ nhập dữ liệu (Trang 65)
Hình 4.19: Dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.19 Dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID (Trang 67)
Hình 4.19: Dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.19 Dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID (Trang 67)
Hình 4.18: Đáp ứng dòng điện i 1 * của hệ thống - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.18 Đáp ứng dòng điện i 1 * của hệ thống (Trang 67)
Hình 4.20: “Chattering” của dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.20 “Chattering” của dòng qua cuộn cảm L1 khi có bộ điều chỉnh PID (Trang 68)
Hình 4.20: “Chattering” của dòng qua cuộn cảm L 1  khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.20 “Chattering” của dòng qua cuộn cảm L 1 khi có bộ điều chỉnh PID (Trang 68)
Hình 4.21: Tín hiệu điều khiể nu khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.21 Tín hiệu điều khiể nu khi có bộ điều chỉnh PID (Trang 69)
Hình 4.21: Mối liên hệ giữa i 1 * , i 1  và tín hiệu điều khiển u khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.21 Mối liên hệ giữa i 1 * , i 1 và tín hiệu điều khiển u khi có bộ điều chỉnh PID (Trang 69)
Hình 4.21: Tín hiệu điều khiển u khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.21 Tín hiệu điều khiển u khi có bộ điều chỉnh PID (Trang 69)
Trên hình 4.19 biểu thị đường đặc tính dòng điện qua cuộn cảm L2, tại - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
r ên hình 4.19 biểu thị đường đặc tính dòng điện qua cuộn cảm L2, tại (Trang 70)
Hình 4.22: Dòng qua cuộn cảm L2 khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.22 Dòng qua cuộn cảm L2 khi có bộ điều chỉnh PID (Trang 70)
Hình 4.20: Điện áp trên C1 khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.20 Điện áp trên C1 khi có bộ điều chỉnh PID (Trang 71)
Đặc tính điện áp trên tụ C1 thể hiện trên hình 4.20 phản ánh quá trình khởi động và sự biến động theo tải của hệ thống  - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
c tính điện áp trên tụ C1 thể hiện trên hình 4.20 phản ánh quá trình khởi động và sự biến động theo tải của hệ thống (Trang 71)
Hình 4.21: Điện áp ra khi có bộ điều chỉnh PID - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.21 Điện áp ra khi có bộ điều chỉnh PID (Trang 72)
Hình 4.22: Điện áp ra bộ biến đổi khi đặt U*=12V - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.22 Điện áp ra bộ biến đổi khi đặt U*=12V (Trang 73)
Hình 4.22: Điện áp ra bộ biến đổi khi đặt U*=12V - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.22 Điện áp ra bộ biến đổi khi đặt U*=12V (Trang 73)
Hình 4.24: Điện áp ra bộ biến đổi khi đặt U*=5V, lượng quá điều chỉnh lớn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.24 Điện áp ra bộ biến đổi khi đặt U*=5V, lượng quá điều chỉnh lớn (Trang 74)
Hình 4.23: Điện áp ra bộ biến đổi khi đặt U*=30V - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.23 Điện áp ra bộ biến đổi khi đặt U*=30V (Trang 74)
Hình 4.24: Điện áp ra bộ biến đổi khi đặt U*=5V, lượng quá điều chỉnh lớn - Điều khiển trượt bộ biến đổi giảm áp kiểu quadratic
Hình 4.24 Điện áp ra bộ biến đổi khi đặt U*=5V, lượng quá điều chỉnh lớn (Trang 74)

TỪ KHÓA LIÊN QUAN

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w