[r]
(1)http://ductam_tp.violet.vn/ KIỂM TRA HỌC KÌ I/ 2010-2011
Mơn :Tốn - Lớp 10
Thời gian:90’(Khơng tính thời gian phát đề)
*ĐỀ I:
Câu 1: Phát biểu thành lời mệnh đề sau x R:x2 + x +2 ≠
Xét tính sai lập mệnh đề phủ định mệnh đề
Câu : Xác định tập hợp số sau biểu diễn chúng trục số : a) ;3 2;
b) R \ (0 ; +∞ )
Câu 3: Cho hàm số bậc hai có dạng : y = 2x2 +bx +c
a) Tìm hàm số , biết đồ thị hàm số qua A(0;- 1) B(1; 0) b) Vẽ đồ thi hàm số vừa tìm
Câu : Giải phương trình ; a) 3x2 2x1 = 3x +
b) 2x1 4x
Câu 5: Cho a,b,c số dương.Chứng minh rằng:
1 1
( )
a b c
a b c
Câu 6: Trên mặt phẳng tọa độ Oxy, cho A(-1 ; ) ; B(3 ; 1) C (2 ; 4) a) Chứng minh A,B,C không thẳng hàng
b) Tính chu vi tam giác ABC c) Tính AB AC;
d) Tính tọa độ trọng tâm G tam giác ABC e) Xác định N cho NA NB 2NC0
(2)
KIỂM TRA HỌC KÌ I /2010-2011 Mơn :Tốn - Lớp 10
Thời gian:90’(Khơng tính thời gian phát đề)
*ĐỀ II:
Câu 1:(1đ) Phát biểu thành lời mệnh đề sau x R:x2 - 2x +5 ≠
Xét tính sai lập mệnh đề phủ định mệnh đề
Câu :(1đ) Xác định tập hợp số sau biểu diễn chúng trục số : a) ;5 1;
b) R \ (-2 ; +∞ )
Câu 3:(2đ) Cho hàm số bậc hai có dạng : y = x2 + bx +c
a)Tìm hàm số , biết đồ thị hàm số qua A(0; -3) B(3; 0) b)Vẽ đồ thi hàm số vừa tìm
Câu :(1,5đ) Giải phương trình ; a) x2 4x1 = x +
b) 3x 6 x
Câu 5:(0,5đ) Cho a,b,c số dương.Chứng minh rằng: 1
c a b
a b c
Câu 6:(4đ) Trên mặt phẳng tọa độ Oxy, cho A(-1 ; ) ; B(3;2) C (2 ; -1) a)Chứng minh A,B,C khơng thẳng hàng
b)Tính chu vi tam giác ABC c) Tính AB AC;
d)Tính tọa độ trọng tâm G tam giác ABC e)Xác định N cho NA NB 2NC0
(3)ĐÁP ÁN – THANG ĐIỂM ĐỀ I
MÔN TOÁN –LỚP 10
Câu : (1đ)
Với số thực x đếu có x2 +x +2 ≠ mệnh đề
Vì phương trình x2 +x +2 = vơ nghiệm (0,5đ) Phủ định : Có số thực mà x2 + x + =
( x R: x2 +x + = ) mệnh đề sai (0,5đ) Câu 2:(1đ)
a) ( -∞ ; 3) ∩( -2 ; +∞) = ( -2 ; 3)
(0,5đ)
b) R \ ( ; + ∞) = (- ∞; ]
(0,5đ)
Câu 3: ( 2đ)
a) Vì Parabol qua A( ; -1 ) B ( ; 0) nên ta có hệ pt:
1 2.0
0 2.1 1
b c c
b c b
(0,5đ) Vậy hàm số cần tìm y = 2x2 – x – (0,25đ) b) Vẽ đồ thị :Tọa độ đỉnh : I
1 ;
; điểm đặc biệt:
A(0, -1) ; B ( 1; 0) ;
1
;0 ; ;
2
C D
(0,75đ) Vẽ đồ thị (0,5đ) Câu 4: (1,5đ)
a)
2
2
2
x x
x x
x x
3 x x
( 0,5đ) Vậy phương trình có nghiệm
4
;
3 x x
(0,25đ) b)Điều kiện pt: 3x2 -2x -1 ≥ (0,25đ)
2
3x 2x1 3 x 1 3x2 -2x -1 = (3x +1)2
1
2
1 x x
(0,25đ)
(4)Thử vào phương trình cho x = - khơng thỏa Vậy nghiệm phương trình là: x =
1
(0,25đ) Câu 5: ( 0,5đ)
Áp dụng bất đẳng thức Côsi cho a>0,b>0, c>0
1 1
0, 0,
a b c , ta có: a b c 33 abc
3
1 1
3
a b c abc (0.25đ) Nhân hai bất đẳng theo vế ,cùng chiều ,ta
(a + b + c )
1 1 a b C
(đfcm)
Đẳng thức xảy a = b = c (0,25đ) Câu : (4đ)
a) Ta có AB4;0 ; AC(3;3)
(0,25đ) Do
4
3 3 nên AB AC;
không phương, suy
A,B,C không thẳng hàng (0,5đ) b) AB = , BC = 10;AC3 (0,75đ) Chu vi tam giác ABC 2 10 (0,25đ) c) Ta có
2 os ,
2 c AB AC
(0.75đ) Suy
0
; 45
AB AC
(0,25đ) c) Gọi G trọng tâm tam giác ABC
Vậy:
; G
(0,75đ)
e) Tính N trung điểm IC tọa độ N
; 2
(0,5đ) ĐÁP ÁN- THANG ĐIỂM –ĐỀ II
MÔN TOÁN –LỚP 10
Câu : (1đ)
Với số thực x đếu có x2 -2x +5 ≠ mệnh đề
Vì phương trình x2 -2x +5 = vơ nghiệm (0,5đ) Phủ định : Có số thực mà x2 -2x + =
( x R: x2 -2x + = ) mệnh đề sai (0,5đ) Câu 2:(1đ)
(5)(0,5đ)
b) R \ ( -2 ; + ∞) = (- ∞; -2 ]
(0,5đ) -2
Câu 3: ( 2đ)
a)Vì Parabol qua A( ; -3 ) B ( ; 0) nên ta có hệ pt:
3 1.0
0 1.9
b c c
b c b
(0,5đ) Vậy hàm số cần tìm y = x2 –2 x – (0,25đ) b)Vẽ đồ thị :Tọa độ đỉnh : I1; 4 ; điểm đặc biệt:
A(0, -3) ; B ( 3; 0) ; C1;0 ; D2; 3 (0,75đ) Vẽ đồ thị (0,5đ) Câu 4: (1,5đ)
a)
3
3
3
x x
x x
x x
2 x x
( 0,5đ) Vậy phương trình có nghiệm x12;x2 2 (0,25đ) b)Điều kiện pt: x + 2≥ (0,25đ)
2 4 1 2
x x x x2 - 4x +1 = (x +2)2
3 x
(thỏa) (0,25đ) Vậy nghiệm phương trình là: x =
3
(0,25đ) Câu 5: ( 0,5đ)
Áp dụng bất đẳng thức Côsi cho3 số 0;1 0;1
a b c
b c a
,ta có:
a a
b b
;
b b
c c
;
c c
a a
(0,25đ) Nhân ba bất đẳng theo vế, chiều ,ta :
1 c a b
a b c
Đẳng thức xảy a = b = c = (0,25đ) Câu : (4đ)
a)Ta có AB4;1 ; AC(3; 2)
(0,25đ) Do
4
3 2 nên AB AC;
không phương, suy
A,B,C không thẳng hàng (0,5đ) b) AB = 17;AC 13;BC 10 (0,75đ) Chu vi tam giác ABC 17 13 10 (0,25đ)
(6)c) Ta có 10
os , 0,673
221
c AB AC
(0.75đ) Suy
0 ; 47 44' AB AC
(0,25đ) d) Gọi G trọng tâm tam giác ABC
Vậy:
4 ; 3 G
(0,75đ)
e) Tính N
;