1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề thi học sinh giỏi môn Toán lớp 9 cấp huyện năm 2020-2021 - Sở GD&ĐT Thanh Sơn

5 19 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 526,06 KB

Nội dung

Cùng tham gia thử sức với Đề thi học sinh giỏi môn Toán lớp 9 cấp huyện năm 2020-2021 - Sở GD&ĐT Thanh Sơn để nâng cao tư duy, rèn luyện kĩ năng giải đề và củng cố kiến thức Toán học căn bản. Chúc các em vượt qua kì thi học sinh giỏi thật dễ dàng nhé!

UBND HUYỆN THANH SƠN PHÒNG GD& ĐT ĐỀ THI CHỌN HỌC SINH GIỎI LỚP CẤP HUYỆN Năm học 2020 - 2021 Mơn: Tốn (Thời gian 150 phút khơng kể thời gian giao đề) ĐỀ CHÍNH THỨC (Đề có 03 trang) I PHẦN TRẮC NGHIỆM (8,0 điểm) Hãy chọn phương án trả lời ghi vào tờ giấy thi Câu 1: Biểu thức  a  b Giá trị a2 + b2 : 2 A B C  Câu Rút gọn biểu thức A     x  y D x  2 y (với x, y > 0, x  y )  : x  y y  x  x  y kết là: A x 2 y y y2 B C Câu 3: Giá trị nhỏ Q  A 34 y 2 y D x y2 x  x  34 x 3 B 10 C D Câu 4: Tập nghiệm phương trình x  20 x  25  x  là: A S   x / x  2,5 B S  2,5 C S   x / x  2,5 D S   Câu Cho x  y  y  x  (với x, y  ) Giá trị biểu thức x  y A B Câu Cho f ( x)   x  x   2017 C Biết a  3  17  3  17 giá trị f (a) là: A B C Câu 7: Giá trị nhỏ hàm số y   x  x  A  B  C  Câu Biểu thức  3x  x2  x D 2 D -1 D  có nghĩa nào?  x  C x  3 x  Câu Cho tam giác ABC cân A, đường cao AH BK Ta có A 3  x  B 1   2 BK BC AH 1 C   2 BK BC AH 1   2 BK BC AH 1 C   2 BK 3BC AH A D 3  x  B Câu 10 Cho hình thang ABCD  AB / / CD  , có hai đường chéo vng góc với Biết BD  12cm, AB  CD  16cm Diện tích hình thang ABCD A 7cm B 12 7cm2 C 24 7cm2 D 48 7cm2 Câu 11 Cho tam giác ABC vuông A, phân giác AD  D  BC  , có AB = 10cm, AC = 15cm Qua D kẻ đường thẳng song song với AB cắt AC E Độ dài đoạn CE A 10cm B 12cm C 15cm D 9cm Câu 12 Cho tam giác ABC vuông A, đường cao AH Giả sử AB  6cm, BH  4cm Khi cạnh BC bằng: A 9cm B 10cm C 10,5cm D 2cm Câu 13 Cho tam giác ABC vng A đường cao AH Kẻ HE vng góc với AB E, kẻ HF vng góc với AC F Khi hệ thức là: A AB3 CF  AC BE B AB3 BE  AC CF C AH 1 HE.BC.HF D AH 1 HE AC.HF Câu 14: Cho tam giác ABC có AB = 4cm, AC = 6cm, đường phân giác AD Gọi O chia AD theo tỉ số AO:OD = 2:1 Gọi K giao điểm BO AC Tỉ số AK:KC A B C D Câu 15 Hình thang cân ABCD có đáy lớn CD = 10cm, đáy nhỏ đường cao, đường chéo vuông góc với cạnh bên Độ dài đường cao hình thang là: A cm B cm C cm D cm Câu 16 Nam chôn cọc xuống đất để đo chiều cao trước nhà, cọc cao 2m đặt cách khoảng 15m Từ chỗ cọc Nam lùi xa cách cọc 0,8m nhìn thấy đầu cọc đỉnh nằm đường thẳng Biết khoảng cách từ chân đến mắt Nam 1,6m Chiều cao A 10,85 m B 10,25 m C 9,5 m D 9,25 m II PHẦN TỰ LUẬN (12,0 điểm) Bài (3,0 điểm) a) Chứng minh với số nguyên n A  n n  12n  1 b) Tìm nghiệm nguyên phương trình 6x  3xy  17x  4y   Bài (4,0 điểm) a) Cho ba số a, b, c thỏa mãn ab  bc  ca  2020 Tính giá trị biểu thức: A a  bc b  ca c  ab   a  2020 b  2020 c  2020 b) Giải phương trình x  11   x  x  14 x  60  Bài (4,0 điểm) Cho tam giác ABC vuông A, đường cao AH Gọi D E hình chiếu vng góc H lên AB, AC a) Chứng minh: AD.AB = AE.AC b) Chứng minh: DE3 = BC.BD.CE Cho hình vng ABCD, M điểm tuỳ ý đường chéo BD Kẻ ME  AB MF  AD (E  AB, F  AD) a) Chứng minh DE  CF ba đường thẳng DE, BF, CM đồng quy b) Xác định vị trí điểm M để diện tích tứ giác AEMF lớn Bài (1,0 điểm) Cho x, y, z ba số dương thỏa mãn x  y  z  Chứng minh rằng: x y z   1 x  x  yz y  y  zx z  z  xy -HẾT -Họ tên thí sinh: Số báo danh: Cán coi thi không giải thích thêm./ HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP CẤP HUYỆN (Hướng dẫn chấm có 04 trang) Lưu ý: Nếu học sinh làm cách khác, tổ chấm thống cho điểm Học sinh không vẽ hình vẽ sai khơng tính điểm I PHẦN TRẮC NGHIỆM (8,0 điểm) Mỗi câu trả lời 0,5 điểm Câu Câu C C B 10 C B 11 D A 12 A B 13 B D 14 D D 15 C D 16 C II PHẦN TỰ LUẬN (12,0 điểm) Bài (3,0 điểm) a) Chứng minh với số nguyên n A  n n  12n  1 b) Tìm nghiệm nguyên phương trình 6x  3xy  17x  4y   Nội dung cần đạt A  n n  12n  1  n(n  1)(2n   3)  (n  1)n(n  1)  3n(n  1) (n  1)n n  1 6   A Ta có: 3n(n  1)   Điểm 0,5 0,5 0,5  6x  3xy  17x  4y   2 b)  6x  8x  3xy  4y  9x  12   2x (3x  4)  y (3x  4)  3(3x  4)   (3x  4)(2x  y  3)  0,5 0,5 0,5 Lập bảng: Ta có nghiệm  x, y    1; 6  , 1;  Bài (4,0 điểm) a) Cho ba số a, b, c thỏa mãn ab  bc  ca  2020 Tính giá trị biểu thức: A a  bc b  ca c  ab   a  2020 b  2020 c  2020 b) Giải phương trình x  11   x  x  14 x  60  Nội dung cần đạt a) Từ ab  bc  ca  2020 suy a  2020  a  ab  bc  ca   a  b  a  c  Tương tự có b  2020   b  c  b  a  , c  2020   c  a  c  b   A = a a  bc b  ca c  ab    a  b  a  c   b  c  b  a   c  a  c  b   bc   b  c    b  ca   c  a    c  ab   a  b   a  b  b  c  c  a  Khai triển làm gọn biểu thức tử ta kết Vậy A  Điểm 0,5 0,5 0,5 0,5 11  x  Ta có: x  11   x  x  14 x  60   ( x  11  6)  (  x  1)  ( x  5)(5 x  11)  5( x  5) x 5    ( x  5)(5 x  11)  x  11  6  x 1    ( x  5)    x  11   x   x 1  x  11   11 (Do   x  11  với   x  ) 5 x  11  6  x 1 Vậy Phương trình có nghiệm x  b) ĐK:  0,25 0,5 0,5 0,5 0,25 Bài (4,0 điểm) Cho tam giác ABC vuông A, đường cao AH Gọi D, E hình chiếu vng góc H lên AB, AC a) Chứng minh: AD.AB = AE.AC c) Chứng minh: DE3 = BC.BD.CE Cho hình vng ABCD, M điểm tuỳ ý đường chéo BD Kẻ ME  AB, MF  AD a) Chứng minh ba đường thẳng: DE, BF, CM đồng quy b) Xác định vị trí điểm M để diện tích tứ giác AEMF lớn Nội dung cần đạt Điểm Hình vẽ : A E D B C H a) Ta có: AD.AB = AE.AC (=AH2) 1,0 b) BH2 = BD.AB, CH2 = CE.AC  AH4 = BH2.CH2 = AB.AC.BD.CE = AH.BC.BD.CE  AH3 = BC.BD.CE Chứng minh tứ giác ADHE hình chữ nhật  DE = AH 0,25 0,25  DE3 = BC.BD.CE Hình vẽ A F D E 0,25 0,25 B M C a) Chứng minh AE = AF Chứng minh AED  DFC DE, BF, CM ba đường cao EFC  đpcm b) Đặt a = AB  ME  MF  a không đổi (ME  MF)2 a  (không đổi) 4 lớn  ME  MF (tứ giác AEMF hình vng) 0,5 0,5  S AEMF  ME.MF  0,5  S AEMF  M trung điểm BD 0,5 Bài (1,0 điểm) Cho x, y, z ba số dương thỏa mãn x  y  z  Chứng minh rằng: x y z   1 x  x  yz y  y  zx z  z  xy  Từ x  yz  Nội dung cần đạt Điểm   x  yz  x yz (*) Dấu “=”  x  yz Chỉ : 3x  yz  ( x  y  z ) x  yz  x  yz  x( y  z )  x yz  x ( y  z ) Suy : x  yz  x yz  x( y  z )  x ( y  z ) ( Áp dụng (*)) x  x  yz  x ( x  y  z )  y z z  (3) x y z z  3z  xy x y z x y z Từ (1), (2) (3)    1 x  x  yz y  y  xz z  z  xy Dấu “=” xảy x = y = z = Tương tự : y  y  y  xz x x  (1) x  x  yz ( x  y  z ) (2); HẾT 1,0 ... -HẾT -Họ tên thí sinh: Số báo danh: Cán coi thi không giải thích thêm./ HƯỚNG DẪN CHẤM THI HỌC SINH GIỎI LỚP CẤP HUYỆN (Hướng dẫn chấm có 04 trang) Lưu ý: Nếu học sinh làm... đỉnh nằm đường thẳng Biết khoảng cách từ chân đến mắt Nam 1,6m Chiều cao A 10,85 m B 10,25 m C 9, 5 m D 9, 25 m II PHẦN TỰ LUẬN (12,0 điểm) Bài (3,0 điểm) a) Chứng minh với số nguyên n A  n n  12n...A 10cm B 12cm C 15cm D 9cm Câu 12 Cho tam giác ABC vuông A, đường cao AH Giả sử AB  6cm, BH  4cm Khi cạnh BC bằng: A 9cm B 10cm C 10,5cm D 2cm Câu 13 Cho tam giác ABC

Ngày đăng: 04/05/2021, 17:41

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w