Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 71 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
71
Dung lượng
2,38 MB
Nội dung
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT HƯNG N Bìa màu xanh NƠNG VĂN VÌN BÀI GIẢNG ĐỘNG LỰC HỌC THẲNG ĐỨNG VÀ HỆ THỐNG TREO Ô TÔ HƯNG YÊN 2014 CHƯƠNG :CÁC YẾU TỐ GÂY DAO ĐỘNG(3LT,1BT) 1.1 Các nguồn gây dao động Đối với hệ bất kỳ, nguồn kích thích dao động có hai dạng kích thích động học kích thích lực học Trên ơtơ có nhiều nguồn gây dao động ô tô, nay, mấp mô biên dạng đường coi nguồn gây dao động tơ 1.1.1 Do mặt đường không phẳng Chuyển động ô tô bề mặt đường không phẳng phát sinh dao động khối lượng phần treo khối lượng phần không treo ô tô Độ mấp mô bề mặt đường nguồn kích thích cho tơ dao động Khi nghiên cứu mơ hình dao động tơ cần thiết phải mơ tả tốn học biên dạng bề mặt đường tham gia vào phải hệ phương trình vi phân mô tả chuyển động dao động hệ Điều kiện đường thực tế sử dụng ô tô đa dạng Ảnh hưởng chúng tới dao động tơ xác định kích thước hình học, hình dạng đặc tính thay đổi chúng Tuỳ theo chiều dài mấp mô chiều cao mà phân nhóm đặc trưng khác biên dạng bề mặt đường, phân thành ba nhóm chủ yếu sau: Nhóm 1: Mấp mơ có chiều dài ngắn, tác động chúng lên bánh xe mang tính va đập (tác động xung) Nhóm 2: Mấp mơ có dạng hàm điều hồ (hàm sin) Nhóm 3: Mấp mơ thay đổi liên tục với hình dạng Việc nghiên cứu dao động ô tô mô hình giai đoạn phát triển mơ hình hai nhóm kích động đơn tuần hồn hợp lý tín hiệu vào tường minh cho phép quản lý tín hiệu mơ hình Khi nghiên cứu dao động ơtơ tác dụng đường vài loại đường, vài khu vực cụ thể, thiết phải đo đạc đường thiết phải dụng hàm ngẫu nhiên 1.1.2 Các nguồn gây dao động khác Độ lệch tâm hình dạng khơng đồng bánh xe, độ không cân bánh xe chi tiết quay động cơ, hệ thống truyển lực Các ngoại lực xuất trình chuyển động ôtô tăng tốc, phanh, quay vịng 1.2 Mơ tả tốn học hàm gây kích động Các mấp mơ biên dạng đường kích động động học từ mặt đường, mơ tả nhiều cách: Mô tả hàm xác định thường mấp mơ dạng xung (Nhóm 1) mấp mơ có dạng hàm điều hồ (Nhóm 2) Mấp mơ biên dạng đường mô tả hàm ngẫu nhiên chiều cao nhấp nhơ theo chiều dài đường (Nhóm 3) 1.2.1 Các hàm tường minh 1.2.1.1 Các dạng đặc trưng biên dạng mặt đường nhóm 1 Khi nghiên cứu dao động phát sinh ô tô chuyển động qua mấp mơ thuộc nhóm (mấp mơ đơn lẻ gọi mấp mô đơn vị), giả thiết thời điểm chuyển tiếp ô tô bắt đầu chuyển động lên mấp mơ trạng thái hệ hoàn toàn xác định giá trị toa độ đạo hàm bậc chúng Nói cách khác điều kiện ban đầu thời điểm bắt đầu chuyển động lên mấp mơ kích thích từ mấp mô q(t) biết trước Giả thiết tạo điều kiện thuận lợi xấp xỉ kích động từ loại mấp mơ có dạng khác mô tả chúng dạng hàm ảnh Trên bảng 1.1 trình bày số dạng mấp mô đơn vị thường gặp Bảng 2.1 Một số dạng mấp mơ mặt đường nhóm TT Dạng mấp mơ mặt đường Phương trình mơ tả 0 q( S ) q0 q0 S 0; S 0; (1.1) Hình 1.1 Mấp mơ dạng bậc q0 S1 S2 S0 Hình 1.2 Dạng hình thang q0 S0 Hình 1.3 Dạng tam giác t 0; 0 q0 t t ; 1 q(t ) q0 t ; (1.2) q ( t ) t ; 3 2 t ; 0 S S S Trong đó: 1 ; ; ; v v v t 0 q (1.3) q(t ) t t 0 t ( S S0 ) Trong đó: S0 v q0 S0 Hình 1.4 Dạng hình chữ nhật 0 t ; q(t ) q0 t ; 0 t S Trong đó: v (1.4) 0 t q q(t ) t t ; S1 0 t S Trong đó: 2v q0 S1 S0 Hình 1.5 Dạng tam giác cân (1.5) S 0 v q0 v S0 Nghĩa là: q(t ) lim q0 ( , t ) q0 0 S0 0 (1.6) q0 Hình 1.6 Dạng xung đơn vị Trong trường hợp mấp mơ có dạng xung đơn vị hình 2.6, biểu thị hàm ảnh ta thấy ảnh hưởng hàm xung ưu việt (ảnh 1) Tuy nhiên khơng đưa hàm vào tính tốn hàm khác mấp mơ có chiều cao biên dạng xác định Điều không làm ý nghĩa vật lý nó, mà việc đưa hàm vào phương trình vi phân cách khác Trong vế phải phương trình vi phân khảo sát có tích chuyển dịch với hệ số cứng lốp (CL q(t)) khối lượng nhân với gia tốc Nếu biểu thị hàm xung theo (1.24) kích thích CL q0(t) tác động lên hệ thống hiểu lực kích động tức thời Có thể chứng minh tác dụng lên hệ dao động lực thời gian ngắn chuyển dịch hệ xác định trị số lực đặc tính thay đổi mà trị số xung lực tác dụng thời gian Khi kích thích nhanh viết dạng xung sau: lim Cl q6 (t , ) CL lim q6 (t , ) 0 0 (1.7) Như vế phải hệ phương trình vi phân đưa vào hàm xung dạng xung va đập Khi nghiệm hệ phương trình vi phân biểu thị phản ứng hệ dao động có tác động xung va đập Điều bảo toàn ý nghĩa vật lý thể kích thích thực tế với dạng xác định Như biết, tác động va đập lên hệ thống treo từ phía mặt đường phổ biến ô tô chuyển động đường khơng phẳng Vì việc nghiên cứu hệ dao động với việc sử dụng kích thích mặt đường dạng xung đơn vị kể đơn giản hố mà cịn phản ảnh tính chất tác động kích thích mặt đường thường gặp thực tế Biểu thức nhận xung đơn vị thể khơng phụ thuộc vào vận tốc chuyển động ô tô qua mấp mô, chiều cao mấp mô Chúng ta dễ dàng xác định mối liên hệ xung đơn vị xung có trị số tuỳ ý sau: S CL B q(t ).dt CL H (1.8) v v Trong đó: v - Vận tốc chuyển động tơ qua mấp mơ BH - Diện tích giới hạn đường bao mấp mơ với trục hồnh Từ biểu thức nhận ta có nhận xét sau: Đối với xung U khác xung U BH lần, nghĩa hệ số số Mặt khác áp dụng hệ dao động v tuyến tính trường hợp tìm nghiệm hệ với kích thích riêng biệt, ví dụ với tác động xung đơn vị, sau tìm nghiệm trường hợp kích thích xung tuỳ ý B cách nhân thêm hệ số số H v đơn vị 1.1.2 Một số biên dạng đường có dạng hàm điều hịa (nhóm 2) Trong trường hợp mấp mơ có dạng hàm điều hồ (thuộc nhóm 2) phương trình biểu diễn chiều cao mấp mơ phụ thuộc vào thời gian (hình 1.15a) có dạng sau đây: 2 (1,9) q(t ) q0 sin t q0 sin t T 2 Trong đó: T T - chu kỳ; q0 – biên độ mấp mô q q q0 q0 0 t x S=2/ T=2/ a) Phụ thuộc theo thời gian t b) Phu thuộc theo qng đường x Hình 1.7 Biên dạng mấp mơ theo dạng điều hịa hình sin Nếu biểu diễn chiều cao mấp mơ theo qng đường x (hình 1.15b), ta có: q( x) q0 sin x q0 sin 2 x S (1.10) 2 tần số sóng mặt đường (1/m) S S - chiều dài sóng mặt đường Nếu tơ chuyển động ta có: x = v t, thời điểm t, ta có q(t) = q(x) lúc ta có: (1.11) t x Trong đó: 2 (1.12) v S Từ (1.12) ta có nhận xét S = const (Chiều dài sóng mặt đường khơng đổi) tần số kích thích tăng tăng vận tốc chuyển động v Trong trường hợp ô tô cầu với chiều dài sở L, ta có hàm kích thích cầu trước là: Thay x = v t vào (1.11) ta được: v qt (t ) q0 sin t (1.13) qs (t ) q0 sin (t t ) Và cầu sau là: (1.14) t - Thời gian chậm tác dụng mấp mô lên cầu sau so với cầu trước L ; v Ở thời điểm ứng với góc pha t = 0,2 ,4 , lúc có: qi(t) = qs(t) Ở thời điểm ứng với t = 0,2 ,4 , qi(t) = - qs(t) Trong trường hợp tổng quát thì: qt(t) qs(t) Trường hợp mấp mơ biên dạng có dạng hình sin đơn vị khảo sát nửa hình sin biểu thị biểu thức sau: t Khi v = const ta có : q(t ) 2q0 sin t; t (1.15) q 2q0 0 S0 x Hình 1.8 Dạng hình sin đơn vị So sánh dao động gây mấp mô đơn vị với dao động gây mấp mơ có dạng thay đổi theo quy luật (1.27) (1.33) ta thấy khác trị số không lớn Trên đường đặc biệt đường bị mòn đường biến dạng gặp từ đến mấp mơ liên tiếp có chiều dài gần Theo tài liệu [1] kích thích có dạng hàm điều hoà hệ sử dụng giảm chẩn thích hợp sau đến mấp mô dao động hệ thực tế xác lập gần giống dao động phát sinh đường có biên dạng sóng hình sin liên tiếp Những trường hợp sau, dao động với cường độ mạnh Trên đường bê tông cấu thành từ bê tơng lớn, có chiều dài tơ chuyển động qua phần gép nối chịu tác động xung thay đổi theo chu kỳ Ở Mỹ chiều dài vào khoảng (5-35m), tránh khỏi xuất cộng hưởng Tần số dao động góc riêng tơ vận tải đủ tải khoảng 4,5 Hz, rơ mc khơng tải Hz, tần số dao động riêng thẳng đứng từ 1,5 3,5 Hz Vì điều kiện khắc phục tượng cộng hưởng gia tốc đến 100km/h chiều đài bê tông không nhỏ 15m Trong trình nghiên cứu hệ dao động, để dơn giản cho tính tốn thuận tiên cho việc tiến hành thực nghiệm, thường người ta sử dụng biên dạng đường có dạng hình sin Điều thuận lợi trường hợp cần thiết đánh giá thân tơ khơng kể đến đặc tính ngẫu nhiên bề mặt đường Vì giai đoạn tính tốn dao động tơ với kích thích ngẫu nhiên tính tốn với kích thích hàm điều hồ, nghĩa tơ chuyển động đường có biên dạng bề mặt sóng hình sin dung Việc chọn mấp mơ dạng hình sin đơn vị dựa sở sau đây: Ô tô hệ dao động tắt dần, xem tơ dao động phụ thuộc chủ yếu vào biên dạng đoạn đường mà ô tô chuyển động thời điểm khảo sát Điều cho phép chọn mấp mô lớn biên dạng đường xem ảnh hưởng phần cịn lại nhỏ để khảo sát tơ dao động qua mấp mơ đơn vị có hình dạng Mấp mơ đơn vị chia thành mấp mơ có dạng lồi lõm với qui luật (1.27) (1.33) Mấp mô đơn vị dạng lồi trường hợp chiều dài mấp mô nhỏ vận tốc chuyển động ô tô đủ lớn tác động mạnh lên ô tô so với trường hợp mấp mơ dạng lõm Vì vậy, thường chọn để tạo mơ hình đường để thử tô với dao động khác 1.2.2 Các hàm ngẫu nhiên Trong trường hợp biên dạng bề mặt đường có dạng hình bất kỳ, phải sử dụng số liệu để tính tốn toạ độ đoạn đường cho trước với bước xác định h Mức độ khó khăn tính tốn chỗ ô tô chuyển động để mơ tả xác biên dạng đường vào nhớ máy tính cần đưa vào khối lượng liệu lớn Trong trường hợp biên dạng đường thuộc nhóm sử dụng phương pháp để mơ tả tốn học chiểu cao mấp mơ biên dang đường Phương pháp thứ nhất: Sử dụng đặc tính thống kê chiều cao mấp mơ q(x) Bởi chiều cao mấp mô biên dạng đường hàm ngẫu nhiên theo chiều dài đoạn đường (x), tức tung độ thời điểm đại lượng ngẫu nhiên Phương pháp thứ hai: Thay biên dạng thực tế đường mốc đo đạc điểm chọn biên dạng hàm xấp xỉ nội suy [4,5] Thường sử dụng phương pháp chọn bước h = 0,5m để tiến hành xấp xỉ bảo đảm đủ độ xác cần thiết Chương CÁC CHỈ TIÊU ĐÁNH GIÁ ĐỘ ÊM DỊU VÀ AN TOÀN CHUYỂN ĐỘNG 2.1 Cơ sở lựa chọn tiêu Dao động ô tô ảnh hưởng xấu đến người, hàng hoá chuyên chở xe, đến khả làm việc độ bền cụm, cấu tổng thành xe 2.1.1 Ảnh hưởng dao động thể người hàng hóa Khi tô chuyển động sinh dao động tác động lên người ngồi ô tô làm cho thể người vừa thực dao động riêng tắt dần dao động cưỡng Các ảnh hưởng đề cập đến khái niệm độ êm dịu chuyển động ơtơ Lực kích thích tác động lên thể người hai đường truyền : Có thể tác động vào phần mơng (nêu ngồi ghế) tác động vào bàn chân (nếu người đứng) Ngồi người lái cịn bị tác động từ vô lăng vào tay người lái Dao động phức tạp gây biến đổi tâm sinh lý làm thể mỏi mệt giảm suất làm việc gây ảnh hưởng lâu dài đến sức khoẻ Ảnh hưởng dao động ô tô thể người phụ thuộc vào nhiều yếu tố : Thời gian tác động, hướng tác động, đặc tính hàm kích dao động(là ngẫu nghiên, liên tục, gián đoạn có chu kỳ hay khơng có chu kỳ…)cũng đại lượng đặc trưng cho dao động : Tần số, biên độ, vận tôc, gia tốc dao động Dao động tơ gây ảnh hưởng đến hành hóa chuyên chở xe, gây dập, vỡ, cong vênh, … 2.1.2 Ảnh hưởng dao động độ bền xe, mặt đường an toàn chuyển động Khi ô tô dao động phát sinh tải trọng động tác dụng lên khung vỏ ôtô, lên cụm, hệ thống chi tiết xe bề mặt đường… ảnh hưởng đến độ bền tuổi thọ ôtô đường Theo số liệu thống kê người ta thấy rằng, ôtô vận tải chạy đường xấu gồ ghề, so với ôtô loại chạy đường tốt phẳng vận tốc trung bình giảm khoảng (4050)%, quãng đường chạy hai kỳ sửa chữa lớn giảm (3540)%, suất tiêu hao nhiên liệu tăng (5070)%, suất vận chuyển giảm (3540)%, giá thành vận chuyển tăng (5060)% [6] Đối với độ bền chi tiết tơ ảnh hưởng của dao động thể cách rõ rệt Khi dao động, gia tốc dao động gây tải trọng qn tính xẩy tượng cộng hưởng làm cho hư hỏng chi tiết, khung vỏ xe … Dao động ôtô gây thay đổi giá trị phản lực pháp tuyến mặt tiếp xúc bánh xe với bề mặt đường Nếu giá trị phản lực pháp tuyến giảm so với trường hợp tải trọng tĩnh giảm khả tiếp nhận lực dọc (lực kéo, lực phanh) lực ngang, giá trị phản lực tăng lên tăng tải trọng động tác dụng xuống đường Trong q trình chuyển động xe xảy tượng tách bánh (bánh bị nhấc khỏi mặt đường) làm độ an toàn chuyển động giảm lúc khả bám bánh xe với mặt đường Đối với bánh xe chủ động có tượng tách bánh cơng động lúc trở thành cơng vơ ích lượng động không trực tiếp đẩy ô tô chuyển động mà làm bánh xe quay khơng, sau bánh xe lại tiếp tục tiếp xúc với mặt đường tạo ma mát trượt bánh xe vơí mặt đường làm mòn lốp, gây va đập hệ thống truyền lực Nếu tượng xẩy nhiều liên tục làm tăng tiêu hao nhiên liệu ảnh hưởng đến tính kinh tế tơ Ngồi lực tác động thường xuyên xuống mặt đường phá hỏng bề mặt đường Dao động ô tô chủ yếu phụ thuộc vào thông số kết cấu hệ thống treo Vì yêu cầu thiết kế chế tạo phải lựa chọn thông số hệ thống treo hợp lý vừa đảm bảo độ êm dịu, độ bền, độ cứng vững, vừa tuân theo điều kiện làm việc định hệ thống treo Các tính chất dao động ô tô thường đánh giá theo hai mặt: đánh giá theo quan điểm độ êm dịu chuyển động mà thông số gia tốc dao động có tính chất định, tác dụng lên lái xe hành khách; theo quan điểm đô an toàn chuyển động tải trọng tác dụng xuống giá trị tải trọng động bánh xe đường thơng số mang tính định 2.2 Chỉ tiêu đánh giá độ êm dịu chuyển động Hiện có nhiều tiêu đánh giá độ êm dịu chuyển động ô tô Dựa tài nước kết hợp với tài liệu vủa Viện khoa học kỹ thuật bảo hệ lao động Việt Nam, ta liệt kê số tiêu (xem quan trọng đầu tiên) sau: Chỉ tiêu tần số Tần số dao động ô tô giới hạn sau: n = 60 90 lần/phút xe n = 100 120 lần/phút xe vận tải Giá trị lấy theo tần số trung bình người bộ, tương ứng với 1,5Hz Chỉ tiêu gia tốc dao động Xác định dựa sở trị số bình phương trung bình gia tốc theo phương X,Y,Z là: Zc, Xc,Yc Cụ thể theo [1] Zc < 2,5 (m s-2) Xc < 0,7 (m s-2) Yc < 1,0 (m s-2) Các số liệu xem gần để đanh giá độ êm dịu chuyển động ô tô, dựa sở số liệu thống kê Mặt khác, điều quan trọng dao động ô tô truyền cho người thực chất tác động ngẫu nhiên với dải tần số rộng phức tạp theo hướng tác dụng Chỉ tiêu dựa số liệu cảm giác theo gia tốc vận tốc dao động Chỉ tiêu dựa tập thể kỹ sư Đức (VDI) Người ta đánh giá sở cho cảm giác người chịu dao động phụ thuộc vào hệ số độ êm dịu chuyển động K Nếu K = const cảm giác dao động khơng thay đổi Hệ số K phụ thuộc vào tần số giao động, gia tốc giao động vận tốc dao động phụ thuộc vào hướng dao động trục thân người (theo phương thẳng đứng phương ngang) phụ thuộc vào thời gian tác động chúng lên thể người Hệ số K xác định theo trị số biên độ gia tốc Z bình phương trung bình Zc (hình 2.1) theo cơng thức sau đây: K 12,5 0, 01. & Z& 18 0, 01 & k Z& & Z& c y c (2.1) Trong đó: - tần số dao động (Hz); Z - gia tốc dao động (m.s-2); Zc - bình phương trung bình gia tốc (m.s-2); Ky - hệ số hấp thụ Nếu người chịu dao động tư nằm hệ số Ky giảm nửa Hệ số K nhỏ dễ chịu đựng dao động độ êm dịu ô tô cao Giá trị K = 0,1 tương ứng với ngưỡng kích thích Khi lâu xe, cho phép K = 10 25, ngắn xe tự hành K = 25 63 Hình 2.1: Các đường cong cảm giác dao động điều hoà Trên đưa số liệu ứng với tác động lên người hàm điều hoà Trong thực tế tơ dạng điển hình dao động ngẫu nhiên, nhờ phân tích phổ dao động, giá trị hệ số K xác định theo công thức sau: K n K i 1 i (2.2) Trong Ki - hệ số độ êm dịu thành phần thứ i (n - số thành phần hàm ngẫu nhiên); Giá trị K xác định tính tốn xác định thực nghiệm Trên hình đưa sơ đồ xác định hệ số K thực nghiệm Thông số gia tốc Z (t) đưa vào phân tích phổ lọc 1, ta nhận giá trị Zci, sau chúng đưa khối để xác định hệ số độ êm dịu thành phần Ki theo công thức (2.1), cuối khối xác định giá trị hệ số K theo công thức (2.2) đường cong thiết kế tối ưu thể điều kiện tối thiểu hóa cho hàm G2 khác, với hàm S2 khác, chẳng hạn lực truyền tới đường FTE X cho hệ thống kích thích lệch tâm E Việc tối thiểu hóa tương đương e E e me với việc tối ưu hóa một giá đỡ động 3.5.5 Tối ưu hệ thống treo theo đáp ứng thời gian Tối ưu hóa đáp ứng trình độ (chuyển tiếp) phụ thuộc vào loại kích thích độ, phụ thuộc vào định nghĩa hàm mục tiêu Hình 3.42 minh họa mơ hình tơ 1/8 hàm xung đơn vị chuyển vị 1 y 0 t t (3.164) Hình 3.42 Mơ hình tơ 1/8 chuyển vị xung đơn vị kích thích mặt đường Nếu kích thích độ hàm xung, tiêu chuẩn tối ưu hóa cực tiểu giá trị đỉnh gia tốc giá trị đỉnh chuyển vị tương đối, * tối ưu cho fn mà đáp ứng q độ tốt mơ hình tơ 1/8 Đáp ứng Hình 3.43 * = 0.4 Hình 3.43 Quan hệ gí trị xung gia tốc với giá trị xung chuyển vị tương đối ứng với giá trị khác fn 40 Chứng minh: Phương trình chuyển động hệ thống kích thích (nền) bậc tự tên Hình 3.44 & x& 2n x& n2 x 2n y& n2 y (3.165) thay y = phương trình (14,165) cung cấp tốn giá trị đầu sau để xác định gia tốc tuyệt đối vận tốc tuyệt đối khối lượng m: & x& 2n x& n2 x n2 (3.166) y(0) (3.167) y&(0) (3.168) Hình 3.44 Hệ thống kích thích bậc tự xung va đập đầu vào bình phương sin Giải phương trình vi phân với điều kiện đầu ta nhận x 1 A Ant A Ant e e ib ib (3.169) Trong đó: A A hai số liên hợp phức : A i 1 (3.170) A i 1 (3.171) Chỉ cần có x y = đủ điều kiện để tính tốn chuyển vị tương đối z = x – y z x y A Ant A Ant e e ib ib (3.172) Vận tốc tuyệt đối gia tốc tuyệt đối khối lượng m thu (tìm được) từ cơng thức (3.169) A2n Ant An Ant x& e e ib ib (3.173) 41 A3n2 Ant A3n3 Ant & x& e e ib ib (3.174) Gía trị đỉnh chuyển vị tương đối cos 1 2 1 z p exp 1 n (3.175) mà xảy z& thời gian t1 t1 cos 1 2 1 1 (3.176) Gía trị đỉnh gia tốc tuyệt đối 2cos 1 2 1 a p exp 1 n (3.177) mà xảy thời điểm kích thích, t=0, xảy tức & & t2 x& t2 cos 1 2 1 n (3.178) Hình 3.45 dạng đồ thị ap phụ thuộc zP ứng với giá trị khác fn Cự tiểu đường cong xẩy = 0.4 cho giá trị fn Giá trị tối ưu tìm cách phân tích để tìm điểm cực tiểu aP theo zP Giá trị tối ưu kết giải phương trình phi tuyến : 2 cos1 2 1 4 (3.179) với kết = 0.4 Giá trị đỉnh cực tiểu gia tốc tuyệt đối chuyển vị tương đương không phụ thuộc vào giá trị tần số tự nhiên fn. Điểm Điểm Điểm Hình 3.45 Đáp ứng thời gian chuyển vị tuyệt đối hệ thống cho hệ thống treo khác 42 Điểm Điểm Điểm Hình 3.46 Đáp ứng thời gian chuyển vị tương đối hệ thống cho loại hệ thống treo khác Điểm Điểm Điểm Hình 3.47 Đáp ứng thời gian gia gia tốc tuyệt đối hệ thống cho loại hệ thống treo khác 3.6 Tóm tắt Một hệ thống kích thích dao động bậc tự tác động lên có phương trình chuyển động: & x& 2n x& n2 x 2n y& n2 y (3.180) Đây mơ hình áp dụng cho thiết bị lắp rung động, áp dụng cho mơ hình dao động thẳng đứng tơ Giả sử tần số kích thích thay đổi, ta xác định đáp ứng tần sô, chuyển vị tương đối S2 Z / Y tần số gia tốc &/ (Y để tối ưu hóa hệ thống Tiêu chuẩn tối ưu là: tuyệt đối G X& n 43 S X&& S Z S X&& S Z2 (3.181) (3.182) Trong đó: SZ S X&& giá trị trung bình bình phương S2 G2 miền tần số làm việc SZ 40 S X&& 40 S22 d 40 G2 d (3.183) (3.184) Tiêu chuẩn tối ưu rõ cực tiểu RMS gia tốc tuyệt đối RMS chuyển vị tương đối tạo hệ thống treo tối ưu Kết tối ưu gộp vào biểu đồ thiết kế để hình dung mối quan hệ n tối ưu. 44 Chương MƠ HÌNH TỔNG QT 4.1 Mơ hình dao động tơ ½ 4.1.1 Mơ hình vật lý Mơ hình dao động tơ ½ dọc mơ hình hóa hình 4.1 V z z1 z2 A M, Jy z B T x FT1 y FT2 cT1 cT2 kT1 kT2 m1 cL1 m2 cL2 kL1 q1 kL2 q2 FL1 a b FL2 L Hình 4.1 Mơ hình dao động tơ 1/2 Các ký hiệu mơ hình 4.1: M khối lượng treo (Thân xe); Jy mơ men qn tính khối lượng treo trục ngang y qua trọng tâm T; cT1, kT1 độ cứng hệ số cản giảm chấn phận treo cầu trước; cT2, kT2 độ cứng hệ số cản giảm chấn phận treo cầu sau; m1, m2 khối lượng không treo phân bố cầu trước cầu sau; cL1, kL1 độ cứng hướng kính hệ số cản giảm chấn lốp trước; cL2, kL2 độ cứng hướng kínhvà hệ số cản giảm chấn lốp sau; z dịch chuyển thẳng đứng trọng tâm phần khối lượng treo; z1, z2 dịch chuyển thẳng đứng điểm nối thân xe với hệ thống treo; 1, 2 dịch chuyển thẳng đứng cầu trước cầu sau; q1, q2 chiều cao mấp mô mặt đường điểm tiếp xúc với lốp trước lốp sau; góc xoay thân xe quanh trọng tâm T; FT1, FT2 lực đàn hồi phận treo trước treo sau; FL1, FL2 lực đàng hồi lốp trước lốp sau 4.1.2 Phương trình vi phân dao động Áp dụng phương pháp D’lambe ta thiết lập phương trình dao động, có dạng sau: & FT FT Mz& J & y & aFT bFT & & m11 FT FL1 m & & FT FL (4.1.) Các phương trình liên kết: Xét dao động thân xe với góc xoay nhỏ, ta tính gần đúng: cos 1; sin, ta có phương trình liên kết sau: z1 z a ; & a&; z& z z&2 z& b&; z2 z b ; (4.2) Xác định lực đàn hồi: Lực đàn hồi hệ thống treo trước treo sau: & FT cT (1 z1 ) kT (& 1z ); (4.3) & FT cT (2 z2 ) kT (& z2 ) (4.4) Lực đàn hồi lốp trước lốp sau: & c (q ) kL1 (q& 1 ) FL1 L1 1 0 q1 (1 f L1 ) c (q 2 ) kL (q&2 & 2) FL L 2 0 q2 ( f L ) q1 (1 f L1 ) q2 (2 f L ) (4.5) (4.6) Trong đó: fL1, fL2 độ biến dạng tĩnh lốp trước lốp sau: f L1 fL2 M A m1 g cL1 (4.7) M m2 B g cL MA, MB khối lượng treo phân bố cầu trước cầu sau: MA b M; L MB a M L (4.8) Thay thành phần lực vào phương trình (4.1) ta hệ phương trình vi phân dao động: z& (kT kT ) z& (cT cT ) z (kT 1a kT b)& M & & (cT a cT b) kT 1& cT 11 kT 2 cT 2 2 2 J & y & (kT a kT b )& (cT a cT b ) (kT 1a kT b) z& (4.9) & c a k b& c b ( c a c b ) z k a T1 T2 T1 T1 T2 T2 m & & (k k )& (c c P) k z& c z k b& c a k q& c q ; T1 L1 T1 L1 T1 T1 T2 T1 L1 L1 1 & (k k )& (c c ) k z& c z k b& c b k q& c q m2& T2 L2 T2 L2 T2 T2 T2 T2 L2 L2 Giải hệ phương trình (4.1) (4.9) theo hàm thời gian ta xác định đồ thị biến thiên gia tốc dao động tâm & z& (t ) , vận tốc dịch chuyển trọng tâm z&(t ) , dịch chuyển trọng tâm z(t) ứng với hàm kích thích động học mặt đường Trên sở đánh giá sơ tiêu độ êm dịu chuyển động anh toàn chuyển động xe 4.2 Mơ hình dao động ngang Trong phần trước khảo sát mơ hình dao động ô tô mặt phẳng thẳng đứng dọc Trong phần khảo sát dao động ô tô mặt phẳng ngang Do ảnh hưởng khác độ mấp mô biên dạng đường bánh xe bên trái bên phải dẫn đến xuất dao động góc ngang Để đơn giản tốn khơng xét đến liên kết cầu trước cầu sau, mà xét dao động hệ thống riêng biệt tạo cầu phần khối lượng theo phân bố lên cầu Mơ hình động lực dao động cầu cứng cầu khối treo thể hình 4.2 Trong đó: M2 khối lượng treo ô tô phân bố cầu sau; JxM2 mơ men quan tính khối lượng M2 trục dọc x; góc xoay khối lượng treo; cT2 độ cứng treo cầu sau; kT2 hệ số giảm chấn cầu sau; m2 khối lượng không treo cầu sau; Jxm2 mơ men quan tính khối lượng m2 trục dọc x; góc xoay cầu sau so với vị trí cân tĩnh; cL2 độ cứng hướng kính lốp cầu sau; kL2 hệ số giảm chấn lốp cầu sau; qp, qt độ cao mấp mô bánh bên phải bên trái cầu sau; FTt lực đàn hồi phận treo bên trái; FTp lực đàn hồi phận treo bên phải ; FLt lực đàn hồi lốp bên trái ; FLp lực đàn hồi lốp bên phải z2 b2/2 b2/2 z2t y2 T2 FTt FTp kT 2 cT 2 ’t z2p M2, JxM2 cT 2 kT 2 ’p t y1 T1 cL 2 b1/2 qt p m2, Jxm2 cL 2 b1 qp FLt FLp Hình 4.2 Mơ hình dao động ngang cầu xe tơ cứng Dựa sơ đồ hình 4.2 thiết lập phương trình chuyển động sau đây: z& M & FTt FTp & 0,5.b2 ( FTt FTp ) J xM 2& & & m2 FTt FTp FLt FLp J & & xm 0,5b2 ( FTt FTp ) 0,5b1 ( FLt FLp ) (4.10) Các phương trình liên kết: z2t z2 0,5b2 ; z&2t z&2 0,5b2&; z&2 p z&2 0,5b2& z2 p z2 0,5b2 ; t 0,5b1 ; p 0,5b1 't 0,5b2 ; (4.11) (4.12) ' p 0,5b2 ; (4.13) FTt 0,5cT ( 't z2t ) 0,5kT (&'t z&2t ) (4.14) FTp 0,5cT ( ' p z2 p ) 0,5kT (&' p z&2 p ) (4.15) FLt 0,5cL (qt t ) (4.16) FLp 0,5cL (q p p ) (4.17) Tính thành phần lực đàn hồi: Thay phương trình liên kết vào (4.10) giải ta nhận thông số đặc trưng cho dao động ngang cầu sau 4.3 Mơ hình khơng gian xe 4.3.1 Mơ hình vật lý Đối với xe tơ con, thân xe xem khối cứng mơ hình hóa phẳng cứng hình 4.3 Trong mơ hình khơng xét đến giảm chấn hướng kính lốp xe ; cầu không bị uốn; xe chuyển động ổn định với vận tốc V Các ký hiệu hình 4.3: M khối lượng treo (khối lượng thân xe); Jx mơ men qn tính khối lượng treo trục dọc x Jy mô men quán tính khối lượng treo trục ngang y góc quay thân xe quanh trục y; góc quay thân xe quang trục x; a, b tọa độ dọc trọng tâm thân xe t bề rộng sở xe; mi khối lượng khô treo phân bố bánh xe thứ i, i=1, 2,3,4; cTi độ cứng phận treo đặt bánh xe thứ i; kTi hệ số cản giảm chấn phận treo đặt bánh xe thứ i; cLi độ cứng hướng kính lốp thứ i; i dịch chuyển thẳng đứng khối lượng không treo thứ i; qi độ cao mấp mô mặt đường điểm tiếp xúc với bánh xe thứ i; FTi lực đàn hồi phận treo thứ i; FLi lực đàn hồi lốp xe thứ i a b C D FT3 cT3 t/2 V kT3 FT4 y q3 cT4 M, Jx, Jy kT4 T 4 m3 A FT1 x 3 t/2 z cL3 q4 FT2 kT1 FL3 cT2 FL4 2 m1 q1 cL1 cL4 kT2 cT1 1 m4 B m2 cL2 q2 FL1 FL2 Hình 4.3 Mơ hình dao động không gian xe 4.3.2 Thiết lập phương trình vi phân dao động Áp dụng phương pháp D’lambe ta thiết lập hệ phương trình vi phân dao động xe sau: & & & FT FT FT FT Mz & & J x 0,5t ( FT FT ) 0,5t ( FT FT ) J & & a ( FT FT ) b( FT FT ) y & m1& FL1 FT & & m2 FL FT m & & F F L3 T3 3 & & m4 FL FT (4.18) Xác định lực đàn hồi: Lực đàn hồi hệ thống treo: FT cT (1 z A ) kT (& &A ) z &B ) FT cT ( z B ) kT (& z & FT cT (3 zC ) kT (3 z&C ) F c ( z ) k (& z& ) T4 D T4 D T4 (4.19) Lực đàn hồi lốp: FL1 cT (q1 1 ) F c (q ) L2 T2 2 F c ( q T3 3) L3 FL cT (q4 ) (4.20) Các phương trình liên kết: zA z B zC z D ( z a ) 0,5.t. ( z b ) 0,5.t. ( z a ) 0,5.t. ( z b ) 0,5.t. ; z&A z&B z&C z& D ( z& a&) 0,5.t.& ( z& b&) 0,5.t.& ( z& a&) 0,5.t.& ( z& b&) 0,5.t.& (4.21) Thay phương trình liên kết vào (4.19) giải ta nhận thông số đặc trưng cho dao động không gian xe 4.5 Mơ hình xe tải cầu 4.5.1 Mơ hình vật lý Xe tải cầu với cầu sau treo cân mơ hình hóa hình 4.5 Các ký hiệu mơ hình 4.5: M khối lương treo (khối lượng thân xe); Jy mơ men qn tính khối lượng M trục nagng y qua tâm T; m1, m2, m3 khối lượng không treo phân bố cầu trước, cầu giữa, cầu sau; mcb khối lượng không treo cầu sau: mcb= m2 + m3; cT1, kT1 độ cứng hệ số cản giảm chấn phận treo trước; cT2, kT2 độ cứng hệ số cản giảm chấn phận treo sau; cL1, kL1 độ cứng hệ số cản giảm chấn lốp cầu trước; cL2, kL2 độ cứng hệ số cản giảm chấn lốp cầu giữa; cL3, kL3 độ cứng hệ số cản giảm chấn lốp cầu sau; q1, q2, q3 độ cao mấp mô mặt đường điểm tiếp xúc với cầu trước, cầu giữa, cầu sau FT1, FT2 lực đàn hồi phận treo trước, treo sau; FL1, FL2, FL3 lực đàn hồi lốp cầu trước, lốp cầu giữa, lốp cầu sau V z1 z z2 M, Jy A B T FT1 cT1 FT2 k1 cT2 kT2 2 1 D m2 m1 cL1 cL2 q1 3 m3 cL3 q2 FL1 q3 FL2 d2 d3 FL3 d a b L Hình 4.5 Mơ hình dao động tơ cầu 4.3.2 Phương trình vi phân dao động Chúng ta sử dụng phương trình Lagrăng loại để thiết lập hệ phương trình vi phân mơ tả chuyển động dao động hệ Phương trình Lagranger loại có dạng: d Ek Ek V Qi dt q&i qi qi q&i (4.22) Trong đó: n – số tọa độ suy rộng (hoặc số bậc tự hệ) qi – tọa độ suy rộng thứ i; q&i đạo hàm tọa độ thứ i theo thời gian; Ek , En – tương ứng với động hệ; p – lượng khuếch tán hệ; Qi – lực suy rộng tác dụng theo hướng tọa độ suy rộng *Đông hệ Ek Động hệ bao gồm động khối lượng M, m1, mcb: Ek Ek1 Ek Ek (4.23) Trong đó: Ek1 0,5M z&2 0,5 J y&2 ; Ek 0,5m1& ; Ek 0,5mcb 0,5 J cb&2 ; * Thế hệ: En Với giả thiết đặc tính phần tử đàn hội (nhíp, lốp xe) tuyến tính, lực đàn hồi tỷ lệ tuyến tính với độ chuyển dịch tương đối: Chuyển dịch tương đối cầu trước (biến dạng nhíp trước) là: z1td z a 1 Và cầu sau: z2td z b Chuyển dịch tương đối lốp so với đường (biến dạng lốp xe): 1td 1 q1 ; 2td 2 q2 ; 3td 3 q3 Thế toàn hệ là: 3 En 0,5cT ( z a 1 ) 0,5cT z b 0,5cL1 (1 q1 ) 0,5cL (2 q2 ) 0,5cL3 (3 q3 ) 2 (4.24) * Năng lượng khuyếch tán hệ: Ep & & & & E p 0,5kT ( z& a& & ) 0,5kT [ z b 0,5( 3 )] (4.25) Chúng ta lấy giá trị đạo hàm thành phần trên, sau thay vào phương trình Lagrăng Cụ thể là: Theo toạ độ suy rộng thứ nhất: z d Ek T & mz& ; 0 dt z& z En 2cT ( z a 1 ) 2cT [ z b 0,5( 3 )] z E p & & & & 2kT ( z& a& & ) 2kT [ z b 0,5( )] z& Theo toạ độ suy rộng thứ 2: d Ek & ; J y& dt & Ek 0 Ek 2cT a( z a 1 ) 2cT a[ z b 0,5( 3 )]; E p & & & & 2kT a( z& a& & ) 2kT b[ z b 0,5( )]; & Theo toạ độ suy rộng thứ 3: 1 d Ek &; Ek & m1& dt 1 1 En 2cT ( z a 1 ) 2cL1 (1 q1 ); 1 E p 2k1 ( z& a& 1 ); & Theo toạ độ suy rộng thứ 4: 3 d Ek & & & & & mcb (m2 m3 ) ; dt Ek 0 En 2cT z b 2cL [ 0,5(q2 q3 )]; E p 2kT z& b& & & Theo toạ độ suy rộng thứ 5: 3 3 d d d 3 ; 2 Tương tự ta xác định giá trị đạo hàm thay vào hệ phương trình Larăng loại Hệ phương trình vi phân mơ tả dao động hệ sau: 2 ; Mz& & 2cT ( z a 1 ) 2cT [ z b 0,5( 3 )] 2kT ( z& a& 1 ) 2kT [ z& b& 0.5( 3 )] & & 2cT a( z a 1 ) 2cT [ z b 0,5( 3 )] 2kT a( z& a& & 1) & 2kT b[ z& b& 0,5(& )] & & & m11 2cT ( z a 1 ) 2kT ( z& a& 1 ) 2cL1 (1 q1 ) (m m )& & 2c ( z a ) 2k ( z& a& &) 2c [ 0,5(q q )] T2 T2 L2 & m d c d [ 0,5(q q )] J cb& cb L2 (4.26) TÀI LIỆU THAM KHẢO [1] Nguyễn Văn Khang (1998), Dao động kỹ thuật, Nhà xuất Khoa học Kỹ thuật, Hà Nội [2] Vũ Đức Lập (1994), Dao động ô tô, Học viện kỹ thuật quân [3] Rajesh Rajamani (2006), Vehicle Dynamics and Control, Springer New York [4] Rajesh Rajamani (2008), Vehicle Dynamics , Springer New York 10 ... nguồn gây dao động ô tô 1.1.1 Do mặt đường không phẳng Chuyển động ô tô bề mặt đường không phẳng phát sinh dao động khối lượng phần treo khối lượng phần không treo ô tô Độ mấp mô bề mặt đường... nghiên cứu dao động ? ?tô * Mô hình nghiên cứu dao động ô tô biểu thị sơ đồ hình 3.2 Trình tự nghiên cứu dao động thực hiên theo bước sau đây: Chọn mơ hình động lực học Thiết lập hệ phương trình... ĐỘNG(3LT,1BT) 1.1 Các nguồn gây dao động Đối với hệ bất kỳ, nguồn kích thích dao động có hai dạng kích thích động học kích thích lực học Trên ơtơ có nhiều nguồn gây dao động ô tô, nay, mấp mô