Đề cương ôn tập học kì 2 môn Toán lớp 10 năm 2019-2020 - Trường THPT Việt Đức là tư liệu học tập hữu ích cho những ai đang trong quá trình ôn luyện, củng cố kiến thức để vượt qua kì thi học kì sắp tới với kết quả như mong đợi. Mời các em cùng tham khảo đề cương.
TRƯỜNG THPT VIỆT ĐỨC ĐỀ CƯƠNG ƠN TẬP TỐN LỚP 10 Học kỳ II – Năm học 2019 – 2020 PHẦN TỰ LUẬN A. BÀI T ẬP Đ ẠI SỐ Bài 1: 1. Giải các hệ bất phương trình sau: ( 3x + ) − ( x + 4) > − a) x−4 x x−3 x3 − 0 1) 3x − − x x − − 3x2 2) x 2. Tìm nghiệm nguyên của hệ: x3 + x − x2 − x +8 x2 − 2x − x − 4x + − x 4) x+2 −x x 6) x x 3) x − 3x + + x > x 2x 5) x2 − 5x + x2 − x 7) x x 10 x 12 x Bài 2: − x +1 17 − 15 x − x 8) 9) m 1. Cho bất phương trình mx − m + Tìm để x x+3 bất phương trình nghiệm đúng với ∀x [ 0; 2] 10) x + − x − x x2 + x + 2. Cho hệ bất phương trình ( x − 3) 2m − x 12) x Tìm m để hệ: a) vơ nghiệm b) Có nghiệm duy nhất Bài 3: 1. Tìm m để hàm số y = (m 11) x + x + + x 3x x − 2x 3x 13) x − + x − < x − + x − x + − 1) x + ( m + 1) x + có tập xác định là ᄀ x − mx + 2. Tìm m để < đúng với mọi 3x − x + x ᄀ Bài 4: Giải các phương trình sau: −4 + = 1) 2) x − x − = 3x − x + 2 x + 2x 4) − 3x = x − x + 3) x + = x + x − 2 5) x −3x − 10 = x − 6) x + x + 11 = 31 7) − x + x − + x − x = Bài 6: Cho f ( x ) = ( m − 1) x − 2mx + 3m − a) Tìm m để f ( x ) < 0; f ( x ) > 0; f ( x ) với ∀x ᄀ b) Tìm m để PT f ( x ) = có nghiệm c) Tìm m để PT f ( x ) = có 2 nghiệm cùng dương Bài 7: Cho bất phương trình: x + x − − m a) Tìm m để BPT nghiệm đúng với ∀x ᄀ b) Tìm m để BPT nghiệm đúng với ∀x > Bài 8: Tìm m để bất phương trình ( + 2x ) ( − x ) > m + x − x + đúng với mọi �1 � x �� − ;3 �2 � � 8) + x − x − = x − B. BÀI T ẬP L ƯỢNG GIÁC 1. Xét dấu các biểu thức: a) sin 50 cos ( −300 ) b) < α < 90 , xét dấu của sin ( α + 90 2. Tính các giá trị lượng giác khác của α , biết; a) sin α = với < α < 90 ) TRƯỜNG THPT VIỆT ĐỨC c) sin 215 tan 3π 21π � 2π � − d) cot sin � � 17 � � với 180 < α < 270 12 c) tan α = với < α < 90 7. Cho A, B, C là ba góc trong một ∆ CMR: a) sin A + sin B + sin 2C = 4sin A.sin B.sin C A B C b) sin A + sin B + sin C = cos cos cos 2 A B C c) cos A + cos B + cos C = + 4sin sin sin 2 2 2 d) sin A + sin B + sin C = + cos A.cos B.cos C e) cos A + cos B + cos C = − cos A.cos B.cos C 8. Biến đổi thành tổng các biểu thức sau: A = sin ( a + 30 ) cos ( a − 30 ) b) cos α = − 3. 12 3π α �π � < − − x x+5 C. x �[ 4; +�) Câu 1: Tìm điều kiện xác định của bất phương trình x + A. x �[ −5; 4] B. x �( −5; 4] D. x �( −�; −5 ) Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số y = x − m − − x có TXĐ là một đoạn trên trục số A. m = B. m < C. m > D. m < Câu 3: Bất phương trình ax + b > vô nghiệm khi: TRƯỜNG THPT VIỆT ĐỨC a a>0 a=0 a=0 B. C. D. b=0 b>0 b b Câu 4: Bất phương trình ax + b > có tập nghiệm là ᄀ khi: a=0 a>0 a=0 a=0 A. B. C. D. b>0 b>0 b b Câu 5: Bất phương trình ax + b vơ nghiệm khi a=0 a>0 a=0 a=0 A. B. C. D. b>0 b>0 b b 2x + là: Câu 6: Tập nghiệm S của bất phương trình x − 20 �5 � � � − ; + � ;+ A. S = ᄀ B. S = ( − ; 2) C. S = � D. S = �2 � �23 � 3x + x+2 −1 + x có bao nhiêu nghiệm ngun lớn hơn −10? Câu 7: Bất phương trình A. B. C. D. 10 A. ( ) ) Câu 8: Tập nghiệm S của bất phương trình − x < − 2 là: ( ) A. S = − ;1 − ( B. S = − 2; + Câu 9: Bất phương trình ( x − 1) ( x + 3) − x + C. S = ᄀ D. S = ( x −1) ( x + 3) + x − có tập nghiệm là: 2� � �2 � − ; − � A. S = � B. S = − ; + C. S = ᄀ 3� � �3 � Câu 10: Tập nghiệm S của bất phương trình ( x + 1) − x ( − x ) > −2 x là: D. S = �5 � � 5� − ; + � − ; � B. S = � C. S = � D. S = �2 � � 2� 2 Câu 11: Tập nghiệm S của bất phương trình ( x − 1) + ( x − ) + 15 < x + ( x − ) là: A. S = ᄀ A. S = ( − ;0 ) B. S = ( 0; + ) C. S = ᄀ ( Câu 12: Tập nghiệm S của bất phương trình x + x < x + A. S = ( − ;3) B. S = ( 3; + )( C. S = [ 3; + ) ) D. S = x − là: ) D. S = ( − ;3] Câu 13: Tập nghiệm S của bất phương trình x + x − 2 + x − là: A. ᄀ \ { 2} B. S = ( − ; 2] C. S = { 2} D. S = [ 2; + x−2 Câu 14: Tổng các nghiệm nguyên của bất phương trình bằng: x−4 x−4 A. 15 B. 11 C. 26 D. Câu 15: Tập nghiệm S của bất phương trình ( x − 3) x − là: A. S = [ 3; + ) B. S = ( 3; + C. S = { 2} �[ 3; +�) ) ) D. S = { 2} �( 3; +�) Câu 16: Bất phương trình ( m − 1) x > vô nghiệm khi: A. m B. m < C. m = D. m > Câu 17: Có bao nhiêu giá trị thực của tham số m để bất phương trình ( m − m ) x < m vô nghiệm? A. B. C. D. Vơ số Câu 18: Bất phương trình ( m + ) x + m ( − x ) nghiệm đúng với mọi x khi B. m = Câu 19: Bất phương trình 4m ( x − 1) A. m C. m −3 D. m = −3 ( 4m + 5m + ) x − 12m nghiệm đúng với mọi x khi TRƯỜNG THPT VIỆT ĐỨC 9 C. m = D. m = − 4 m x + m m + x > x + Câu 20: Tìm tất cả các giá trị thực của tham số để BPT: ( có tập nghiệm là ) A. m = −1 B. m = ( − m − 2; + ) A. m = B. m C. m > Câu 21: Tìm tất cả các giá trị thực của tham số m để BPT: m ( x − m ) A. m = B. m > D. m < x − có tập nghiệm là ( − ; m + 1] C. m < D. m Câu 22: Tìm tất cả các giá trị thực của tham số m để bất phương trình m ( x − 1) < − x có nghiệm A. m B. m = C. m ᄀ D. m Câu 23: Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + m − ) x m + có nghiệm A. m C. m ᄀ 2− x > Câu 24: Tập nghiệm S của hệ bất phương trình là: 2x +1 < x − 2 A. S = ( − ; −3) B. m và m D. m B. S = ( − ; ) C. S = ( −3; ) D. S = ( −3; + 2x −1 < −x +1 Câu 25: Tập nghiệm S của hệ bất phương trình là: − 3x < 3− x � 4� �4 � A. S = �−2; � B. S = � ; + � C. S = ( − ; −2 ) D. S = ( −2; + � 5� �5 � x −1 < −x +1 Câu 26: Tập nghiệm S của hệ bất phương trình là: − 2x 3+ x > 1� � �1 � − ; − � − ;1� A. S = � B. S = ( 1; + ) C. S = � D. S = 4� � �4 � 5x − < x + Câu 27: Tổng tất cả các nghiệm nguyên của bất phương trình bằng: x < ( x + 2) A. 21 B. 27 C. 28 x−2 Câu 28: Hệ bất phương trình có nghiệm khi và chỉ khi: m2 + x < ( A. m > ) B. m < C. m < −1 B. m = C. m Câu 30: Tìm tất cả các giá trị của tham số m để hệ bất phương trình A. m = B. m = −1 Câu 31: Hệ bất phương trình ) D. 29 D. −1 < m < Câu 29: Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình A. m > ) ( x − 3) < ( x − ) mx + x − C. m = vô nghiệm khi và chỉ khi: 2x −1 x−m có nghiệm duy D. m = m2 x − x có nghiệm duy 3x − x + D. m TRƯỜNG THPT VIỆT ĐỨC A. m > C. m < ( − x ) ( x − ) là: Câu 32: Tập nghiệm của bất phương trình x +1 A. S = ( −1; 2] �[ 3; + �) B. S = ( − ;1) [ 2;3] C. S = [ −1; 2] �[ 3; + �) B. m Câu 33: Tập nghiệm của bất phương trình D. m D. S = ( −1; ) �( 3; + �) x2 + x − là: x2 − A. S = ( − �; − ) �( − 1;2 ) B. S = ( − 2; − 1] �( 2; + �) C. S = [ −2;1) �( 2; +�) D. S = ( −2;1] �[ 2; +�) − < có tập nghiệm là: x −1 x + A. S = ( − �; − 3) �( 1; + �) B. S = ( − �; −3) �( −1;1) C. S = ( −3; −1) �( 1; + �) D. S = ( −3;1) �( −1; + �) Câu 35: Bất phương trình có tập nghiệm là 1− x 2x +1 � �2 � � �1 2� − ;− � ;1� A. S = � B. S = �− ; ��(1; + �) 2� � 11 � � � 11 � � �2 � � �2 � � � − ; − � � ;1� − ; − � � ;1� C. S = � D. S = � 2� � 11 � 2� � 11 � � � 2x − có tập nghiệm là: Câu 36: Bất phương trình x +1 x −1 � 1� � 1� �1 � −1; ��( 1; + �) D. S = ( − ; −1] � ;1� A. S = −1; �( 1; + �) B. S = ( − �; −1] �( 1; + �) C. S = � � 3� � 3� �3 � Câu 37: Bất phương trình 3x − có nghiệm là: Câu 34: Bất phương trình � � 2� � ; [ 2; + �) A. −�� B. � ; � � � 3� � Câu 38: Nghiệm của bất phương trình x − A. x B. −1 x � 2� C. − ; � 3� D. [ 2; + ) là: C. x D. −1 x ; a ] [ b; + �) Tính tổng Câu 39: Tập nghiệm bất phương trình x − có dạng S = ( −�� P = 5a + b A. B. C. D. 2− x 2? Câu 40: Hỏi có bao nhiêu giá trị ngun x thỏa mãn bất phương trình x +1 A. B. C. D. Câu 41: Số nghiệm nguyên của bất phương trình x − là: A. B. C. D. Câu 42: Bất phương trình x − x + có nghiệm là: � � 2� � B. − ; C. � ; � � � 5� � Câu 43: Bất phương trình 3x − x − có tập nghiệm là: A. [ 4; + ) � 7� A. − ; � 4� 7� � B. � ; � 4� � Câu 44: Tập nghiệm của bất phương trình �1 � − ; + � A. S = � �2 � C. � � ;+ � � D. ( − ; 4] D. ᄀ x −1 < là: x+2 �1 � − ; +�� B. S = ( −�; −2 ) �� �2 � TRƯỜNG THPT VIỆT ĐỨC 1� � −�; − � �( 2; +�) C. S = � 2� � 1� � D. S = �−2; − � 2� � x+2 −x x B. ( − �; − ) �( 1; + �) Câu 45: Nghiệm của bất phương trình A. ( 0;1] là: [ 1; + �) ;0) C. (− �� Câu 46: Số nghiệm nguyên thỏa mãn bất phương trình x + + −2 x + A. B. a>0 ∆ B. a>0 ∆ x + là: C. D. , có ∆ = b − 4ac Điều kiện để f ( x ) > 0, ∀x ᄀ là: Câu 47: Cho f ( x) = ax + bx + c với a A. C. Câu 48: Cho f ( x) = ax + bx + c với a a>0 ∆0 a>0 a>0 B. C. ∆ ∆ ∆ C. −3 x + x − < 2− x Câu 51: Tập nghiệm S của hệ bất phương trình là: x − 4x + < A. A. S = [ 1; ) B. S = [ 1;3) C. S = ( 1; 2] Câu 52: Những giá trị nào của x thỏa mãn hệ bất phương trình A. x > D. [ 0;1] B. < x C. x a0 0, ∀x ᄀ là: D. a0 D. [ −7;1] D. x + x − D. S = [ 2;3) x2 − x − > ? x − 11x + 28 D. < x x − 7x + < là: | x − 1|< Câu 53: Tập nghiệm của hệ bất phương trình B. [ 1; 2] A. ( 1; ) ;1) C. ( −�� ( 2; +�) D. x2 + x + Câu 54: Số nghiệm nguyên của hệ bất phương trình x − x − 10 là: x2 − 5x + > A. B. C. Câu 55: Biểu thức ( x − 10 x + 3) ( x − ) âm khi và chỉ khi: D. � 5� � � �5 � �1 � �1 � −�; � A. x �� B. x ��−�; ��� ;3 � C. x �� ; ��( 3; +�) D. x � ;3 � � 4� � � �4 � �3 � �3 � Câu 56: Tập nghiệm của bất phương trình x + x − x − là: A. [ −4; −1] �[ 2; +�] B. ( −4; −1) �( 2; +�) C. [ −1; + ) D. ( −�; −4] �[ −1; 2] x+3 2x − < Câu 57: Có bao nhiêu giá trị nguyên dương của x thỏa mãn ? x − x + 2 x − x2 A. B. C. D. Câu 58: Tìm tập xác định D của hàm số y = x − x + � 1� A. D = − ; � 2� B. D = [ 2; + ) � � 1� � ; [ 2; + �) D. D = � ; � C. D = − �� � � 2� � TRƯỜNG THPT VIỆT ĐỨC Câu 59: Giá trị nguyên dương lớn nhất để hàm số y = − x − x xác định là: A. B. C. D. 3− x Câu 60: Tìm tập xác định D của hàm số y = − 3x − x ; 4) A. D = ᄀ \ { 1; −4} B. D = [ −4;1] C. D = ( −4;1) D. D = ( −�� Câu 61: Tìm tập xác định D của hàm số y = x2 −1 3x − x + ( 1; +�) � 1� �1 � � 1� � 1� 1; � −�� ; � ( 1; +�) D. D = − �� ; A. D = ᄀ ᄀ � B. D = � ;1� C. D = � [ 1; +�) �3 �3 � � 3� � � Câu 62: Tìm tất giá trị thực tham số m cho phương trình sau vơ nghiệm ( 2m2 + 1) x − 4mx + = A. m ᄀ B. m > C. m = D. m > −0, Câu 63: Tìm tất cả các giá trị của tham số m để phương trình ( m − ) x + ( 2m − 3) x + 5m − = vô nghiệm A. m < B. m > C. m > hoặc m < D. m và < m < Câu 64: Phương trình x + ( m + ) x − 2m − = (với m là tham số) có nghiệm khi: A. m = −1 hoặc m = −5 C. m < −5 hoặc m > −1 B. −5 m −1 D. m −5 hoặc m −1 2 Câu 65: Cho phương trình x + ( m + ) x + + 4m + m = , với m là tham số. Có tất cả bao nhiêu giá trị ngun của m để phương trình đã cho có nghiệm? A. B. C. D. Câu 66: Các giá trị của tham số m để tam thức bậc hai f ( x ) = x − ( m + ) x + 8m + đổi dấu hai lần là: A. m hoặc m 28 B. m < hoặc m > 28 C. < m < 28 D. m > Câu 67: Với giá trị nào của m thì phương trình ( m − 1) x − ( m − ) x + m − = có hai nghiệm phân biệt x1 , x2 thỏa mãn điều kiện x1 + x2 + x1 x2 < ? A. < m < B. < m < C. m > D. m > Câu 68: Tam thức f ( x ) = x + ( 2m − 1) x + m + dương với mọi x khi: 11 11 11 < m 4 Câu 69: Tam thức f ( x ) = −2 x + ( m − ) x − m + không dương với mọi x khi: A. −1 < m < 11 A. m ᄀ \ { 6} B. − B. m �� C. m = D. m ᄀ Câu 70: Bất phương trình x − mx − m có nghiệm đúng với mọi x khi và chỉ khi: A. m −4 hoặc m B. −4 < m < C. m < −4 hoặc m > D. −4 m Câu 71: Tìm các giá trị của tham số m để bất phương trình − x + ( 2m − 1) x + m < có tập nghiệm là ᄀ B. m = − C. m ᄀ 2 Câu 72: Bất phương trình x − ( m + ) x + m + vô nghiệm khi và chỉ khi: A. m = A. m �( − �; − 2] �[ 2; + �) B. m �( − �; − ) �( 2; + �) C. m �[ −2; 2] Câu 73: Tìm tất giá trị thực tham số m ( 2m2 − 3m − ) x2 + ( m − ) x − có tập nghiệm là ᄀ D. Khơng tồn tại m D. m �( −2; ) để bất phương trình TRƯỜNG THPT VIỆT ĐỨC 1 m < m B. C. m D. m 3 2 Câu 74: Cho bất phương trình ( m − ) x + ( m − ) x + < , với m là tham số. Tìm tất cả các giá trị thực của tham số m để bất phương trình vơ nghiệm 10 � 10 � � � A. m � −�; − �[ 2; +�) B. m � −�; − �( 2; +�) 3� 3� � � 10 � � −�; − � �( 2; +�) C. m �� D. m �[ 2; +�) 3� � Câu 75: Tìm tất giá trị tham số m để bất phương trình mx + ( m + 1) x + m − > có nghiệm 1� � �1 � −�; − � − ; +�� A. m ᄀ B. m �� C. m �� D. m ᄀ ᄀ { 0} 4� � �4 � Câu 76: Cho hàm số f ( x ) = ( m + ) x − ( m − ) x − 2m + , với m là tham số. Tìm tất cả các giá trị thực A. của tham số m để hàm số xác định với mọi x ᄀ 20 m A. m B. − Câu 77: Hàm số y = C. m − 20 ( m + 1) x − ( m + 1) x + có tập xác định là D = ᄀ D. m > khi: A. −1 m B. −1 < m < C. −1 < m D. m > −1 2 − x + ( m + 1) x + − 4m Câu 78: Cho biểu thức f ( x ) = , với m là tham số. Tìm tất cả các giá trị thực −4 x + x − của m để biểu thức luôn dương 5 5 A. m − B. m < − C. m < D. m 8 8 B. LƯỢNG GIÁC Câu 79: ∆ABC nếu có quan hệ sin A ( cosB +cosC ) = sin B + sin C thì đó là tam giác gì? A. Cân B. Vng C. Vng cân D. Đều Câu 80: Cho ∆MNE Đẳng thức nào sau đây sai? A. cos ( M + N ) = − cos E B. tan ( M + N ) = − tan E C. cot ( M + N ) = − cot E D. sin ( M + N ) = − sin E Câu 81: Cho ∆ABC có góc A, B, C Giả sử phương trình sau có nghiệm kép: ( sin B − sin C ) x + ( sin C − sin A ) x + sin A − sin B = Mệnh đề nào sau đây đúng? A. ∀∆ABC , nếu phương trình bậc hai tồn tại thì nó có nghiệm x = B. 2sin B = sin A + sin C C. sin B sin A cos C Câu 82: Kết quả nào sau đây đúng ( α là một góc tùy ý)? α α A. sin α + cos α = B. sin 2α + cos 2α = C. sin + cos = 2 Câu 83: Kết quả nào cho ta tìm được góc α ? sin α = sin α = sin α = 13 A. B. C. 12 cosα = cosα = cosα = 13 π Câu 84: Cho α : < α < π Kết quả nào sau đây sai? π � �3π � α− � A. cos ( −α ) < B. sin � C. cos � + α �< �> � 2� �2 � − 2sin 70 có giá trị bằng bao nhiêu? Câu 85: Biểu thức 2sin10 D. Cả ba đều đúng D. sin α + cos3 α = D. sin α = 0.3 cosα = 0.7 D. tan ( α + π ) < TRƯỜNG THPT VIỆT ĐỨC A. 2 Câu 86: Biểu thức B. 4 cos20 cos80 có giá trị bằng bao nhiêu? sin 30 − sin10 Câu 87: Biểu thức ( cot A. Câu 88: Biểu thức: cot 20 A. A. C. 1 B. 1 C. 2 D. D. 4 + tan ) sin18 có giá trị bằng: B. 1 C. 2 D. 3 + cot10 + tan 20 + tan10 có giá trị bằng: B. C. D. Kết quả khác Câu 89: Biểu thức: y = cos 15 + cos 35 + cos 55 + cos 75 có giá trị là: A. 1 B. 3 C. 2 D. 4 Câu 90: Biểu thức sau y = tan10 tan 20 tan 70 tan 80 có giá trị bằng bao nhiêu? A. 1 B. 2 C. 3 D. 4 47π a Câu 91: sin có giá trị là m ( m, a, b �ᄀ , a, b > ) Khi đó m + a + b bằng: b A. B. C. D. cos15 Câu 92: Biểu thức: B = có giá trị bằng a + m b ( m, a, b �ᄀ , b > ) là phân số tối giản). Khi đó cos75 m + a + b bằng: A. B. C. D. Kết quả khác Câu 93: Biểu thức: A = ( sin 75 + cos15 ) cos75 có giá trị bằng a Khi đó a thuộc khoảng nào sau đây? �1 � �3 � �5 � � 1� 0; � A. � ; � B. � ; � C. � ; � D. � �2 � �2 � �4 � � 2� a a Câu 94: Biểu thức y = sin15 + tan 30 cos15 có giá trị bằng là phân số tối giản). ( a, b ᄀ , b b Khi đó ta có: A. a = b B. b − a = C. b = 2a D. a = 2b A Câu 95: Rút gọn biểu thức y = ta được y = Khi đó biểu thức A là: − sin 40 sin 20 cos20 A. A = cos 20 B. A = sin 20 C. A = 4sin 40 D. A = sin 40 Câu 96: Biểu thức: y = sin x + cos x + cos x + 4sin x có giá trị là: A. −3 B. 2 C. 3 D. 4 � � � � + tan α + + tan α − Câu 97: Biểu thức: y = � � � � có giá trị bằng: � � cos 2α � cos 2α � A. 0 B. 1 C. 2 D. 3 π � �3π cos � sin � − x � �x − � � � � �4 � Câu 98: Biểu thức y = có giá trị bằng: 2� π � sin �x + � � 4� A. −2 B. −1 C. 1 D. 2 Câu 99: Biểu thức y = sin α cosα cos2α cos4α bằng: 1 A. sin 8α B. cos8α C. cos8α D. sin 8α 8 10 TRƯỜNG THPT VIỆT ĐỨC 3 Câu 100: Biểu thức y = cos α sin α − sin α cosα có giá trị bằng: sin 4α 1 A. B. C. 2 Câu 101: Biểu thức nào sau đây phụ thuộc vào x ? cot x tan x �π � �π � : A. sin � − x �+ cos � + x �+ sin ( π − x ) + cos ( π + x ) B. �2 � �2 � − cot x − tan x ) ( ( ) ( 4 6 C. sin x + cos x − sin x + cos x Câu 102: Biểu thức: y = A. tan 2α − sin 2α + sin 2α − + sin 2α − sin 2α B. −2 tan 2α Câu 103: Rút gọn biểu thức: y = D. tan x + cot x ) ( sin α − cos α ) 2 − π� �π � < α < � và được rút gọn bằng: 2� �4 C. tan 2α D. − tan 2α cos 4α + sin α − cos 2α sin α + cos 2α − sin α A. tan α B. tan α C. tan α Câu 104: Một học sinh lập luận: ( I) D. 4 = sin α + cos α − 2sin α cos α ( ( II ) sin α − cos α D. tan α ) = − 4sin α cos α = cos 2α ( III ) sin α − cos α = cos 2α Hỏi nếu lập luận trên là sai thì sai tại: A. ( I ) B. ( II ) C. ( III ) D. Lập luận đúng Câu 105: Câu nào sau đây sai? � π� � π� A. sin x + cos x = sin �x + � B. sin x − cos x = sin �x − � � 4� � 4� � π� � π � tan x − C. cos x − sin x = 2cos �x − � D. tan �x − �= � 4� � � tan x + 1 Câu 106: α , β là hai góc nhọn mà tan α = , tan β = Góc α + β có giá trị bằng: π π π A. B. C. D. Kết quả khác π Câu 107: Biểu thức y = ( + tan α ) ( + tan β ) , với α , β là hai góc nhọn thỏa α + β = , có giá trị bằng: A. 1 B. 2 C. 3 D. 4 Câu 108: Cho biết: sin α + cos α = Hỏi tan α có giá trị nào? 4 A. tan α = B. tan α = C. tan α = D tan α = và tan α = 3 α 15 � π Câu 109: Cho sin 2α = D. m = Câu 160: Cho phương trình x + y − x + 10 y + m = Tìm điều kiện của m để ( 1) là phương trình đường trịn có bán kính bằng A. m = B. m = C. m = −8 D. m = −4 Câu 161: Đường tròn nào dưới đây đi qua điểm A ( 4; −2 ) ? A. x + y − x − y + = B. x + y − x + y = C. x + y − x + y − = D. x + y + x − 20 = A. x + y − x − y + = B. x + y + x − y − = C. x + y − 3x − 16 = D. x + y − x + y = Câu 162: Đường tròn nào dưới đây đi qua hai điểm A ( 1;0 ) và B ( 3;4 ) ? Câu 163: Đường trịn đường kính AB với A ( 1;1) , B ( 7;5 ) có phương trình là: A. x − y − x − y + 12 = B. x − y + x − y − 12 = C. x + y + x + y + 12 = D. x − y − x − y − 12 = Câu 164: Đường tròn ( C ) có tâm I ( 2;3) và tiếp xúc với trục Ox có phương trình là: A. ( x − ) + ( y − 3) = B. ( x − ) + ( y − 3) = C. ( x − ) + ( y − 3) = D. ( x + ) + ( y + 3) = Câu 165: Tìm bán kính R của đường trịn đi qua ba điểm A ( 0; ) , B ( 3; ) , C ( 3;0 ) A. R = B. R = D. R = C. R = 10 Câu 166: Đường tròn ( C ) đi qua hai điểm A ( 1;1) , B ( 5;3) và có tâm I thuộc trục hồnh có phương trình là: A. ( x + ) + y = 10 B. ( x − ) + y = 10 C. ( x − ) + y = 10 D. ( x + ) + y = 10 Câu 167: Đường trịn ( C ) có tâm I thuộc đường thẳng d : x − y + = , đi qua điểm A ( −2;1) và tiếp xúc với đường thẳng ∆ : 3x − y + 10 = Phương trình của đường trịn ( C ) là: A. ( x − ) + ( y + ) = 25 B. ( x + 5) + ( y + 1) = 16 C. ( x + ) + ( y + ) = D. ( x − 1) + ( y + 3) = 25 2 Câu 168: Phương trình tiếp tuyến d của đường trịn ( C ) : x + y − x − y = tại điểm N ( 1; −1) là: A. d : x + y − = B. d : x − y + = C. d : x − y − = D. d : x + y + = Câu 169: Viết phương trình tiếp tuyến của đường trịn ( C ) : ( x − 3) + ( y + 1) = , biết tiếp tuyến song song với đường thẳng d : x + y + = A. x + y + = hoặc x + y − = C. x + y + 10 = hoặc x + y − 10 = B. x + y = hoặc x + y − 10 = D. x + y = hoặc x + y + 10 = 15 TRƯỜNG THPT VIỆT ĐỨC Câu 170: Viết phương trình tiếp tuyến của đường trịn ( C ) : ( x − ) + ( y + ) = 25 , biết tiếp tuyến vng góc với đường thẳng d : x − y + = A. x – y + = hoặc x – y – 45 = B. x + y + = hoặc x + y + = C. x + y + 29 = D. x + y + 29 = hoặc x + y – 21 = 2 Câu 171: Viết phương trình tiếp tuyến ∆ của đường trịn ( C ) : ( x − 1) + ( y + ) = , biết tiếp tuyến đi qua điểm A ( 5; −2 ) A. ∆ : x − = C. ∆ : x − = hoặc ∆ : x + y − = B. ∆ : x + y − = hoặc ∆ : x − y − = D. ∆ : y + = hoặc ∆ : x − y − = Câu 172: Cho đường tròn ( C ) : ( x + 1) + ( y − 1) = 25 và điểm M ( 9; −4 ) Gọi ∆ là tiếp tuyến của ( C ) , 2 biết ∆ đi qua M và khơng song song với các trục tọa độ. Khi đó khoảng cách từ điểm P ( 6;5 ) đến ∆ bằng: A. B. C. D. Câu 173: Có bao nhiêu đường thẳng qua gốc tọa độ O tiếp xúc với đường tròn ( C ) : x + y − x + y − 11 = ? A. 0 B. 2 C. 1 D. 3 Câu 174: Cho đường tròn ( C ) : ( x − 3) + ( y + 3) = Qua điểm M ( 4; − 3) có thể kẻ được bao nhiêu 2 đường thẳng tiếp xúc với đường trịn ( C ) ? A. 0 B. 1 C. 2 D. Vơ số Câu 175: Với giá trị m đường thẳng x + y + m = tiếp xúc với đường tròn x2 + y − = A. m = B. m = −3 C. m = D. m = 15 Câu 176: Với giá trị m đường thẳng 3x + y + = tiếp xúc với đường tròn ( x − m) + y2 = A. m = B. m = C. m = và m = −6 D. m = và m = Câu 177: Đường tròn x + y − x − y − 23 = cắt đường thẳng x + y − = theo một dây cung có độ dài bằng bao nhiêu? A. 10 B. 6 C. 4 D. 5 Câu 178: Tìm toạ độ giao điểm của đường trịn x + y − x − y + = và đường thẳng x = 1+ t y = + 2t (với t là tham số) A. ( 1;0 ) và ( 0;1) B. ( 1;2 ) và ( 2;1) �1 � C. ( 1;2 ) và � ; � �5 � D. ( 2;5 ) Câu 179: Đường tròn ( x − ) + ( y − 1) = 25 không cắt đường thẳng nào trong các đường thẳng sau đây? A. Đường thẳng đi qua điểm ( 3; −2 ) và ( 19;33) B. Đường thẳng đi qua điểm ( 2;6 ) và ( 45;50 ) C. Đường thẳng có phương trình x − = D. Đường thẳng có phương trình y − = Câu 180: Tìm tọa độ giao điểm của hai đường trịn x + y − = và x + y − x = A. ( −1;0 ) và ( 0; −1) B. ( 2;0 ) và ( 0;2 ) C. ( 1; −1) và ( 1;1) D. ( 2;1) và ( 1; − ) Câu 181: Xác định vị trí tương đối của hai đường trịn x + y = và ( x + 10 ) + ( y − 16 ) = A. Khơng cắt nhau B. Cắt nhau C. Tiếp xúc trong 16 D. Tiếp xúc ngồi TRƯỜNG THPT VIỆT ĐỨC 2 Câu 182: Đường elip x + y = có tiêu cự bằng: A. 1 B. 9 C. 2 D. 4 2 Câu 183: Đường elip x + y = có một tiêu điểm là: A. ( 3;0 ) ( B. ( 0;3) ) C. − 3;0 ( ) D. 0; 2 Câu 184: Cho elip ( E ) : x + y = và điểm M nằm trên ( E ) Nếu điểm M có hồnh độ bằng 1 thì 16 12 các khoảng cách từ M tới hai tiêu điểm của ( E ) bằng: A. 3 và 5 B. 3,5 và 4,5 C. D. 2 Câu 185: Tâm sai của elip x + y = bằng: A. 0,2 B. 0,4 C. 5 D. 4 2 Câu 186: Đường elip x + y = có tiêu cự bằng: A. 16 7 B. 6 C. 3 D. 16 Câu 187: Tìm phương trình chính tắc của elip nếu nó có tiêu cự bằng 6 và trục lớn bằng 10 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x − y = 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x − y = 25 25 16 Câu 188: Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và đi qua điểm A ( 5;0 ) 25 9 100 100 81 81 25 16 25 16 25 16 Câu 189: Tìm phương trình chính tắc của elip nếu một đỉnh của hình chữ nhật cơ sở của elip đó là M ( 4;3) 2 A. x + y = 2 B. x + y = 16 2 C. x − y = 16 2 D. x + y = 16 Câu 190: Tìm phương trình chính tắc của elip nếu nó đi qua điểm M ( 2;1) và có tiêu cự bằng 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x + y = Câu 191: Tìm phương trình chính tắc của elip nếu nó đi qua điểm ( 6;0 ) và có tâm sai bằng 2 A. x + y = 2 B. x + y = 36 27 2 C. x + y = 36 18 2 D. x + y = Câu 192: Tìm phương trình chính tắc của elip có một đường chuẩn là x + = và một tiêu điểm ( −1;0 ) 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x + y = 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x + y = 15 0; − Câu 193: Tìm phương trình chính tắc của elip đi qua điểm ( ) và có một đường chuẩn là x + = 20 16 20 16 16 16 12 16 10 Câu 194: Tìm phương trình chính tắc của elip có trục lớn dài gấp đơi trục bé và có tiêu cự bằng 17 TRƯỜNG THPT VIỆT ĐỨC 2 A. x + y = 36 2 B. x + y = 16 2 C. x + y = 36 24 2 D. x + y = 24 Câu 195: Tìm phương trình chính tắc của elip có trục lớn dài gấp đơi trục bé và đi qua điểm ( 2; −2 ) 2 A. x + y = 16 2 B. x + y = 24 2 C. x + y = 36 18 2 D. x + y = 20 ... + x ) B. ? ?2 � ? ?2 � − cot x − tan x ) ( ( ) ( 4 6 C. sin x + cos x − sin x + cos x Câu 1 02: Biểu thức: y = A. tan 2? ? − sin 2? ? + sin 2? ? − + sin 2? ? − sin 2? ? B. ? ?2 tan 2? ? Câu? ?103 : Rút gọn biểu thức: ... � 2? ?? ? ?2 � − 2sin 70 có giá trị bằng bao nhiêu? Câu 85: Biểu thức 2sin10 D. Cả ba đều đúng D. sin α + cos3 α = D. sin α = 0.3 cosα = 0.7 D. tan ( α + π ) < TRƯỜNG? ?THPT? ?VIỆT ĐỨC A.? ?2 Câu 86:... Tìm phương trình chính tắc của elip nếu nó có tiêu cự bằng 6 và trục lớn bằng? ?10 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x − y = 2 A. x + y = 2 B. x + y = 2 C. x + y = 2 D. x − y = 25 25 16 Câu 188: Tìm phương trình chính tắc của elip có tiêu cự bằng 6 và đi qua điểm