Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 58 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
58
Dung lượng
1,44 MB
Nội dung
Bộ giáo dục và đào tạo Tr-ờng đại học dân lập hải phòng -------o0o------- TèM HIU PHNG PHP CC TIU NNG LNG DA TRấN NG NHT V KHễNG N NH CHO PHN ON NH đồ án tốt nghiệp đại học hệ chính quy Ngành: Công nghệ Thông tin Sinh viên thực hiện: Lờ Th Ngc Mai Giáo viên h-ớng dẫn: PGS TS. Ngụ Quc To Mã số sinh viên: 110315 Hải Phòng - 2011 Mục lục LỜI CẢM ƠN . 4 DANH MỤC TỪ VIẾT TẮT 5 DANH SÁCH ẢNH 6 LỜI MỞ ĐẦU . 7 CHƢƠNG 1: TỔNG QUAN VỀ XỬ LÝ ẢNHVÀPHÂNĐOẠNẢNH 8 1.1 Tổng quan về xử lý ảnh . 8 1.1.1 XLA là gì? . 8 1.1.2 Sơ đồ tổng quát XLA 9 1.1.3 Mô tả (biểu diễn ảnh) 11 1.1.4 Các khái niệm cơ bản 13 1.2 Tổng quan về phânđoạnảnh . 15 CHƢƠNG 2: CÁC HƢỚNG TIẾP CẬN CHÍNH TRONG PHÂNĐOẠNẢNH . 17 2.1 Các phƣơng phápdựatrênkhông gian đặc trƣng . 17 2.2 Các phƣơng phápdựatrênkhông gian ảnh . 17 2.3 Các phƣơng phápdựatrên mô hình vật lý 18 2.4 Một số thuật toán phânđoạnảnh . 23 2.4.1 Thuật toán Entropy cực đại . 23 2.4.2 Thuật toán độ lệch nhỏ nhất 29 CHƢƠNG 3: PHƢƠNG PHÁPCỰCTIỂUNĂNGLƢỢNGDỰATRÊNĐỘĐỒNGNHẤTVÀĐỘKHÔNGỔNĐỊNHCHOPHÂNĐOẠNẢNH . 36 3.1 Giới thiệu . 36 3.1.1 Cơ sở lý thuyết 36 3.1.2 Tối ƣu và tự động ngƣỡng . 36 3.2 Lý thuyết 37 3.2.1 Cƣờng độdựatrênđộkhôngổnđịnh 37 3.2.2 Bề mặt nănglƣợngvà tối ƣu ngƣỡng 38 3.3 Phƣơng pháp 38 3 Lê Thị Ngọc Mai – CT1101 3.3.1 Phân bố xác suất tiên nghiệm đối tƣợng o ( )và nền B ( ) . 39 3.3.2 Hàm mật độ 40 3.3.3 Bản đồ gradient chuẩn ∇ σ 40 3.3.4 Tối ƣu giá trị của và σ trên bề mặt nănglƣợng E . 40 3.4 Tiến trình giải thuật: 42 CHƢƠNG 4: CÀI ĐẶT CHƢƠNG TRÌNH VÀ ĐÁNH GIÁ . 44 4.1 Cài đặt chƣơng trình 44 4.1.1 Định dạng ảnh BMP 44 4.1.2 Cài đặt thử nghiệm 45 4.2 Một số kết quả và đánh giá 54 KẾT LUẬN . 57 TÀI LIỆU THAM KHẢO . 58 4 Lê Thị Ngọc Mai – CT1101 LỜI CẢM ƠN Trƣớc hết em xin gửi lời cảm ơn đến PGS TS. Ngô Quốc Tạo – Viện CNTT, Viện KH&CN Việt Nam, ngƣời thầy đã hƣớng dẫn em rất nhiều trong suốt quá trình tìmhiểu nghiên cứu và hoàn thành đồ án tốt nghiệp từ lý thuyết đến ứng dụng. Sự hƣớng dẫn của thầy đã giúp em có thêm đƣợc những hiểu biết về phânđoạn ảnh, đặc biệt phƣơng phápcựctiểunănglƣợngdựatrênđộđồngnhấtvàđộkhôngổnđịnhchophânđoạn ảnh. Đồng thời em cũng xin chân thành cảm ơn các thầy cô trong bộ môn cũng nhƣ các thầy cô trong trƣờng đã trang bị cho em những kiến thức cơ bản cần thiết để em có thể hoàn thành tốt đồ án này. Em xin gửi lời cảm ơn đến gia đình, bạn bè đã tạo mọi điều kiện thuận lợi để em có thể xây dựng thành công đồ án. Dù đã rất cố gắng để hoàn thành công việc đƣợc giao, song do trình độ còn hạn chế nên không thể tránh khỏi những thiếu sót. Em rất mong nhận đƣợc sự góp ý và thông cảm của mọi ngƣời. Em xin trân thành cảm ơn! Hải Phòng, Ngày tháng 7 năm 2011 Sinh viên thực hiện Lê Thị Ngọc Mai 5 Lê Thị Ngọc Mai – CT1101 DANH MỤC TỪ VIẾT TẮT Kí hiệu viết tắt Giải thích XLA Xử lý ảnh R Red G Green B Blue 6 Lê Thị Ngọc Mai – CT1101 DANH SÁCH ẢNH Hình 1.1 Quá trình XLA 8 Hình 1.2. Các bƣớc cơ bản trong XLA 9 Hình 1.3. Biểu diễn ảnh bằng mã chạy 11 Hình 1.4. Biểu diễn ảnh bằng mã xích (8 hƣớng) 12 Hình 1.5. Biểu diễn ảnh bằng mã tứ phân 13 Hình 1.6 Các láng giềng của điểm ảnh (x, y). 15 Hình 2.1. Phânđoạn theo thuật toán Entropy cực đại . 28 Hình 2.2. Phânđoạn theo thuật toán độ lệch nhỏ nhất. . 34 Hình 3.2. Ví dụ minh họa dòngnănglƣợngvà bề mặt năng lƣợng. 41 Hình 3.1. Minh họa vực bên trong . 42 Hình 4.1. Ảnh lƣu dƣới dạng BMP đuôi .bmp 44 Hình 4.2. Kết quả phânđoạnảnh bông hoa và biểu đồdòngnănglƣợng . 54 Hình 4.3. Kết quả phânđoạnảnh cô gái và biểu đồdòngnăng lƣợng. . 55 7 Lê Thị Ngọc Mai – CT1101 LỜI MỞ ĐẦU Trong vài thập kỷ qua, khai thác đa tầng của thông tin trong ảnh hai hay nhiều chiều vẫn là chủ đề của rất nhiều bài nghiên cứu. Đặc biệt sự thông dụng của kỹ thuật ảnh trong nhiều ngành nhƣ y học, vật lý, hóa học… đã làm đẩy mạnh quá trình xử lý ảnh bằng máy tính để khai thác dữ liệu ảnh lớn nhằm đƣa ra sản phẩm mong muốn. Phânđoạn là một nhiệm vụ nổi bật nhất trong ứng dụng ảnh cụ thể nhƣ những gì liên quan tới phân loại đối tƣợng, hình dạng, phân tích chuyển động… Vì nhiều lý do mà xác định các đối tƣợng một cách chính xác vàhiệu quả rất quan trọng trong xử lý ảnhtrên máy tính và công việc này đƣợc gọi là phânđoạn ảnh. Trong thời gian đầu, các phƣơng phápphân vùng ảnh đƣợc đƣa ra chủ yếu làm việc trên các ảnh mức xám do các hạn chế về phƣơng tiện thu thập và lƣu trữ. Ngày nay, cùng với sự phát triển về các phƣơng tiện thu nhận và biểu diễn ảnh , các ảnh màu đã hầu nhƣ thay thế hoàn toàn các ảnh mức xám trong việc biểu diễn và lƣu trữ thông tin do các ƣu thế vƣợt trội hơn hẳn so với ảnh mức xám. Do đó, các kỹ thuật, thuật giải mới thực hiện việc phân vùng ảnhtrên các loại ảnh màu liên tục đƣợc phát triển để đáp ứng các nhu cầu mới. Các thuật giải, kỹ thuật này thƣờng đƣợc phát triển dựatrên nền tảng các thuật giải phân vùng ảnh mức xám đã có sẵn. Mục đích chính của em là tìmhiểu phƣơng phápcựctiểunănglƣợngdựatrênđộđồngnhấtvàđộkhôngổnđịnhchophânđoạn ảnh. Và đƣợc trình bày trong 4 chƣơng: Chƣơng 1: Trình bày tổng quan về xử lý ảnhvàphânđoạnảnh bao gồm các khái niệm cơ bản, sơ đồ tổng quát của một hệ thống xử lý ảnhvà các vấn đề cơ bản trong xử lý ảnh, vai trò, nhiệm vụ của phânđoạn ảnh. Chƣơng 2: Giới thiệu các hƣớng tiếp cận chính trong phânđoạn ảnh, bao gồm: các phƣơng phápdựatrênkhông gian đặc trƣng, các phƣơng phápdựatrênkhông gian ảnh, các phƣơng phápdựatrên mô hình vật lý. Trong chƣơng này, em cũng xin trình bày hai thuật toán phânđoạn ảnh, đó là thuật toán Entropy cực đại và thuật toán độ chia nhỏ nhất. Chƣơng 3: Trình bày phƣơng phápcựctiểunănglƣợngdựatrênđộđồngnhấtvàđộkhôngổnđịnhchophânđoạnảnh bao gồm: giới thiệu tổng quan, cơ sở lý thuyết của phƣơng pháp, tiến trình giải thuật. Chƣơng 4: Cài đặt chƣơng trình, đƣa ra một số kết quả và đánh giá. 8 Lê Thị Ngọc Mai – CT1101 CHƢƠNG 1: TỔNG QUAN VỀ XỬ LÝ ẢNHVÀPHÂNĐOẠNẢNH Xử lý ảnh là lĩnh vực mang tính khoa học và công nghệ. Nó là một ngành khoa học mới mẻ so với nhiều ngành khoa học khác nhưng tốc độ của nó phát triển rất nhanh, kích thích các trung tâm nghiên cứu, ứng dụng, đặc biệt là máy tính chuyên dụng cho nó. Khoảng hơn mười năm trở lại đây, phần cứng máy tính và các thiết bị liên quan đã có sự tiến bộ vượt bậc về tốc độ tính toán, dung lượng chứa, khả năng xử lý… và giá cả đã giảm đến mức máy tính và các thiết bị liên quan đến xử lý ảnh đã không còn là thiết bị chuyên dụng nữa. Khái niệm ảnh số đã trở nên thông dụng với hầu hết mọi người trong xã hội và việc thu nhận ảnh số bằng các thiết bị cá nhân hay chuyên dụng cùng với việc đưa vào máy tính xử lý đã trở nên đơn giản. 1.1 Tổng quan về xử lý ảnh (XLA) 1.1.1 XLA là gì? Qua trình XLA là quá trình thao tác ảnh đầu vào nhằm cho ra kết quả mong muốn. Kết quả đầu ra có thể là một ảnh “tốt hơn” hoặc một kết luận [1]. Hình 1.1 Quá trình XLA Ảnh có thể xem là tập hợp các điểm ảnhvà mỗi điểm ảnh đƣợc xem nhƣ là đắc trƣng cƣờng độ sáng hay một dấu hiệu nào đó tại một vị trí nào đó của đối tƣợng trong không gian và nó thể xem nhƣ một hàm n bất biến P(c 1 , c 2 , c 3 ,…,c n ). Do đó, ảnh trong XLA có thể xem nhƣ ảnh n chiều. Mục đích của XLA là: Biến đổi ảnh làm tăng chất lượng ảnh: Phƣơng pháp biến đổi ảnh đƣợc sử dụng trong việc xử lý các ảnh chụp từ không trung (chƣơng trình đo đạc từ máy bay, vệ tinh và các ảnh vũ trụ) hoặc xử lý các ảnh trong y học (ảnh chụp cắt lát, ảnh siêu âm, vv…). Một ứng dụng khác Ảnh Kết luận ảnh “tốt hơn” Xử lý ảnh 9 Lê Thị Ngọc Mai – CT1101 của việc biến đổi ảnh là mã hoá ảnh, trong đó các ảnh đƣợc xử lý để rồi lƣu trữ hoặc truyền đi. Tự động nhận dạng, đoán ảnh, đánh giá nội dung ảnh: Các phƣơng pháp nhận dạng ảnh đƣợc sử dụng khi xử lý tế bào, nhiễm sắc thể, nhận dạng chữ vv . Thực chất của công việc nhận dạng chính là sự phân loại đối tƣợng thành các lớp đối tƣợng đã biết hoặc thành những lớp đối tƣợng chƣa biết. Bài toán nhận dạng ảnh là một bài toán lớn, có rất nhiều ý nghĩa thực tiễn và ta cũng có thể thấy rằng để công việc nhận dạng trở nên dễ dàng thì ảnh phải đƣợc tách thành các đối tƣợng riêng biệt – đây là mục đích chính của bài toán phânđoạn ảnh. Nếu phânđoạnảnhkhông tốt sẽ dẫn đến sai lầm trong quá trình nhận dạng ảnh, bởi vậy ngƣời ta xem công đoạnphânđoạnảnh là vấn đề then chốt trong quá trình xử lý ảnh nói chung. 1.1.2 Sơ đồ tổng quát XLA Hình 1.2. Các bƣớc cơ bản trong XLA Thu nhận ảnh (Image Acquisition): Ảnh có thể nhận qua camera màu hoặc đen trắng, scanner hay giác quan… Thƣờng ảnh nhận qua camera và scanner là ảnh tƣơng tự hoặc ảnh số (với các camera đã số hóa). Camera thƣờng dùng là loại quét dòng; ảnh tạo ra có dạng hai chiều. Chất lƣợng của ảnh thu đƣợc phụ thuộc vào thiết bị thu và môi trƣờng (ánh sáng, phong cảnh). Thu nhận ảnh Nhận dạng và nội suy Tiền xử lý Phânđoạnảnh Biểu diễn và mô tả Cơ sở tri thức 10 Lê Thị Ngọc Mai – CT1101 Tiền xử lý (Image Processing): Sau khi thu nhận, ảnh có thể nhiễu, độ tƣơng phản thấp nên cần đƣa vào bộ tiền xử lý đê nâng cao chất lƣợng. Chức năng chính của bộ tiền xử lý là lọc nhiễu, nângđộ tƣơng phản làm choảnh rõ hơn, nét hơn. Phânđoạnảnh (Image Segmetation): Phânđoạnảnh là tách ảnh ban đầu thành các vùng thành phần để biểu diễn phân tích hoặc nhận dạng ảnh. Đây là phần phức tạp, khó khăn nhất trong XLA, cũng dễ gây lỗi, làm mất độ chính xác của ảnh. Kết quả nhận dạng ảnh phụ thuộc rất nhiều vào công đoạn này. Biểu diễn ảnh (Image Representation): Ảnh đầu ra sau phânđoạn chứa các điểm ảnh của vùng ảnh (ảnh đã phân đoạn) cộng với mã liên kết với các vùng lân cận. Việc biến đổi các số liệu này thành dạng thích hợp là cần thiết cho xử lý tiếp theo bằng máy tính. Việc chọn các tính chất để thể hiện ảnh gọi là trích chọn đặc trƣng (Feature Selection) gắn với việc tách các đặc tính của ảnh dƣới dạng các thông tin địnhlƣợng hoặc làm cơ sở để phân lớp đối tƣợng này với đối tƣợng khác trong phạm vi ảnh nhận đƣợc. Ví dụ: trong nhận dạng các ký tự, ta miêu tả các đặc trƣng của từng ký tự, giúp phân biệt ký tự này với ký tự khác. Nhận dạng và nội suy ảnh (Image Recagnition and Interpretation): Nhận dạng ảnh là quá trình xác định ảnh. Quá trình này thƣờng thu đƣợc bằng cách so sánh với mẫu chuẩn đã đƣợc học (hoặc lƣu) từ trƣớc. Nội suy là phánđoán theo ý nghĩa trên cơ sở nhận dạng. Có nhiều cách phân loại khác nhau về ảnh. Theo lý thuyết về nhận dạng, các mô hình toán học về ảnh đƣợc phân theo hai loại nhận dạng cơ bản: - Nhận dạng theo tham số. - Nhận dạng theo cấu trúc. Một số đối tƣợng nhận dạng khá phổ biến hiện nay đang đƣợc áp dụng trong khoa học và công nghệ là nhận dạng ký tự, nhận dạng văn bán, nhận dạng vân tay, nhận dạng mã vạch, nhận dạng khuôn mặt… Cơ sở tri thức (Knowledge Base): Ảnh là một đối tƣợng phức tạp về đƣờng nét, độ sáng tối, dung lƣợng điểm ảnh, môi trƣờng để thu nhận ảnh phong phú, kéo theo nhiễu. Trong nhiều khâu xử lý vàphân tích ảnh, ngoài việc đơn giản hóa các phƣơng pháp toán học đảm bảo tiện lợi cho xử lý, ngƣời ta bắt chƣớc quy trình tiếp nhận và XLA theo cách của con ngƣời. Trong các bƣớc xử lý đó, nhiều khâu hiện nay đã xử lý theo các phƣơng pháp trí tuệ con ngƣời. Vì vậy, ở đây cơ sở tri thức đƣợc phát huy