Mời các bạn tham khảo Đề cương ôn tập học kỳ 2 - Ban cơ bản năm học 2009 - 2010 Môn Toán Lớp 11 sau đây để củng cố những kiến thức về giải tích và hình học theo chương trình cơ bản của mô Toán lớp 11. Tài liệu phục vụ cho các bạn học sinh lớp 11 và những em quan tâm tới môn học này.
Trường THPT Hai Bà Trưng- Buôn Hồ - ĐăkLăk ĐỀ CƯƠNG ÔN TẬP HỌC KỲ II - BAN CƠ BẢN NĂM HỌC 2009 - 2010 A PHẦN GIẢI TÍCH I Giới hạn Bài :Tính giới hạn sau: x + 5x + x→ −4 x+4 2− x 5) lim x →2 x+7 −3 x2 + 2x − x →1 x − x − 4x + − 6) lim x →2 x2 − 1) lim 2) lim x2 −1 x − 3x + x + − 2x + 7) lim x→4 x− 3) lim x − >1 x − 16 x →−2 x + x x +1 + x + − 8) lim x →0 x 4) lim Bài 2: Tính giới hạn sau: 2x −1 − x−3 x − 3x + 2) lim+ x →2 x−2 1) xlim →3 x − 5x + 3) lim x →1 ( x − 1) x+ x 4) xlim − >0 + x− x Bài 3: Tính giới hạn sau: 1) xlim → −∞ − x+3 2x − x3 + 3x − x →+∞ − x − x + ( x + x + − x) 5) xlim → +∞ x2 − x + 2x − 2) lim 3) lim (2 x − x − x + ) 6) x lim → +∞ ( x + x − − x − x − 1) 7) xlim → −∞ Bài 4: Tính giới hạn sau: (− x + x − x + 1) 2) lim ( x − x − 3) 1) xlim →−∞ x→ − ∞ x → −∞ (−2 x − x + x − 3) 3) xlim → +∞ 4) lim x→−∞ x2 − 3x + 2x 3x − 3x − x 4) xlim →−∞ Bài 5: Xét tính liên tục R hàm số sau: a) x2 − f ( x) = x + −4 khi x ≠ −2 b) x = −2 x2 + x − Bài 6: Cho hàm số f(x) = x + 2 x + m x ≠ −2 x = −2 x −1 , x < f ( x ) = x −1 ,x ≥1 x Với giá trị m hàm số liên tục x = - Bài 7: CMR phương trình sau có hai nghiệm: x3 − 10 x − = II Đạo hàm Bài 1: Tìm đạo hàm hàm số sau: 1) y = x − x + 2) y = x − x + 3x 3) y = ( x + x)(5 − x ) 5) 6) y = ( x + 1)( x + 2) ( x + 3) 7) y = ( x + 5) 4) y = (t + 2)(t + 1) 8) y = (1- 2t)10 9) y = (x3 +3x-2)20 12) y = x + x + y = x ( x − 1)(3x + 2) 13) y = 2x − x−2 3x − x + 17 y = 2x − 3 21) y = − x x 10) y = (x7 + x)2 11) y = x2 − 3x + 2x x −1 14) y = 2x − 6x + 2x + 15) y = 18) y = 3x - x - x +2 19) y= x + x 22) y = − + − x x x x 23) y = GV: Nguyễn Ngọc Sang 2 x − 3x + 2x + x + 16) y = ( x + x + 1) 20) y = x − + x + 24) y = x + −6 x x Trường THPT Hai Bà Trưng- Buôn Hồ - ĐăkLăk 25) y = 29) y = 1+ x 1− x x2 x2 + a2 26) y = x x 27) y = 28) y = ( x + 1) x + x + 30) y = 3x − ax + 2a , ( a số) , ( a số) Bài 2: Tìm đạo hàm hàm số sau: 1) y = sin2x – cos2x 2) y = sin5x – 2cos(4x + 1) 3) y = sin x cos x 4) y = sin x + 7) y = (1 + cot x ) y = cos x sin x 5) y = sin x y= sin(sinx) 6) y = sin x + cos x y = cos( x3 + x -2 ) + sin x − sin x y = 1+ 2tanx π y = cot3(2x + ) y = tan y = + tan2 x y= y = x x y = x.cotx y = sin2(cos3x) x+1 sin x + cos x sin x − cos x Bài 3: Tìm đạo hàm cấp của hàm số sau: 1) y = x − x + 2) y = x − x + 3) y = 5) y = sin2x – cos2x 7) y = x 6) y = x.cos2x y= sinx x + x sinx y = sin 2x − x−2 x 4) y = 2x − 6x + 2x + 8) y = x + x Bài 4: Tìm vi phân của hàm số: 1) y = x − x + 2) y = ( x + 2)( x + 1) 2x − 6x + 4) y = sin x sin 3x 2x + b) Cho f ( x ) = ( x + 10 ) Tính f '' ( ) 3) y = Bài 5: a) Cho f ( x) = x + , tính f ’(1) π π c) f ( x ) = sin 3x Tính f '' − ÷; f ''( ) ; f '' ÷ 2 18 Bài 6: Cho hàm số: y = x + 4x +1 Viết PT tiếp tuyến đồ thị hàm số trường hợp sau: a) Tại điểm có hồnh độ x0 = 1; b) Tiếp tuyến có hệ số góc k = 31; c) Song song với đường thẳng d: y = 7x + 3; d) Vng góc với đường thẳng ∆: y = - x−5 16 Bài 7: Chứng minh hàm số sau thoả mãn hệ thức: a) f ( x) = x + x − x − thoả mãn: f ' (1) + f ' (−1) = −4 f (0) ; b) y = c) y = a.cosx +b.sinx thỏa mãn hệ thức: y’’ + y = d) y = cot2x thoả mãn hệ thức: y’ + 2y + = Bài 8: Giải phương trình : y’ = biết rằng: 1) y = x − x − x + 2) y = x − x + 3) y = x − x + x − x + 15 x−2 y = cos x + sin x + x 9) 5) y = 6) y = x + x 7) y = 10) y = sin x − cos x + x Bài 9: Giải bất phương trình sau: 1) y’ > với y = x3 − 3x2 + GV: Nguyễn Ngọc Sang x− ; 2y'2 = (y − 1)y" x+ 4) y = x − x x x +4 2 11) y = 20 cos x + 12 cos x − 15 cos x 8) y = sin x + sin x − 3 2) y’ < với y = x + x − 2x + 2 Trường THPT Hai Bà Trưng- Buôn Hồ - ĐăkLăk x2 + x + 4) y’>0 với y = x − 2x x −1 Bài 10: Cho hàm số: y = x − (m + 1) x + 3(m + 1) x + 3) y’ ≥ với y = 1) Tìm m để phương trình y’ = 0: a) Có nghiệm c) Có nghiệm dương 2) Tìm m để y’ > với x 5) y’≤ với y = x − x b) Có nghiệm trái dấu d) Có nghiệm âm phân biệt B PHẦN HÌNH HỌC Bài 1: Cho hình chóp S.ABCD, ABCD hình vng cạnh a, tâm O; SA ⊥ (ABCD); SA = a AM, AN đường cao tam giác SAB SAD; 1) CMR: Các mặt bên chóp tam giác vng Tính tổng diện tích tam giác 2) Gọi P trung điểm SC Chứng minh OP ⊥ (ABCD) 3) CMR: BD ⊥ (SAC) , MN ⊥ (SAC) 4) Chứng minh: AN ⊥ (SCD); AM ⊥ SC 5) SC ⊥ (AMN) 6) Dùng định lí đường vng góc chứng minh BN ⊥ SD 7) Tính góc SC (ABCD) 8) Hạ AD đường cao tam giác SAC, chứng minh AM,AN,AP đồng phẳng Bài 2: Cho hình chóp S.ABC có đáy ABC tam giác vuông cân B , SA ⊥ (ABC) Kẻ AH , AK vng góc với SB , SC H K , có SA = AB = a 1) Chứng minh tam giác SBC vuông 2) Chứng minh tam giác AHK vuông tính diện tích tam giác AHK 3) Tính goực AK (SBC) Bài 3: Cho tứ diện ABCD có (ABD) ⊥ (BCD), tam giác ABD cân A; M , N trung điểm BD BC a) Chứng minh AM ⊥ (BCD) b) (ABC) ⊥ (BCD) c) kẻ MH ⊥ AN, cm MH ⊥ (ABC) Bài 4: Chi tứ diện ABCD , tam giác ABC ACD cân A B; M trung điểm CD a)Cm (ACD) ⊥ (BCD) b)kẻ MH ⊥ BM chứng minh AH ⊥ (BCD) c)kẻ HK ⊥ (AM), cm HK ⊥ (ACD) Bài 5: Cho hình chóp S.ABCD, đáy ABCD hình thang vng có BC đáy bé góc ·ACD = 900 a) tam giác SCD, SBC vuông b)Kẻ AH ⊥ SB, chứng minh AH ⊥ (SBC) c)Kẻ AK ⊥ SC, chứng minh AK ⊥ (SCD) Bài 6: Cho hình chóp S.ABCD có đáy ABCD hình vng cạnh a; SA=SB=SC=SD=a ; O tâm hình vng ABCD a) cm (SAC) (SBD) vng góc với (ABCD) b) cm (SAC) ⊥ (SBD) c) Tính khoảg cách từ S đến (ABCD) d) Tính góc đường SB (ABCD) GV: Nguyễn Ngọc Sang Trường THPT Hai Bà Trưng- Buôn Hồ - ĐăkLăk e) Gọi M trung điểm CD, hạ OH ⊥ SM, chứng minh H trực tâm tam giác SCD f) tính góc giưa hai mặt phẳng (SCD) (ABCD) g) Tính khoảng cách SM BC; SM AB Bài 7: Cho hình chóp S.ABCD có SA ⊥ (ABCD) SA=a; đáy ABCD hình thang vng có đáy bé BC, biết AB=BC=a, AD=2a 1)Chứng minh mặt bên hình chóp tam giác vng 2)Tính khoảng cách AB SD 3)M, H trung điểm AD, SM cm AH ⊥ (SCM) 4)Tính góc SD (ABCD); SC (ABCD) 5)Tính góc SC (SAD) 6)Tính tổng diện tích mặt chóp Bài 8: Cho tứ diện OABC có OA, OB OC đơi vng góc OA=OB=OC=a a)Chứng minh mặt phẳng (OBC), (OAC), (OAB) đôi vng góc b)M trung điểm BC, chứng minh (ABC) vng góc với (OAM) c)Tính khoảng cách OA BC d)Tính góc (OBC) (ABC) e)Tính d(O, (ABC) ) · · Bài 9: Cho chóp OABC có OA=OB=OC=a; ·AOC = 1200 ; BOA = 600 ; BOC = 900 cm a)ABC tam giác vuông b)M trung điểm AC; chứng minh tam giác BOM vng c)cm (OAC) ⊥ (ABC) d)Tính góc (OAB) (OBC) Bài 10: Cho hình chóp S.ABC có đáy ABC tam giác vuông cân đỉnh C, CA=CB=2a, hai mặt phẳng (SAB) (SAC) vng góc với mặt đáy, cạnh SA=a Gọi D trung điểm AB a)Cm: (SCD) ⊥ (SAB) b)Tính khoảng cách từ A đến (SBC) c)Tính góc hai mặt phẳng (SAB) (SBC) Bài 11: Cho tứ diện ABCD cạnh a a)Tính khoảng cách hai đường thẳng AB CD b)Tính góc câc cạnh bên mặt đáy c)Tính góc mặt bên mặt đáy d)Chứng minh cặp cạnh đối vng góc Bài 12: Cho hình lập phương ABCD.A’B’C’D’; M, N trung điểm BB’ A’B’ a)Tính d(BD, B’C’) b)Tính d(BD, CC’), d(MN,CC’) Bài 13: Cho hình lăng trụ đứng ABC.A’B’C’ có AB=BC=a; AC=a a)cmr: BC vng góc với AB’ b)Gọi M trung điểm AC, cm (BC’M) ⊥ (ACC’A’) c)Tính khoảng cách BB’ AC Bài 14: Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC vng C, CA=a; CB=b, mặt bên AA’B’B hình vng Từ C kẻ đường thẳng CH ⊥ AB, kẻ HK ⊥ AA’ a) CMR: BC ⊥ CK , AB’ ⊥ (CHK) b) Tính góc hai mặt phẳng (AA’B’B) (CHK) c) Tính khoảng cách từ C đến (AA’B’B) GV: Nguyễn Ngọc Sang ... Trưng- Buôn Hồ - ĐăkLăk 25 ) y = 29 ) y = 1+ x 1− x x2 x2 + a2 26 ) y = x x 27 ) y = 28 ) y = ( x + 1) x + x + 30) y = 3x − ax + 2a , ( a số) , ( a số) Bài 2: Tìm đạo hàm hàm số sau: 1) y = sin2x –... với y = x3 − 3x2 + GV: Nguyễn Ngọc Sang x− ; 2y '2 = (y − 1)y" x+ 4) y = x − x x x +4 2 11) y = 20 cos x + 12 cos x − 15 cos x 8) y = sin x + sin x − 3 2) y’ < với y = x + x − 2x + 2 Trường THPT... y = sin2x – cos2x 7) y = x 6) y = x.cos2x y= sinx x + x sinx y = sin 2x − x? ?2 x 4) y = 2x − 6x + 2x + 8) y = x + x Bài 4: Tìm vi phân của hàm số: 1) y = x − x + 2) y = ( x + 2) ( x + 1) 2x − 6x