1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

ĐHĐN robot công nghiệp ts phạm đăng phước, 109 trang

109 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 109
Dung lượng 1,67 MB

Nội dung

1 Robot Công nghiệp Chơng I Giới thiệu chung robot công nghiệp 1.1 Sơ lợt trình phát triển cđa robot c«ng nghiƯp (IR : Industrial Robot) : Tht ngữ Robot xuất phát từ tiếng Sec (Czech) Robota có nghĩa công việc tạp dịch kịch Rossums Universal Robots Karel Capek, vào năm 1921 Trong kịch nầy, Rossum trai ông ta đà chế tạo máy gần giống với ngời để phục vụ ngời Có lẽ gợi ý ban đầu cho nhà sáng chế kỹ thuật cấu, máy móc bắt chớc hoạt động bắp ngời Đầu thập kû 60, c«ng ty Mü AMF (American Machine and Foundry Company) quảng cáo loại máy tự động vạn gọi Ngời máy công nghiệp (Industrial Robot) Ngày ngời ta đặt tên ngời máy công nghiệp (hay robot công nghiệp) cho loại thiết bị có dáng dấp vài chức nh tay ngời đợc ®iỊu khiĨn tù ®éng ®Ĩ thùc hiƯn mét sè thao tác sản xuất Về mặt kỹ thuật, robot công nghiƯp ngµy nay, cã ngn gèc tõ hai lÜnh vùc kỹ thuật đời sớm cấu điều khiển từ xa (Teleoperators) máy công ®iỊu khiĨn sè (NC - Numerically Controlled machine tool) Các cấu điều khiển từ xa (hay thiết bị kiểu chủ-tớ) đà phát triển mạnh chiến tranh giới lần thứ hai nhằm nghiên cứu vật liệu phóng xạ Ngời thao tác đợc tách biệt khỏi khu vùc phãng x¹ bëi mét bøc t−êng cã mét vài cửa quan sát để nhìn thấy đợc công việc bên Các cấu điều khiển tõ xa thay thÕ cho c¸nh tay cđa ng−êi thao tác; gồm có kẹp bên (tớ) hai tay cầm bên (chủ) Cả hai, tay cầm kẹp, đợc nối với cấu sáu bậc tự để tạo vị trí hớng tuỳ ý tay cầm kẹp Cơ cấu dùng để điều khiển kẹp theo chuyển động tay cầm Vào khoảng năm 1949, máy công cụ điều khiển số đời, nhằm đáp ứng yêu cầu gia công chi tiết ngành chế tạo máy bay Những robot thực chất nối kết khâu khí cấu điều khiển từ xa với khả lập trình máy công cụ điều khiển số Dới điểm qua số thời điểm lịch sử phát triển ngời máy công nghiệp Một robot công nghiệp đợc chế tạo robot Versatran công ty AMF, Mỹ Cũng vào khoảng thời gian nầy Mỹ xuất loại robot Unimate -1900 đợc dùng kỹ nghệ ôtô Tiếp theo Mỹ, nớc khác bắt đầu sản xuất robot công nghiệp : Anh -1967, Thuỵ Điển Nhật -1968 theo quyền Mỹ; CHLB Đức -1971; Ph¸p - 1972; ë ý - 1973 Tính làm việc robot ngày đợc nâng cao, khả nhận biết xử lý Năm 1967 trờng Đại học tổng hợp Stanford (Mỹ) đà chế tạo mẫu robot hoạt động theo mô hình mắt-tay, có khả nhận biết định hớng bàn kẹp theo vị trí vật kẹp nhờ cảm biến Năm 1974 Công ty Mỹ Cincinnati đa loại robot đợc điều khiển máy vi tính, gọi robot T3 (The Tomorrow Tool : Công cụ tơng lai) Robot nầy nâng đợc vật có khối lợng đến 40 KG Có thể nói, Robot tổ hợp khả hoạt động linh hoạt cấu điều khiển từ xa với mức độ tri thức ngày phong phú hệ thống điều khiển theo chơng trình số nh kỹ thuật chế tạo cảm biến, công nghệ lập trình phát triển trí khôn nhân tạo, hệ chuyên gia Trong năm sau nầy, việc nâng cao tính hoạt động robot không ngừng phát triển Các robot đợc trang bị thêm loại cảm biến khác để nhận biết môi trờng TS Phạm Đăng Phớc Robot Công nghiệp chung quanh, với thành tùu to lín lÜnh vùc Tin häc - §iƯn tử đà tạo hệ robot với nhiều tính đăc biệt, Số lợng robot ngày gia tăng, giá thành ngày giảm Nhờ vậy, robot công nghiệp đà có vị trí quan trọng dây chuyền sản xuất đại Một vài số liệu số lợng robot đợc sản xuất vài nớc công nghiệp phát triển nh sau : (Bảng I.1) Nớc SX Năm 1990 Năm 1994 Năm 1998 (Dự tính) Nhật 60.118 29.756 67.000 Mü 4.327 7.634 11.100 §øc 5.845 5.125 8.600 2.500 2.408 4.000 ý 1.488 1.197 2.000 Ph¸p Anh 510 1.086 1.500 Hµn qc 1.000 1.200 Mü lµ n−íc phát minh robot, nhng nớc phát triển cao lĩnh vực nghiên cứu chế tạo sử dụng robot lại Nhật 1.2 ứng dụng robot công nghiệp sản xuất : Từ đời robot công nghiệp đợc áp dụng nhiều lĩnh vùc d−íi gãc ®é thay thÕ søc ng−êi Nhê vËy dây chuyền sản xuất đợc tổ chức lại, suất hiệu sản xuất tăng lên rõ rệt Mục tiêu ứng dụng robot công nghiệp nhằm góp phần nâng cao suất dây chuyền công nghệ, giảm giá thành, nâng cao chất lợng khả cạnh tranh sản phẩm đồng thời cải thiện điều kiện lao động Đạt đợc mục tiêu nhờ vào khả to lớn robot nh : làm việc mệt mỏi, dễ dàng chuyển nghề cách thành thạo, chịu đợc phóng xạ môi trờng làm việc độc hại, nhiệt độ cao, cảm thấy đợc từ trờng nghe đợc siêu âm Robot đợc dùng thay ngời trờng hợp thực công việc không nặng nhọc nhng đơn điệu, dễ gây mệt mõi, nhầm lẫn Trong ngành khí, robot đợc sử dụng nhiều công nghệ đúc, công nghệ hàn, cắt kim loại, sơn, phun phủ kim loại, tháo lắp vận chuyển phôi, lắp ráp sản phẩm Ngày đà xuất nhiều dây chuyền sản xuất tự động gồm máy CNC với Robot công nghiệp, dây chuyền đạt mức tự động hoá cao, mức độ linh hoạt cao máy robot đợc điều khiển hệ thống chơng trình Ngoài phân xởng, nhà máy, kỹ thuật robot đợc sử dụng việc khai thác thềm lục địa đại dơng, y học, sử dơng qc phßng, chinh phơc vị trơ, công nghiệp nguyên tử, lĩnh vực xà hội Rõ ràng khả làm việc robot số điều kiện vợt khả ngời; phơng tiện hữu hiệu để tự động hoá, nâng cao suất lao động, giảm nhẹ cho ngời công việc nặng nhọc độc hại Nhợc điểm lớn robot cha linh hoạt nh ngời, dây chuyền tự động, có robot bị hỏng làm ngừng hoạt động dây chuyền, robot hoạt động dới giám sát ngời TS Phạm Đăng Phớc Robot Công nghiệp 1.3 Các khái niệm định nghĩa robot công nghiệp : 1.3.1 Định nghĩa robot công nghiệp : Hiện có nhiều định nghĩa Robot, điểm qua số định nghĩa nh sau : Định nghĩa theo tiêu chuẩn AFNOR (Pháp) : Robot công nghiệp cấu chuyển động tự động lập trình, lặp lại chơng trình, tổng hợp chơng trình đặt trục toạ độ; có khả định vị, định hớng, di chuyển đối tợng vật chất : chi tiết, dao cụ, gá lắp theo hành trình thay đổi đà chơng trình hoá nhằm thực nhiệm vụ công nghệ khác Định nghĩa theo RIA (Robot institute of America) : Robot tay máy vạn lặp lại chơng trình đợc thiết kế để di chuyển vật liệu, chi tiết, dụng cụ thiết bị chuyên dùng thông qua chơng trình chuyển động thay đổi để hoàn thành nhiệm vụ khác Định nghĩa theo OCT 25686-85 (Nga) : Robot công nghiệp máy tự động, đợc đặt cố định di động đợc, liên kết tay máy hệ thống điều khiển theo chơng trình, lập trình lại để hoàn thành chức vận động điều khiển trình sản xuất Có thể nói Robot công nghiệp máy tự động linh hoạt thay phần toàn hoạt động bắp hoạt động trí tuệ ngời nhiều khả thích nghi khác Robot công nghiệp có khả chơng trình hoá linh hoạt nhiều trục chuyển động, biểu thị cho số bậc tự chúng Robot công nghiệp đợc trang bị bàn tay máy cấu chấp hành, giải nhiệm vụ xác định trình công nghệ : trực tiếp tham gia thực nguyên công (sơn, hàn, phun phủ, rót kim loại vào khuôn đúc, lắp ráp máy ) phục vụ trình công nghệ (tháo lắp chi tiết gia công, dao cụ, đồ gá ) với thao tác cầm nắm, vận chuyển trao đổi đối tợng với trạm công nghệ, hệ thống máy tự động linh hoạt, đợc gọi Hệ thống tự động linh hoạt robot hoá cho phép thích ứng nhanh thao tác đơn giản nhiệm vụ sản xuất thay ®ỉi 1.3.2 BËc tù cđa robot (DOF : Degrees Of Freedom) : Bậc tự số khả chuyển động cấu (chuyển động quay tịnh tiến) Để dịch chuyển đợc vật thể không gian, cấu chấp hành robot phải đạt đợc số bậc tự Nói chung hệ robot cấu hở, bậc tù cđa nã cã thĨ tÝnh theo c«ng thøc : w = 6n - ∑ ip i =1 i (1.1) : n - Số khâu động; pi - Sè khíp lo¹i i (i = 1,2, .,5 : Số bậc tự bị hạn chế) Đối với cấu có khâu đợc nối với khớp quay tịnh tiến (khớp động loại 5) số bậc tự với số khâu động Đối với cấu hở, số bậc tự b»ng tỉng sè bËc tù cđa c¸c khíp động Để định vị định hớng khâu chấp hành cuối cách tuỳ ý không gian chiều robot cần có bậc tự do, bậc tự để định vị bậc tự để định hớng Một số công việc đơn giản nâng hạ, xếp yêu cầu số bậc tự Các robot hàn, sơn thờng yêu cầu bậc tự Trong số trờng hợp cần khéo léo, linh hoạt cần phải tối u hoá quỹ đạo, ngời ta dïng robot víi sè bËc tù lín h¬n 1.3.3 Hệ toạ độ (Coordinate frames) : Mỗi robot thờng bao gồm nhiều khâu (links) liên kết với qua khớp (joints), tạo thành xích động học xuất phát từ khâu (base) đứng yên Hệ toạ độ gắn với TS Phạm Đăng Phớc Robot Công nghiệp khâu gọi hệ toạ độ (hay hệ toạ độ chuẩn) Các hệ toạ độ trung gian khác gắn với khâu động gọi hệ toạ độ suy rộng Trong thời điểm hoạt động, toạ độ suy rộng xác định cấu hình robot chuyển dịch dài chuyển dịch góc cuả khớp tịnh tiến khớp quay (hình 1.1) Các toạ độ suy rộng đợc gäi lµ biÕn khíp z θ4 θ3 θ5 d2 n a o On θ1 y x O0 H×nh 1.1 : Các toạ độ suy rộng robot Các hệ toạ độ gắn khâu robot phải tuân theo qui tắc bàn tay phải : Dùng tay phải, nắm hai ngón tay út áp út vào lòng bàn tay, xoè ngón : cái, trỏ theo phơng vuông góc nhau, chọn ngón phơng chiều trục z, ngón trỏ phơng, chiều trục x ngón biểu thị phơng, chiều trục y (hình 1.2) Trong robot ta thờng dùng chữ O số n để hệ toạ độ gắn khâu thứ n Nh hệ toạ độ (Hệ toạ độ gắn với khâu cố định) đợc ký hiệu O0; hệ toạ độ gắn khâu trung gian tơng ứng O1, O2, , On-1, Hệ toạ độ gắn khâu chấp hành cuối ký hiệu On z x O y Hình 1.2 : Qui tắc bàn tay phải 1.3.4 Trờng công tác robot (Workspace or Range of motion): Trờng công tác (hay vùng làm việc, không gian công tác) robot toàn thể tích đợc quét khâu chấp hành cuối robot thực tất chuyển động Trờng công tác bị ràng buộc thông số hình học robot nh ràng buộc học cđa c¸c khíp; vÝ dơ, mét khíp quay cã chun ®éng nhá h¬n mét gãc 3600 Ng−êi ta th−êng dïng hai hình chiếu để mô tả trờng công tác mét robot (h×nh 1.3) β H R H×nh chiÕu b»ng Hình chiếu đứng Hình 1.3 : Biểu diễn trờng công tác robot TS Phạm Đăng Phớc Robot Công nghiệp 1.4 Cấu trúc robot công nghiệp : 1.4.1 Các thành phần robot công nghiệp : Một robot công nghiệp thờng bao gồm thành phần nh : cánh tay robot, nguồn động lực, dụng cụ gắn lên khâu chấp hành cuối, cảm biến, điều khiển , thiết bị dạy học, máy tính phần mềm lập trình nên đợc coi thành phần hệ thống robot Mối quan hệ thành phần robot nh hình 1.4 Các cảm biến Bộ điều khiển máy tính Thiết bị dạy học Nguồn động lực Các chơng trình Cánh tay robot Dụng cụ thao tác Hình 1.4 : Các thành phần hệ thống robot Cánh tay robot (tay máy) kết cấu khí gồm khâu liên kết với khớp động để tạo nên chuyển động robot Nguồn động lực động điện (một chiều động bớc), hệ thống xy lanh khí nén, thuỷ lực để tạo động lực cho tay máy hoạt động Dụng cụ thao tác đợc gắn kh©u ci cđa robot, dơng cđa robot cã thĨ có nhiều kiểu khác nh : dạng bàn tay để nắm bắt đối tợng công cụ làm việc nh mỏ hàn, đá mài, đầu phun sơn Thiết bị dạy-hoc (Teach-Pendant) dùng để dạy cho robot thao tác cần thiết theo yêu cầu trình làm việc, sau robot tự lặp lại động tác đà đợc dạy để làm việc (phơng pháp lập trình kiểu dạy học) Các phần mềm để lập trình chơng trình điều khiển robot đợc cài đặt máy tính, dùng điều khiển robot thông qua điều khiển (Controller) Bộ điều khiển đợc gọi Mođun điều khiển (hay Unit, Driver), thờng đợc kết nối với máy tính Một mođun điều khiển có cổng Vào - Ra (I/O port) để làm việc với nhiều thiết bị khác nh cảm biến giúp robot nhận biết trạng thái thân, xác định vị trí đối tợng làm việc dò tìm khác; điều khiển băng tải cấu cấp phôi hoạt động phối hợp với robot 1.4.2 KÕt cÊu cđa tay m¸y : Nh− đà nói trên, tay máy thành phần quan trọng, định khả làm việc robot Các kết cấu nhiều tay máy đợc theo cấu tạo chức tay ngời; nhiên ngày nay, tay máy đợc thiết kế đa dạng, nhiều cánh tay robot có hình dáng khác xa cánh tay ngời Trong thiết kế sử dụng tay máy, cần quan tâm đến thông số hình - động học, thông số liên quan đến khả làm việc robot nh : tầm với (hay trờng công tác), số bậc tự (thể khéo léo linh hoạt robot), độ cứng vững, tải trọng vật nâng, lực kẹp TS Phạm Đăng Phớc Robot Công nghiệp Các khâu robot thờng thực hai chuyển động : ã Chuyển động tịnh tiến theo hớng x,y,z không gian Descarde, thông thờng tạo nên hình khối, chuyển động nầy thờng ký hiệu T (Translation) P (Prismatic) ã Chuyển động quay quanh trục x,y,z ký hiệu R (Roatation) Tuỳ thuộc vào số khâu tổ hợp chuyển động (R T) mà tay máy có kết cấu khác với vùng làm việc khác Các kết cấu thờng gặp Robot robot kiểu toạ độ Đề các, toạ độ trụ, toạ độ cầu, robot kiểu SCARA, hệ toạ độ góc (phỏng sinh) Robot kiểu toạ độ Đề : tay máy có chuyển động tịnh tiến theo phơng trục hệ toạ độ gốc (cấu hình T.T.T) Trờng công tác có dạng khối chữ nhật Do kết cấu đơn giản, loại tay máy nầy có độ cứng vững cao, độ xác khí dễ đảm bảo thuờng dùng để vận chuyển phôi liệu, lắp ráp, hàn mặt phẳng T.T.T Hình 1.5 : Robot kiểu toạ độ Đề R.T.T Robot kiểu toạ độ trụ : Vùng làm việc robot có dạng hình trụ rỗng Th−êng khíp thø nhÊt chun ®éng quay VÝ dơ robot bËc tù do, cÊu h×nh R.T.T nh− h×nh vÏ 1.6 Có nhiều robot kiểu toạ độ trụ nh : robot Versatran cđa h·ng AMF (Hoa Kú) H×nh 1.6 : Robot kiểu toạ độ trụ Robot kiểu toạ độ cầu : Vùng làm việc robot có dạng hình cầu thờng độ cứng vững loại robot nầy thấp so với hai loại Ví dụ robot bậc tự do, cấu hình R.R.R R.R.T làm việc theo kiểu toạ độ cầu (hình 1.7) R.R.R R.R.T Hình 1.7 : Robot kiểu toạ độ cầu Robot kiểu toạ độ góc (Hệ toạ độ sinh) : Đây kiểu robot đợc dùng nhiều Ba chuyển động chuyển động quay, trục quay thứ vuông góc với hai trục Các chuyển động định hớng khác chuyển động quay Vùng làm việc tay máy nầy gần giống phần khối cầu Tất khâu nằm mặt phẳng thẳng đứng nên tính toán toán phẳng u điểm bật loại robot hoạt TS Phạm Đăng Phớc Robot Công nghiệp động theo hệ toạ độ góc gọn nhẹ, tức có vùng làm việc tơng đối lớn so với kích cở thân robot, độ linh hoạt cao Các robot hoạt động theo hệ toạ độ góc nh : Robot PUMA cđa h·ng Unimation Nokia (Hoa Kú - PhÇn Lan), IRb-6, IRb-60 (Thuỵ Điển), Toshiba, Mitsubishi, Mazak (Nhật Bản) V.V Ví dụ robot hoạt động theo hệ toạ độ góc (Hệ toạ độ sinh), có cấu hình RRR.RRR : Hình 1.8 : Robot hoạt động theo hệ toạ độ góc Robot kiểu SCARA : Robot SCARA đời vào năm 1979 trờng đại học Yamanashi (Nhật Bản) kiểu robot nhằm đáp ứng đa dạng trình sản xuất Tên gọi SCARA viết tắt "Selective Compliant Articulated Robot Arm" : Tay máy mềm dẽo tuỳ ý Loại robot nầy thờng dùng công việc lắp ráp nên SCARA đợc giải thích từ viết tắt "Selective Compliance Assembly Robot Arm" Ba khớp kiểu Robot nầy có cấu hình R.R.T, trục khớp theo phơng thẳng đứng Sơ đồ robot SCARA nh− h×nh 1.9 H×nh 1.9 : Robot kiĨu SCARA 1.5 Phân loại Robot công nghiệp : Robot công nghiệp phong phú đa dạng, đợc phân loại theo cách sau : 1.4.1 Phân loại theo kết cấu : Theo kết cấu tay máy ngời ta phân thành robot kiểu toạ độ Đề các, Kiểu toạ độ trụ, kiểu toạ độ cầu, kiểu toạ độ góc, robot kiểu SCARA nh đà trình bày 1.4.2 Phân loại theo hệ thống truyền động : Có dạng truyền động phổ biến : Hệ truyền động điện : Thờng dùng động điện chiều (DC : Direct Current) động bớc (step motor) Loại truyền động nầy dễ điều khiển, kết cấu gọn Hệ truyền động thuỷ lực : đạt đợc công suất cao, đáp ứng điều kiện làm việc nặng Tuy nhiên hệ thống thuỷ lực thờng có kết cấu cồng kềnh, tồn độ phi tuyến lớn khó xư lý ®iỊu khiĨn HƯ trun ®éng khÝ nÐn : có kết cấu gọn nhẹ không cần dẫn ngợc nhng lại phải gắn liền với trung tâm taọ khí nén Hệ nầy làm việc với công suất trung bình nhỏ, xác, thờng thích hợp với robot hoạt động theo chơng trình định sẳn với thao tác đơn giản nhấc lên - đặt xuống (Pick and Place or PTP : Point To Point) TS Phạm Đăng Phớc Robot Công nghiệp 1.4.3 Phân loại theo ứng dụng : Dựa vào ứng dụng robot sản xuất có Robot sơn, robot hàn, robot lắp ráp, robot chuyển phôi v.v 1.4.4 Phân loại theo cách thức đặc trng phơng pháp điều khiển : Có robot điều khiển hở (mạch điều khiển quan hệ phản hồi), Robot ®iỊu khiĨn kÝn (hay ®iỊu khiĨn servo) : sư dơng cảm biến, mạch phản hồi để tăng độ xác mức độ linh hoạt điều khiển Ngoài có cách phân loại khác tuỳ theo quan điểm mục đích nghiên cứu - TS Phạm Đăng Phớc Robot công nghiệp Chơng II Các phép biến đổi nhÊt (Homogeneous Transformation) Khi xem xÐt, nghiªn cøu mèi quan hệ robot vật thể ta cần quan tâm đến vị trí (Position) tuyệt đối điểm, đờng, mặt vật thể so với điểm tác động cuối (End effector) robot mà cần quan tâm đến vấn đề định hớng (Orientation) khâu chấp hành cuối vận động định vị taị vị trí Để mô tả quan hệ vị trí hớng robot vật thể ta phải dùng đến phép biến đổi Chơng nầy cung cấp hiểu biết cần thiết trớc vào giải vấn đề liên quan tới động học ®éng lùc häc robot 2.1 HƯ täa ®é thn nhÊt : Để biểu diễn điểm không gian ba chiều, ngời ta dùng Vectơ điểm (Point vector) Vectơ điểm thờng đợc ký hiệu chữ viết thờng nh u, v, x1 để mô tả vị trÝ cđa ®iĨm U, V, X1 , Tïy thuộc vào hệ qui chiếu đợc chọn, không gian chiều, điểm V đợc biểu diễn nhiều vectơ điểm khác : V vE vF E F Hình 2.2 : Biểu diễn điểm không gian vE vF hai vectơ khác hai vectơ mô tả điểm V Nếu i, j, k vec tơ đơn vị hệ toạ độ đó, chẳng hạn E, ta cã : r r r r v = + bj + ck víi a, b, c lµ toạ độ vị trí điểm V hệ Nếu quan tâm đồng thời vấn đề định vị định hớng, ta phải biểu diễn vectơ v không gian bốn chiều với suất vectơ ma trận cét : v = x y z w Trong ®ã x/w = a y/w = b z/w = c víi w số thực w đợc gọi hệ số tỉ lệ, biểu thị cho chiều thứ t ngầm định, Nếu w = dễ thÊy : x x y y z z = = x=a; = = y =b; = =z=a w w w TS Phạm Đăng Phớc 10 Robot công nghiệp Trong trờng hợp nầy toạ độ biểu diễn với toạ độ vật lý điểm không gian chiều, hệ toạ độ sử dụng w=1 đợc gọi hệ toạ độ Với w = x y z = = =∞ w w w ta cã : Giíi h¹n ∞ thĨ hiƯn h−íng trục toạ độ Nếu w số việc biểu diễn điểm không gian tơng ứng với hệ số tØ lƯ w : r r r r VÝ dơ : v = 3i + j + 5k víi w = (trờng hợp nhất) : v = [3 1]T víi w=-10 biĨu diƠn t−¬ng øng sÏ lµ : v = [-30 -40 -50 -10]T T Ký hiƯu [ ] (Ch÷ T viết cao lên để phép chuyển đổi vectơ hàng thành vectơ cột) Theo cách biểu diễn đây, ta qui ớc : [0 0 0]T vectơ không xác định [0 0 n]T với n vectơ không, trùng với gốc toạ độ [x y z 0]T vectơ hớng [x y z 1]T vectơ điểm hệ toạ độ 2.2 Nhắc lại phép tính vectơ ma trận : 2.2.1 Phép nhân véctơ : r r r r a = a xi + a y j + az k r r r r b = bx i + by j + bz k Cho hai vect¬ : Ta có tích vô hớng Và tích vectơ : r r i j r r axb = a a x y bx by a.b = axbx + ayby + azbz r k az bz r r r = (aybz-azby) i + (azbx-axbz) j + (axby-aybx) k 2.2.2 C¸c phÐp tÝnh vÒ ma trËn : a/ PhÐp céng, trõ ma trËn : Cộng (trừ ) ma trận A B cïng bËc sÏ cã ma trËn C cïng bËc, víi phần tử cij tổng (hiệu) phần tư aij vµ bij (víi mäi i, j) A+B=C Víi cij = aij + bij A-B =C Víi cij = aij - bij PhÐp céng, trõ ma trËn cã c¸c tÝnh chÊt gièng phÐp céng sè thùc b/ TÝch cña hai ma trËn : TÝch cña ma trËn A (kÝch th−íc m x n) víi ma trËn B (kÝch th−íc n x p) lµ ma trËn C cã kÝch th−íc m x p VÝ dô : cho hai ma trËn : A = Ta cã : TS Phạm Đăng Phớc B = 95 Robot công nghiệp khối lợng phép tính khổng lồ khoảng thời gian ngắn (vài chục microgiây) để đảm bảo thời gian thực robot hoạt động Nếu ta không tìm cách cải biến thiết kế quỹ đạo khó đảm bảo yêu cầu nầy * Ví dụ thiết kế quỹ đạo CS: Thiết kế quỹ đạo CS (Path with Cubic segment) khớp thứ i qua hai điểm nút có giá trị q0 qf Với ràng buộc q&0 = ; q& f = Từ công thức (8.2) (8.5) ta xác định hệ số cđa ®a thøc bËc nh− sau : = q0 ; bi = 0; 3(q f − q ) - 2(q f − q ) ci = di = Vµ (t f − t ) (t f − t ) Do vËy quü ®¹o qi(t) cã d¹ng nh− sau : 3(q f − q ) 2(q f − q ) q i (t) = q + t t ( ) − − ( t − t0 ) 3 (t f − t ) (t f − t ) 6(q f − q ) 6(q f − q ) ( t − t0 ) − ( t − t0 ) VËn tèc lµ : q& i (t) = (t f − t ) (t f − t ) 6(q f − q ) 12(q f − q ) &q&i (t) = − ( t − t0 ) Vµ gia tèc lµ : (t f − t ) (t f − t ) Trong ví dụ trên, giả sử thời gian t0 = tf = giây, : qi(t) = q0 + 3(qf - q0) t2 - 2(qf - q0) t3 qf q(t) Quỹ đạo q0 O t tf t0 q& (t) q& = q& f = t tf t0 6(q f − q ) (t f − t ) Tèc ®é q&&(t) Gia tèc t t0 tf − 6(q f − q ) (t f − t ) H×nh 8.3 ThiÕt kế quỹ đạo CS TS Phạm Đăng Phớc 96 Robot công nghiệp Từ phơng trình quỹ đạo, phơng trình vận tốc phơng trình gia tốc ta xây dựng đợc biểu đồ đặc tính chuyển động khớp thứ i đoạn quỹ đạo thiết kế 8.3 Quỹ đạo tuyến tính với cung hai đầu parabol (LSPB) : Khi yêu cầu công cụ gắn khâu chấp hành cuối robot chuyển động với vận tốc đặn, ta dùng quỹ đạo LSPB qi(t) v = constant d (q0+qf)/2 Parabol c O t0 tb Parabol e t tf/2 tf - tb tf Hình 8.3 Quỹ đạo LSPB Các điều kiện liên tục quỹ đạo nầy thĨ hiƯn ë : q(to) = q0 ; q(tf) = qf; vµ q& (t0 ) = q& (t f ) = điều kiện công nghệ v = constant Quỹ đạo đợc chia làm đoạn : a/ Trong đoạn : t tb quỹ ®¹o Parabol cã d¹ng : (8.6) qi(t) = α + βt + γt2 α = q(t0) = q0 (8.7) Khi t = (8.8) Lấy đạo hàm (8.6) : q& (t) = β + 2γ t Khi t = = q&(to ) = Tại thời ®iĨm tb ta cÇn cã vËn tèc b»ng h»ng sè vËn tèc cho tr−íc v : γ = v/2tb Nªn t = tb Đặt v/tb = a = a/2 quỹ đạo có dạng : (0 t ≤ tb) (8.9) qi(t) = q0 + at2/2 b/ Trong đoạn : [tb, (tf-tb)] quỹ đạo tuyến tính cã d¹ng : qi(t) = α0 + vt t (q + q f ) Do tÝnh ®èi xøng : q( f ) = 2 (q + q f ) t Suy = α0 + v f 2 (q + q f − vt f ) = Vậy Phơng trình quỹ đạo tuyến tính : TS Phạm Đăng Phớc 97 Robot c«ng nghiƯp q f + q − vt f + vt Từ điều kiện liên tục vị trí, thời điểm tb ta có : at 2b q f + q − vt f q0 + = + vt b 2 Rót : q − q f + vt f tb = v Với điều kiện tồn : < tb tf/2, dÉn ®Õn : q i (t) = (8.10) qf − q0 2(q f − q ) < tf v v Điều nầy xác định vận tốc phải nằm giới hạn trên, không chuyển động không thực đợc Về mặt vật lý : NÕu tf > (qf - q0) / v vµ tf ≤ 2(qf - q0) / v qf th× : v > (qf - q0) / tf vµ v ≤ 2(qf - q0) / tf q0 NghÜa lµ tgθ < v tg2 t0 tf c/ Trong đoạn : (tf - tb) t tf quỹ đạo Parabol cã d¹ng : at f2 a q i (t) = q f − + at f t − t (8.11) 2 Từ phơng trình (8.9) (8.11) ta xây dựng đặc tính chuyển động theo quỹ đạo LSPB cđa khíp qi nh− sau : qf qi(t); q& (t); q&& (t) i i q0 t0 tb tf-tb v = const t0 tb tf-tb tf q& (t) i tf &q& (t) i t0 tb tf-tb t t t tf H×nh 8.4 : Đặc tính quỹ đạo LSPB TS Phạm Đăng Phớc 98 Robot công nghiệp 8.4 Quỹ đạo Bang Bang Parabolic blend (BBPB) : Nh đà trình bày trên, trờng hợp đặc biệt quỹ đạo LSPB đoạn tuyến tính thu tf at qi(t) = q0 + Víi : 0≤t≤ 2 q − q at tf ≤ t ≤ tf qi(t) = 2q0 - qf +2a f vµ víi t2 a Đồ thị đặc tính quỹ đạo nầy nh− sau : qi(t) qf q0 t0 q& (t) i t tf/2 tf Vmax t t0 tf/2 tf &q& (t) i t0 tf/2 t tf Hình 8.5 Đặc tính quỹ đạo BBPB ======================= TS Phạm Đăng Phớc 99 robot công nghiệp Chơng Truyền động điều khiển robot 9.1 Truyền động điện robot: Truyền động điện đợc dùng nhiều kỹ thuật robot, có nhiều u điểm nh điều khiển đơn giản dùng biến đổi phụ, không gây bẩn môi trờng, loại động điện đại lắp trực tiếp khớp quay Tuy nhiên so với truyền động thuỷ lực thuỷ khí truyền động điện có công suất thấp thông thờng phải cần thêm hộp giảm tốc thờng khâu robot chun ®éng víi tèc ®é thÊp Trong kü tht robot, nguyên tắc dùng động điện loại khác nhau, nhng thực tế có hai loại đợc dùng nhiều Đó động điện chiều động bớc Ngày nay, thành tựu nghiên cứu điều khiển động điện xoay chiều, nên có xu hớng chuyển sang sử dụng động điện xoay chiều để tránh phải trang bị thêm nguồn điện chiều Ngoài ra, loại động điện chiều không chổi góp (DC brushless motor) bắt đầu đợc ứng dụng vào kỹ thuật robot 9.1.1 Động điện chiều : Động điện chiều gồm có hai phần : + Stato cố định với cuộn dây có dòng điện cảm dùng nam châm vĩnh cữu Phần nầy đợc gọi phần cảm Phần cảm tạo nên từ thông khe hở không khí + Roto với dẫn Khi có dòng điện chiều chạy qua với dòng từ thông xác định, roto quay Phần nầy gọi phần ứng Tuỳ cách đấu dây phần cảm so với phần ứng, ta có loại động điện chiều khác : + Động kích từ nối tiếp (Hình 9.1.a); + Động kích từ song song (Hình 9.1.b); + Động kích từ hổn hợp (Hình 9.1.c) a/ b/ Hình 9.1 Các loại động điện chiều TS Phạm Đăng Phớc c/ 100 robot công nghiệp Các thông số chủ yếu định tính làm việc động điện chiều : U : Điện áp cung cấp cho phần ứng; I : Cờng độ dòng điện phần ứng; r : Điện trở phần ứng; : Từ thông; E : Sức phản điện động phần ứng Các quan hệ động điện chiều : E = U - rI = knΦ k lµ hƯ sè phơ thuộc vào đặc tính dây số dẫn phần ứng U Ir Số vòng quay động điện chiều : n = k Mômen động C xác định từ phơng trình cân c«ng suÊt : EI = 2πnC kΦ I C=2 Hay : Muốn điều chỉnh tốc độ động điện mét chiỊu cã thĨ thùc hiƯn b»ng c¸ch : - Thay đổi từ thông , thông qua việc điều chỉnh điện áp dòng kích từ Trong trờng hợp giữ nguyên điện áp phần ứng U, tăng tốc độ từ đến tốc độ định mức, công suất không đổi momen giảm theo tốc độ - Điều chỉnh điện áp phần ứng Trong trờng hợp từ thông không đổi, tăng tốc độ từ đến tốc độ định mức mômen không đổi, công suất tăng theo tốc độ Muốn đảo chiều quay động điện chiều cần thay đổi chiều từ thông (tức chiều dòng điện kích từ) thay đổi chiều dòng điện phần ứng 9.1.2 Động bớc : Nguyên tắc hoạt động : Trên hình 9.2 sơ đồ động bớc loại đơn giản dùng nam châm vĩnh cửu gồm stato có cực roto cã cùc α α N β S α' N S β' β S N α' H×nh 9.2 : Sơ đồ nguyên lý hoạt động động bớc TS Phạm Đăng Phớc ' robot công nghiệp 101 Nếu cấp điện cho cuộn dây ' roto dừng vị trí mà dòng từ qua cuộn dây lớn Nếu cấp điện cho cuộn dây ' roto quay 900 (Phụ thuộc chiều dòng điện cấp vào) Khi đồng thời cấp điện cho cuộn dây roto dừng vị trí 00 900, dòng điện vào cuộn dây hoàn toàn nh roto sÏ dõng ë vÞ trÝ 450 Nh− vËy vÞ trÝ roto phụ thuộc vào số cực đợc cấp điện stato chiều dòng điện cấp vào Trên sơ đồ nguyên lý động bớc loại có cực dùng nam châm vĩnh cửu Trên sở ta tìm hiểu loại động có nhiều cực dùng nam châm ®iƯn cã tõ tÝnh thay ®ỉi Nh− vËy t theo cách cấp điện cho cuộn dây stato ta điều khiển vị trí dừng roto Việc cấp điện cho cuộn dây số hoá, nói động bớc loại động điện chuyển tín hiệu số đầu vào thành chuyển động học nấc đầu Ưu nhợc điểm : + Khi dùng động bớc không cần mạch phản hồi cho điều khiển vị trí vận tốc + Thích hợp với thiết bị điều khiển số Với khả điều khiển số trực tiếp, động bớc trở thành thông dụng thiết bị điện tử đại Tuy nhiên phạm vi ứng dụng động bớc vùng công suất nhỏ trung bình Việc nghiên cứu nâng cao công suất động bớc vấn đề đợc quan tâm Ngoài ra, nói chung hiệu suất động bớc thấp loại động khác Các thông số chủ yếu động bớc : Góc quay : Động bớc quay góc xác định ứng với xung kích thích Góc bớc nhỏ độ phân giải vị trí cao Số bớc s thông sè quan träng : 3600 s= θ Tèc ®é quay tần số xung : Tốc độ quay động bớc phụ thuộc vào số bớc giây Đối với hầu hết động bớc, số xung cấp cho động số bớc (tính theo phút) nên tốc độ tính theo tần số xung f Tốc độ quay động bớc tính theo c«ng thøc sau : 60 f n= (f : b−íc/phót)/(s : bớc /vòng) s Tong : n - tốc độ quay (vòng/phút) f - tần số xung (Hz) s - Số bớc vòng quay TS Phạm Đăng Phớc robot công nghiệp 102 Ngoài thông số quan trọng khác nh độ xác vị trí, momen quán tính động Các loại ®éng c¬ b−íc : T theo kiĨu cđa roto, ®éng bớc đợc chia thành loại sau : + Động bớc kiểu từ trở biến đổi (VR : Variable Resistance) + Động bớc nam châm vĩnh cữu (PM : Permanent Magnet ) + Động bớc kiểu lai (Hybrid) Tuỳ theo số cuộn dây độc lập stato động bớc đợc chia thành loại : pha, pha pha Roto động bớc có nhiều cực (còn gọi răng) Số cực roto phối hợp với số cực stato xác định giá trị góc bớc Góc bớc lớn 900 ứng với động có số bớc s = bớc/vòng Phần lớn động bớc cã sè b−íc s = 200, nªn θ = 1,80 Số bớc lớn độ phân giải cao định vị xác Nhng thực tế, tăng số bớc lên cao Tuy nhiên dùng công nghệ tạo bớc nhỏ để chia bớc thành bớc (nh hình b/ 9.2) từ 10 đến 125 bớc nhỏ Công nghệ tạo bớc nhỏ gọi tạo vi bớc, đơn giản mở rộng phơng pháp nói cho nhiều vị trí trung gian cách cung cấp giá trị dòng khác cho cuộn dây Động đợc tạo bớc nhỏ có độ phân giải tinh nhiều VÝ dơ, nÕu ph©n 125 b−íc nhá mét b−íc đầy, với 200 bớc/vòng độ phân giải động 125 x 200 = 25.000 bớc nhỏ/ vòng 9.2 Truyền động khí nén thuỷ lực : Ngoài truyền động điện, kỹ thuật robot thờng dùng loại truyền động khí nén thuỷ lực 9.2.1 Trun dÉn ®éng khÝ nÐn : Dïng khÝ nÐn hệ truyền động robot nhiều thuận lợi nh : Do phân xởng công nghiệp thờng có mạng lới khí nén chung, nên đơn giản hoá đợc phần thiết bị ngn ®éng lùc cho robot HƯ trun dÉn khÝ nÐn tơng đối gọn nhẹ, dễ sử dụng, dễ đảo chiều, Tuy nhiªn hƯ trun dÉn khÝ nÐn cịng cã nhiều nhợc điểm nh : tính nén đợc chất khí nên chuyển động thờng kèm theo dao động, dừng không xác, cần trang bị thêm thiết bị phun dầu bôi trơn, lọc bụi, giảm tiếng ồn 9.2.2 Truyền dẫn động thuỷ lực : Hệ truyền dẫn thuỷ lực có u điểm nh : Tải trọng lớn, quán tính bé, dễ thay ®ỉi chun ®éng, dƠ ®iỊu khiĨn tù ®éng Tuy nhiªn chúng có nhợc điểm nh : Hệ thuỷ lực đòi hỏi nguồn, bao gồm thùng dầu, bơm thuỷ lực, thiết bị lọc, bình tích dầu, TS Phạm Đăng Phớc 103 robot công nghiệp loại van ®iỊu chØnh, ®−êng èng lµm hƯ trun ®éng cho robot cồng kềnh so với truyền động khí nén truyền động điện Nhìn chung, hệ truyền dẫn thuỷ lực đợc sử dụng phổ biến robot, trờng hợp tải nặng Các phần tử hệ truyền động khí nén thuỷ lực đà đợc tiêu chuẩn hoá Các tính toán thiết kế hệ truyền dẫn khí nén thuỷ lực đà đợc nghiên cứu giáo trình riêng 9.3 Các phơng pháp điều khiển Robot : Nhiệm vụ quan trọng việc điều khiển robot bảo đảm cho điểm tác động cuối E (End-effector) tay máy dịch chuyển bám theo quỹ đạo định trớc Không thế, hệ toạ độ gắn khâu chấp hành cuối phải đảm bảo hớng trình di chuyển Giải toán ngợc phơng trình động học ta giải mặt động học yêu cầu Đó nội dung để xây dựng chơng trình điều khiển vị trí cho robot Tuy nhiên việc giải toán nầy cha xét tới điều kiện thực tế robot làm việc, nh tác động momen lực, ma sát Tuỳ theo yêu cầu nâng cao chất lợng điều khiển (độ xác) mà ta cần tính đến ảnh hởng yếu tố trên, theo đó, phơng pháp điều khiển trở nên đa dạng phong phú 9.3.1 Điều khiĨn tØ lƯ sai lƯch (PE : Propotional Error): Nguyªn tắc phơng pháp nầy dễ hiểu; ®ã lµ lµm cho hƯ thèng thay ®ỉi theo chiỊu hng cã sai lƯch nhá nhÊt Hµm sai lƯch cã thể = d - (t), d góc quay mong muốn (t) giá trị quay thùc tÕ cđa biÕn khíp, ta sÏ gäi θd "góc đặt" Khi = khớp đạt đợc vị trí mong muốn Nếu < 0, khớp đà di chuyển mức cần chuyển động ngợc lại Nh vậy, kiểu điều khiển chuyển động nầy có chiều hớng làm cho sai lệch xấp xỉ zero Bên cạnh đó, cần quan tâm đến phần độ lớn, nghĩa là, cần biết "làm cho động chuyển động cách nào?" mà cần biết "cần cung cấp cho động lợng (mômen động) bao nhiêu?" Để trả lời câu hỏi nầy lần nữa, chóng ta cã thĨ dïng tÝn hiƯu sai sè ε = θd - θ Chóng ta h·y ¸p dơng mét tín hiệu điều khiển mà tỉ lệ với : F = Kp(θd - θ(t)) (9.1) Qui luËt nÇy xác định hệ điều khiển phản hồi đợc gọi hệ điều khiển tỉ lệ sai lệch TS Phạm Đăng Phớc 104 robot công nghiệp 9.3.2 Điều khiển tỉ lệ - đạo hàm (PD : Propotional Derivative): Phơng pháp điểu khiển tỉ lệ sai lệch nhiều nhợc ®iĨm nh− : HƯ dao ®éng lín ma s¸t nhỏ (tình trạng vợt quá) trạng thái tĩnh, momen gần không, nên không giữ đợc vị trí dới tác dụng tải Để khắc phục điều trên, chọn phơng pháp điều khiển tỉ lệ - đạo hàm (PD), với lùc tỉng qu¸t : F = K p ε + K d θ& (t) Trong ®ã : (9.2) ε - sai số vị trí khớp động = d - (t) & (t) - Thành phần đạo hàm - vËn tèc gãc Ke - HÖ sè tØ lÖ sai lƯch vÞ trÝ Kd - HƯ sè tØ lƯ vËn tốc 9.3.3 Điều khiển tỉ lệ - tích phân - đạo hàm (PID : Propotional Integral Derivative): Hệ thống với cấu trúc luật điều khiển PD số nhợc điểm, không phù hợp với số loại robot Một hệ thống điều khiển khác có bổ sung thêm tín hiệu tốc độ đặt & d sai lệch tốc độ & = & d & (t) tác động vào khâu khuyếch đại Kd Phơng trình lực tác động lên khớp động có dạng : t F = K e ε + K d ε& + K i ∫ ε(t)dt (9.3) Víi ε& - sai sè tèc ®é ε& = θ& d − θ& (t) Nh− vËy, t theo cÊu tróc ®· lùa chän cđa bé điều khiển, ta đem đối chiếu phơng trình(9.1), (9.2) (9.3) với phơng trình Lagrange - Euler, Từ nhận đợc phơng trình hệ điều khiển tơng ứng Từ phơng trình nầy hệ điều khiển, cần xác định hệ số tỉ lệ Ke, Kd, Ki để hệ hoạt động ổn định 9.3.4 Hàm truyền chuyển động khớp động : Nội dung phần nầy trình bày phơng pháp xây dựng hàm truyền trờng hợp chuyển động bậc tự do, khớp thờng đợc điều khiển hệ truyền động riêng Phổ biến động điện chiều Xét sơ đồ truyền động động điện chiều với tín hiệu vào điện áp Ua đặt vào phần ứng, tín hiệu góc quay m trục động cơ; động kiểu kích từ độc lập TS Phạm Đăng Phớc 105 robot công nghiệp La Ra + eb(t) _ Lf + Ua(t) _ + Uf Rt ia(t) m _ Mm Jm Hình 9.3 Sơ ®å ®éng c¬ ®iƯn mét chiỊu Trong thùc tÕ, trơc động đợc nối với hộp giảm tốc tới trục phụ tải nh hình 9.4 Gọi n tỉ số truyền, L góc quay trục phụ tải, ta cã : θL(t) = n θm(t) θ& L (t) = n θ& m (t ) (9.4) &θ& (t) = n &θ& (t ) L m θL ML JL Mm fL Jm m= L/n fm Hình 9.4 Sơ đồ động điện phụ tải Mômen trục động tổng momen cần để động quay, cộng với mômen phụ tải quy trục động Ký hiệu : M(t) = M m (t) + M *L (t) Jm : Mômen quán tính động JL : Momen quán tính phụ tải Ta có : M m (t) = J mθ&&m (t) + f mθ&m (t) M (t) = J θ&& (t) + f θ& (t) L L L L L (9.5) (9.6) (9.7) Trong ®ã fm fL hệ số cản động phụ tải Theo định luật bảo tồn lợng, công phụ tải sinh ra, tính trục phụ tải MLL phải công quy trục động M *L m Từ ta có : TS Phạm Đăng Phớc 106 robot công nghiệp M L (t)θ L (t) = nM L (t) θ m (t) Thay (9.1) (9.4) vào công thức : M *L (t) = M *L (t) = n [J L&θ&m (t) + f L θ& m (t)] Thay (9.3) vµ (9.6) vµo (9.2) ta cã : M(t) = ( J m + n J L )&θ&m (t) + f m n f L )θ& m (t) M(t) = J&θ& (t) + f θ& (t) Hay : m m (9.8) (9.9) (9.10) Với : : Mômen quán tÝnh tỉng hiƯu dơng J = Jm + n2JL f = fm + n fL : HÖ sè ma sát tổng hiệu dụng Mômen trục động phụ thuộc tuyến tính với cờng độ dòng điện phần ứng không phụ thuộc vào góc quay vận tốc gãc, ta cã : (9.11) M(t) = Kaia(t) ia : Cờng độ dòng điện phần ứng Ka : Hệ số tỉ lệ mômen áp dụng định luật Kirchhoff cho mạch ®iƯn phÇn øng : di (t) U a (t) = R a i a (t) + L a a + e b (t) dt Víi Ra, La : ®iƯn trë điện cảm phần ứng eb : sức phản điện ®éng cđa ®éng c¬ e b (t) = K b θ& m (t) Kb : hƯ sè tØ lƯ cđa sức phản điện động Sử dụng phép biến đổi Laplace, tõ (9.12) ta cã : U (s) - sK b θ m (s) I a (s) = a R a + sL a Tõ (9.10) vµ (9.11) ta cã : M(s) = s2Jθm(s) + sfθm(s) = KaIa(s) K I (s) θ m (s) = a a ⇒ s J + sf Thay (9.14) vµo (9.15) : ⎡ U (s) - sK b θ m ( s ) ⎤ θ m (s) = K a ⎢ a ⎥ ⎣ (s J + sf)(R a + sLa ) ⎦ Víi TS Phạm Đăng Phớc U a (s) - sK b θ m ( s ) (s J + sf)(R a + sLa ) = θ m (s) Ka (9.12) (9.13) (9.14) (9.15) 107 robot c«ng nghiƯp U a (s) (s J + sf)(R a + sL a ) + sK a K b = θ m (s) Ka θ m (s) Ka = U a (s) s[(sJ + f)(R a + sL a ) + K a K b ] Hay : (9.16) Đây hàm truyền cần xác định, tỉ số tín hiệu (gãc quay θm) vµ tÝn hiƯu vµo cđa hƯ thống (điện áp Ua) Vì hệ thống gồm có động phụ tải nên tín hiệu thực tế góc quay trục phụ tải L, hàm truyền chuyển động bậc tự tay máy : L (s) nK a = U a (s) s[(R a + sL a )(sJ + f) + K a K b ] (9.17) vµ ta cã sơ đồ khối tơng ứng với hàm truyền : Ua(s) + _ ∑ Ka sLa+ Ra sJ + f s n θL(s) Kb H×nh 9.5 : Sơ đồ khối hàm truyền chuyển động bậc tù Trong c«ng thøc (9.17) cã thĨ bá qua thành phần điện cảm phần ứng La, thờng nhỏ so với nhân tố ảnh hởng khí khác Nên : L (s) nK a = U a (s) s(sR a J + R a f + K a K b ) (9.18) 9.3.6 §iỊu khiĨn vị trí khớp động : Mục đích điều khiển vị trí cho động chuyển dịch khớp động góc góc quay đà tính toán để đảm bảo quỹ đạo đà chọn trớc (chơng 8) Việc điều khiển đợc thực nh sau : Theo tín hiệu sai lệch giá trị thực tế giá trị tính toán vị trí góc mà điều chỉnh điện áp Ua(t) đặt vào động Nói cách khác, để điều khiển động theo quỹ đạo mong muốn phải đặt vào động điện ¸p tØ lƯ thn víi ®é sai lƯch gãc quay cđa khíp ®éng Trong ®ã ~ K p e(t) K p ( θL (t) − θ L (t)) U a (t) = = n n Kp : hƯ sè trun tín hiệu phản hồi vị trí TS Phạm Đăng Phớc (9.19) 108 robot c«ng nghiƯp ~ e(t) = θL (t) − θ L (t) : ®é sai lƯch gãc quay ~ Giá trị góc quay tức thời : L (t) đợc đo cảm biến quang học chiết áp Biến đổi Laplace phơng trình (9.18) : ~ K p ( θL (s) − θ L (s)) K p E(s) U a (s) = = n n (9.20) Thay (9.20) vào phơng trình (9.18) : Ka Kp L (s) = = G(s) E(s) s(sR a J + R a f + K a K b ) (9.21) Sau biến đổi đại số ta có hàm truyền : Ka Kp θ L (s) G(s) = = = ~ θL (s) + G(s) s R a J + s(R a f + K a K b ) + K a K b Ka Kp / R aJ (9.22) (R a f + K a K b ) Ka Kb s + s+ R aJ R aJ Ph−¬ng trình (9.22) cho thấy hệ điều khiển tỉ lệ khớp động hệ bậc hai, ổn định hệ số của phơng trình bậc hai số dơng Để nâng cao đặc tính động lực học giảm sai số trạng thái ổn định hệ ngời ta tăng hệ số phản hồi vị trí Kp kết hợp làm giảm dao động hệ cách thêm vào thành phần đạo hàm sai số vị trí Với việc thêm phản hồi nầy, điện áp đặt lên ®éng c¬ sÏ tØ lƯ tun tÝnh víi sai sè vị trí đạo hàm : ~ ~ K p ( θL (t) − θ L (t)) + K v ( θ& L (t) − θ& L (t)) K p e(t) + K v e& (t) (9.23) U a (t) = = n n Trong Kv hƯ sè ph¶n håi cđa sai sè vỊ vËn tèc Với phản hồi nêu trên, hệ thống trở thành khép kín có hàm truyền nh thể sơ đồ khối hình (9.6) Đây phơng pháp điều khiển tỉ lệ - Đạo hàm L(s) Kp+ sKv _ n Ua(s) + _ ∑ sLa+ Ra Ka sJ + f s n θL(s) Kb H×nh 9.6 : Sơ đồ khối điều khiển chuyển dịch khớp động có liên hệ phản hồi TS Phạm Đăng Phớc 109 robot công nghiệp Biến đổi Laplace phơng trình (9.23) vµ thay Ua(s) vµo (9.21) ta cã : K a (K p + sK v ) K a K vs + K a K p θ L (s) = = = G(s) E(s) s(sR a J + R a f + K a K b ) s(sR a J + R a f + K a K b ) (9.24) Tõ ®ã ta cã : K a (K v s + K p ) θ L (s) G(s) = = ~ θL (s) + G(s) s R a J + s(R a f + K a K b + K a K v ) + K a K p (9.25) TS Phạm Đăng Phớc ... đổi : 0 -1 H = 0 0 Giải : áp dụng công thức ( 2-1 ), ta cã : -1 H = 0 0 0 -1 -2 -1 Chúng ta kiểm chứng ma trận nghịch đảo nhân ma trận H víi H-1 : 0 -1 0 0 0 TS Phạm Đăng Phớc 0 0 0 -1 -2 -1 = 0... Phạm Đăng Phớc C1 S1 0 0 1 0 S1 -C1 0 0 0 0 d1 0 d3 C2 S2 0 = C2 S2 0 0 -1 0 -1 -S2 C2 0 -S2 C2 0 -S2*d3 C2*d3 -S2*d3 C2*d3 35 Robot c«ng nghiƯp = C1C2 S1d2 S2 -S1 C1 0 -C1S2 -S1S2 C2 -C1S2d3 -S1S2d3... cosΦsinψ nz = -sinθ cosψ Ox = -cosΦCosθsinψ - sinΦcosψ Oy = -sinΦCosθsinψ + cosΦcosψ Oz = sinθ sinψ ax = cosΦsinθ ay = sinΦsinθ az = cosθ (4.3) ( 4-4 ) ( 4-5 ) ( 4-6 ) ( 4-7 ) ( 4-8 ) ( 4-9 ) ( 4-1 0) ( 4-1 1) Ta

Ngày đăng: 26/05/2021, 21:18