1. Trang chủ
  2. » Mẫu Slide

CAC DANG BAT DANG THUC

15 7 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 589,5 KB

Nội dung

Phương pháp này lạ với 1 số bạn nhưng nó rất có ích trog một số bài toán BDT , nếu ta để ý và sử dụng khéo néo ta có thể làm bài BDT đó đơn giản rất nhiều .Dưới đây là 1 số dạng có thể [r]

(1)

Các Chuyên Đề BDT Thi Đại Học

VD1 với dùng phương pháp vectơ bạn tự làm nhé Cho x,y,z số dương Chứng minh

Ta có

Tương tự tự với y,z ta cộng lại ta

VD 2;Cho a,b>2 và: a+b=8 Tìm giá trị nhỏ của: Vì a>2; b>2 nên có a-2>0 b-2>0

Theo BDT Cosi ta có:

Tương tự ta cộng lại suy MIN 320 VD3,cho x,y>0 và tìm

Ta có

Cho a số dương cho trước x,y dương thỏa mãn x+y=1 tìm Bài tập tự luyện

Bài cho a,b,c dương thỏa mãn Tìm Min

Bài cho a,b,c dương Tìm Min

Bài Cho a,b,c, số dương tìm Min của Bài cho a,b,c dương

Tìm Min

Bài ,cho a,b,c dương

Tìm Min

Bài ;Cho a,b,c>0 Chứng minh bất đẳng thức sau: a)

b)

c) Cho x,y>0 x+y=1 Tìm GTNN biểu thức: chuyên đề sử dụng tam thức bậc

A Nội dung

(2)

Nếu: Nếu:

Trương hợp

Nếu:

Trong trường hợp

Tóm lại, việc sử dụng định lý thuận đảo tam thức bậc hai, xử lý điều kiện tồn nghiệm biệt thức ,… tỏ tiện lợi chứng minh BĐT mà nhận dạng

Ở ta nhắc lại tính chất sau để tiện sử dụng:

B Bài tập thí dụ

: Cho x, y hai số thực, CMR : [ct[\ + x^2 + 2xy + 2x + 6y + \ge

Có thể xem VT tam thức bậc hai x :

Vậy Cho x,y: [ct[\

+ x^2 + 2xy + 2x + 6y + \ge

: Cho a, b, c số thực thoả mãn: CMR

Thay Bất đẳng thức cần chứng minh tương đương với

Để chứng minh (2) ta xét tam thức bậc hai:

Bài 3: Cho 2n số thực CMR

(3)

Ta có, với số thực x có:

Từ đa thức:

Nếu hiển nhiên BĐT cho

Nếu f(x) tam thức bậc hai x Do nên

Vậy BĐT cho CM hoàn toàn C Bài tập tự luyện

Bài 1: CMR a, b, c, d số thực thoả mãn: a+d=b+c m số không âm thoả mãn thoả mãn với x

: CMR BĐT

Bài 3: Giả sử A, B, C ba góc tam giác khơng cân C Biết phương trình Có nghiệm thực CMR góc B nhở 60

Bài ;Cho a,b,c số dương CMR;

Nếu a,b,c có số lớn thi BDT ln Với a,b,c nhỏ ta áp dụng BDT becnuli ta

Suy tương tự với (a+c) (a+b) ta cộng lại điều phải CM Bài 2; cho a,b,c dương xyz=1và a>2 CMR

Ta có suy

Tương tự vơi y,z sau ta cộng lại ta Ta phải

CM

Ta có

Suy \ dpcm

Bài cho a,b,c dương CMR

(4)

suy \ à,

\ Suy

Bây gioe ta CM >2

Ta có tương tự với b.c ta cộng lại suy \>2 (2)

Vậy từ suy điều phải CM Bài cho a,b,c thảo mãn

CMR Ta đăt

Ta có \

Tương tự ta có \

\ Theo BDT sosi ta có

điều phải CM Bài tập tự luyện

Bài cho a,b,c dương CMR

Bài cho a,b,c dương a+b+c=1 Tìm Min

Bài cho a,b,c số thực thõa mãn điều kiện Max

Bài cho số dương

CMR

Bài cho a,b,c dương thỏa mãn Tìm Max Bài 6: Cho a,b,c>0 Chứng minh bất đẳng thức sau:

(5)

d) e)

Bài Cho a,b,c>0 a+b+c=1 Chứng minh bất đẳng thức sau a)

b)

Bài Chứng minh tam giác nhọn ABC, ta có: c)

d) e)

Bài cho a,b,c, số dương thỏa mẵn CMR

Ta có suy

Ta xét ta có

Vậy ta tương tự với b,c sau cơng lại ta điều phải CM Bài 2;Cho a,b,c số dương chứng minh

BDT

Ta xét hàm số với x>0 suy

Suy f(x) hàm lồi với x>0 ta sử dụng BDT Jensen ta có suy điều phải CM Bài tổng quát lên sau

Bài cho a,b,c cạnh tam giác CMR Ta xét hàm số f(x)=xlnx hàm lồi với x>0 ta có

Ta chứng minh

Ta có cịn ta dùng BDT cosi

(6)

Bài cho a,b,c dương

CMR (bài dùng bunhinha bạn thử nghĩ)

Ta xét hàm số xét bảng biến thiên với

Ta có ta có

Suy giá trị lớn

Tương tự ta ,

Cộng kại ta

Bìa 5;Cho a,b,c thảo mãn CMR

Xét

Thoe định lí lagrange ta tồn cho

TM

Suy nghiệm

Ta có suy điều phải CM

Bài tập tương tự 1, cho a,b,c dương CMR

2,cho a,b,c số dương CMR

3,cho x,y số dương thỏa mãn Tìm max

4, cho x,y,z số dương thỏa mãn CMR

5,cho x,y số dương Min

Chuyên đề đồng bậc hoá

Sử dụng giả thiết để biến đổi BĐT dạng đồng bậc để chứng minh Bài 1: Chứng minh với a,b>0 a+b=1, ta có:

Phân tích: - BĐT khơng đồng bậc - Vai trị a,b giống

(7)

Bài 2: với a,b,c>0 a+b+c=1 Chứng minh : Phân tích: - BĐT khơng đồng bậc

- Vai trò a,b giống

- Dự đoán dấu xảy a=b=c= - Sử dụng giải thiết để đồng bậc hoá Hướng dẫn:

Bài tập:

1) Cho a,b,c>0, thoả điều kiện: [

CMR

2) Cho a,b>0, thoả điều kiện: a+b=2

Chứng minh :

3) Chứng minh với a,b,c: a+b+c=0, ta có:

Chuyên đề 6: Phương pháp lượng giác chứng minh bất đẳng thức.

A Nội dung:

Phương pháp thường sử dụng toán chứng minh bất đẳng thức mà số bị ràng buộc với điều kiện định chẳng hạn:

Nếu có hệ thức đặt

Nếu có hệ thức xy=1 đặt:

Ghi chú: Ở khơng ngoại trừ toán sử dụng hệ thức lượng tam giác với quan hệ lượng giác B Bài tập thí dụ:

: Cho bốn số thực x, y, u, v thoả mãn: CMR:

Khi :

Do

Nhiều tốn chưa thấy yếu tố để ta chuyển dạng lượng giác, cần qua trình biến đổi đặt ẩn phụ thích hợp chuyển dạng lượng giác thuận lợi cho q trình giải Ví dụ :

(8)

(1)

Với ta sử dụng BĐT BunhiaCopski với số , nhiên dùng phương pháp lượng giác để giải

Các yếu tố để chuyển dạng lượng giác chưa xuất Chúng ta cần biến đổi để làm xuất yếu tố : (1) tương đương với

Để chứng minh (2), ta đặt :

Có thể lấy x, y hai góc nhọn Khi :

[/ct] sinx.siny+cosx.cosy<1[/ct]

BĐT cuối đúng, (2) CM Suy (1) CM

Nếu so sánh với cách giải với cách dùng BĐT cổ điển thật cách dài phức tạp Tuy nhiên cho ta hướng để nhìn nhận tốn

: Chứng minh Phân tích: - ĐK: -Cơng thức lượng giác liên quan

Lượng giác hoá Hướng dẫn:

Đặt: ; VT=

Bài Cho x,y,z>0; zy+yz+zx=1 Chứng minh :

Phân tích: - Đẳng thức lượng giác liên quan - Lượng giác hoá

Hướng dẫn:

Đặt: ; ABC l tam

giác nhọn

Bài ;cho a,b,c số dương thỏa nãm CMR

(9)

Đặt

[,

Từ giả thiết ta có:

Suy ra,

với A,B,C ba góc tam giác Vậy

C Bài tập tự luyện

Bài 1:Cho x số thực thoả mãn CMR:

Bài 2: Cho x, y hai số thực thoả mãn 5x+12y=13 CMR Bài 3: Cho a, b, c ba số dương CMR

Bài 4: CMR với số tự nhiên khác khơng ta có BĐT

: BÀI 6) Cho 0<a,b,c<1 Chứng minh Bài 7) Chứng minh rằng:

Bài 8) Chứng minh rằng:

Bài 9) Cho a,b,c>0 abc+a+c=b Tìm GTLN

Bài 10;Cho a,b,c, dương 2006ac+ab+bc=2006 Tìm Max

Bài 12 ;cho a,b,c dương Tìm Min

(10)

Bài 16 CMR Với a,b thỏa mãn

Bài 17 cho x,y,x thõa mãn Tìm Max,Min

Chuyên đề 7: Phương pháp đổi biến

Phương pháp lạ với số bạn có ích trog số tốn BDT , ta để ý sử dụng khéo néo ta làm BDT đơn giản nhiều Dưới số dạng dung phương pháp biết pp rộng chưa biết cách đặt (đổi biến ) khác khơng bạn thấy thiếu sót pp pos lên cho xem với

Dạng với ta đặt

VD cho a,b,c số dương CMR

Ta quy đồng lên ta

Đăt ta

đến dễ dành CM VD2; cho a,b,c dương có tích CMR

khi ta Ta dùng svac ta

Ta phải CM

điều với BDT nunhinha Các tự luyện

Bài cho a,b,c số dương abc=1 CMR

Bài 2, cho a,b,c số dương abc=1.CMR Dạng

với số cho a,b,c số dương ab+bc+ac+2abc=1 Ta đặt

VD1.cho a,b,c số dương CMR

Ta đặt suy

Và xy+xz+zy+2xyz=1

bài tóan chở thành cho x ,y,z thảo mãn xy+xz+zy+2xyz=1 CMR từ xy+xz+zy+2xyz=1 suy dùng cosi trực tiếp suy

(11)

suy

Suy

bài tập tự luyện

cho x,y,z dương xy+xz+zy+2xyz=1 CMR 1,

2, 3,

Dạng cho a,b,c số thực dương Ta đặt

1

chuyên đề 8: Phương pháp tuyết tuyến

tiếp tuyến hẳn bạn thấy lạ có mà CM bất đẳng thức , Đừng nói bạn , pp hay dể sử dụng cố nhiều tốn khó dung đơn giản nhiều sau số dumhf phương pháp Những tốn dung phương pháp khác bạn nghĩ pos lên cho người tham khảo

VD1

Cho a,b,c d số dương thỏa mãn CMR

Ta xét hàm ta có x phải thuộc khoảng (0,1) Dễ dành nhận thấy dấu sảy

Ta viết pt tiếp tuyến f(x) tai Ta

Bây ta CM

Tương tự với a,b,c ta cộng lại suy điều phải CM VD2; cho a,b,c thỏa mãn a+b+c=1 CMR

Dễ dành nhận thấy dấu sảy

Ta xét với

Ta viết phương trình tiếp thuyến f(x) tai Ta

Ta xét

Tương tự với a,b,c ta công lại suy điều phải CM Bài tập tự luyện

(12)

CMR

2,cho a,b,c số dương CMR

3, cho a,b,c dương a+b+c=1 CMR

4,cho a,b,c dương CMR 5,cho a,b,c dương CMR

6 cho a,b,c dương CMR

Chuyên đề 14:xét phần tử cực biên

Theo nghĩ khơng , nhận thấy BDT năm gần năm có dạng khác , giởi thiệu cho số bạn chưa biết phương pháp khơng khó nắm thật gặp lần thi phai gán toán bạn xem cho ý kiến với nhé!!

Bài 1;Cho a,b,c thỏa mãn CMR

Ta giả sử

tương tự ta có

Ta cần CMR

Ta đặt giả sử ta có suy

Suy dpcm

Bài cho a,b,c dương CMR

Ta có suy

Mặt khác ta áp dụng BDT BCS ta có

Suy dpcm

Bài cho a,b,c dương thỏa mãn abc=1 CMR

(13)

Ta có abc=1 Ta cần CM Ta có

dpcm Bài tập tự luyện

1,Cho a,b,c dương thảo mãn CMR a,

B,

1,Cho a,b,c dương thảo mãn Tìm

Bài cho

CMR

Bài 3,cho a,b,c thỏa mãn CMR

Chuyên đề 12: Phương pháp quy nạp chứng minh bất đẳng thức A Nội dung.

Cơ sở phương pháp quy nạp để chứng minh bất đẳng thức với số tự nhiên thuộc tập D tập số tự nhiên N, mà phần tử nhỏ tập đó; ta thực ba bước quy nạp sau:

Chứng minh BĐT với

Giả sử bất đẳng thức với số tự nhiên , từ ta chứng minh bất đẳng thức cũng với n= k+1

Kết luận: Bất đẳng thức với số tự nhiên B Bài tập ví dụ.

Bài 1: Cho n số thực không âm: thoả mãn: CMR

Bg:

Với =1, suy (1) với n=1.

Giả sử (1) với Cần chứng minh (1) với

Cho k+1 số thực không âm thoả mãn ; Xét hai trường hợp:

 Nếu: suy (1) đúng.

 Nếu có số khác Ví dụ phải có số nhỏ 1, giả sử Xét k số sau:

Ta có tích k số 1, nên theo giả thiết quy nạp ta có:

(vì )

Vậy (1) với .

(14)

Nếu số có số khơng bất đẳng thức hiển nhiên Do ta cần xét dương Xét n số thực dương sau đây:

Ta có: dương có tích Do theo Bài ta có

Vậy BĐT cho CM hoàn toàn. C Bài tập tự luyện

Bài 1:CMR với số tự nhiên n ta có bất đẳng thức: Bài 2: CMR với số tự nhiên n khác khơng, ta có BĐT: Bài 3: Cho a>-1 n số tự nhiên khác không CMR: Bài 4: CMR a số thực dương ta có BĐT:

(n dấu căn) Bài 5: CMR với số tự nhiên n>2 ta có:

Chuyên đề 13: Phương pháp ước lượng non, ước lượng già chứng minh bất đẳng thức. A Nội dung:

Cơ sở phương pháp thêm bớt hay nhiều số thực (mà ta biết dấu, biết tính chất chúng) vào biểu thức (ở biểu thức chứa nhóm hay vế BĐT cần chứng minh) Thông thường, sử dụng hai loại ước lượng non-già phổ biến sau:

1/ Ước lượng vài hạng tử tổng hay tích

 Chẳng hạn:

 D: tập xác định hàm y = f(x) 2/ Ước lượng phân số dương  Chẳng hạn :

[ct]\

\begin{array}{l}

< \frac{A}{B} < \frac{A}{{B - 1}} < < A \\

\frac{1}{{1.2.3.4}} < \frac{1}{{3.4}};\frac{1}{{1.2.3.4.5}} < \frac{1}{{4.5}} ;\frac{1}{{1.2.3 n}} < \frac{1}{{n(n - 1)}} \\ [/ct]

(15)

B Bài tập ví dụ:

Bài 1: Cho a, b, c, d số dương nhỏ CMR

C Bài tập tự luyện

Bài 1: Cho a, b, c số dương có tổng CMR

Ngày đăng: 02/05/2021, 12:27

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w