1. Trang chủ
  2. » Luận Văn - Báo Cáo

de thi thu nam 2010 mon Toan khoi chuyen DHSPHN

1 3 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 47 KB

Nội dung

Cho hình chóp S.ABCD có SA =x và tất cả các cạnh còn lại có độ dài bằng a.. Chứng minh rằng đường thẳng BD vuông góc với mặt phẳng (SAC).[r]

(1)

TRƯỜNG ĐHSP HÀ NỘI ĐỀ THI THỬ ĐẠI HỌC LẦN I NĂM 2010

TRƯỜNG THPT CHUYÊN – ĐHSP Mơn thi: TỐN

Thời gian làm bài: 180 phút, không kể thời gian giao đề

==========================================

Câu ( 2,0 điểm )

Cho hàm số y = 2x3 + 9mx2 + 12m2x + 1, m tham số.

1 Khảo sát biến thiên vẽ đồ thị hàm số cho m = - Tìm tất giá trị m để hàm số có cực đại xCĐ, cực tiểu xCT

thỏa mãn: x2

CĐ= xCT

Câu ( 2,0 điểm )

1 Giải phương trình: x1 + = 4x2 + 3x Giải phương trình: 5cos(2x +

3 

) = 4sin( 5

- x) –

Câu 3. ( 2,0 điểm )

1 Tìm họ nguyên hàm hàm số: f(x) =

1 ) ln(

2

3

  

x

x x

x

2 Cho hình chóp S.ABCD có SA =x tất cạnh cịn lại có độ dài a Chứng minh đường thẳng BD vng góc với mặt phẳng (SAC) Tìm x theo a để thể tích khối chóp S.ABCD

6

3

a .

Câu ( 2,0 điểm )

1 Giải bất phương trình: (4x – 2.2x – 3) log

2x – >

4

x

- 4x.

2 Cho số thực không âm a, b.Chứng minh rằng: ( a2 + b +

4

) ( b2 + a +

4

)  ( 2a +

) ( 2b +

1 )

Câu 5. ( 2,0 điểm )

Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng :

d1 : 2x + y – = 0, d2 : 3x + 4y + = d3 : 4x + 3y + =

1 Viết phương trình đường trịn có tâm thuộc d1 tiếp xúc với d2 d3

2 Tìm tọa độ điểm M thuộc d1 điểm N thuộc d2 cho OM + 4ON =

0

……… Hết………

Ngày đăng: 14/05/2021, 13:16

w