1. Trang chủ
  2. » Giáo án - Bài giảng

Lý thuyết Lò phản ứng

36 10 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 36
Dung lượng 1,9 MB

Nội dung

QUABOX, CUBOX (KWU) : polynomial expansions MASTER (KAERI) : Nodal expansion method. Powerful when scattering, flux can be considered as isotropic : Large LWR problem.[r]

(1)

2 Neutron interaction and transport

(2)

Neutron interaction

(n,3n) elastic scattering

capture (n,)

fission (n,f)

(n,n’)

235U

(3)

1 *

A A

Z Z

nX   X

capture

fission

absorption Reaction : Compound nucleus

 

reaction channel

Elastic Scattering kineticsenergy conservation momentum conservation

recoil

scattered neutron

(n,n) – elastic scattering

scattering

(4)

Cross section (microscopic) : probability of a reaction channel

unit : barn (area) = 10-24cm2=100fm

  number of ptl scattered into solid angle per unit time incident intensity

d d

    

2 sin

d    d

s  

ds

d

number of interaction per unit time per unit area incident intensity (number per unit time per unit area)

a

N

 

for very thin film with areal atom density Na

(5)

a

dIN I N Idx

  

 

N x

I xI e 

nuclide density

Macroscopic cross section

N

 

unit : cm-1

 

x

I xI e

Mean free path

1

x

xe dx     

Number density

A

N N

A

  (gr/cm )3  1

barn 0.6022 cm

(u) A

     

Macroscopic cross section

(6)

fission

moderation absorption

moderation leak

Speed of neutron :

v Em

neutron speed time to travel 1m 1MeV:13,800 km/s 72.3 ns

1eV:13.8 km/s 72.3 ms

25.3meV : 2200m/s 0.454 ms

v /E m

(7)

Monte Carlo simulation method

- Tracking individual neutron flight and collision history - statistical average behaviour

scattering born

fission

capture

tot

/ tot p  

/

n n tot

p   /

f f tot

p  

1

free

tot l

N

Monte Carlo simulation

Neutron transport

Monte Carlo method computer codes for neutron transport (and eigenvalue problem)

MCNP : developed by LANL, USA McCARD: developed by SNU, Korea SERPENT-2 : VTT, Finland

KENO (SCALE package) : developed by ORNL , USA • can describe physics accurately

• easy to handle complex geometry

• good to know a value at a detector volume - weight biasing to improve statistics • not good for sensitivity study

• requires long computer time for good statistical error - parallel computing using MPI

- vector computing using GPU - precomputed MC

(8)

Reaction rate : Rr, ,E   t r, , ,Et  r, , ,Et (m-3·rad-1·s-1)

Number of neutrons in a control volume:

Neutron balance in volume V, energy interval dE, angle interval d

Neutron transport equation ‐ derivation

 

, , ,

Vn Et dr dEd

r

1 neutron source

 

, , ,

VS Et d rdEd

r

2 scattering of neutrons from other energies and directions

   

0 s , ' , ' , ', ', ' '

VE EE t dE d dr dEd

       

   r r

3 net outflow of neutrons

   

ˆ

ˆ , , , , , ,

Sn Et dEd dS   VEt dr dEd

rr

Gauss’s theorem neutrons interaction

   

, , , ,

t

VEEt dr dEd

r r

 

, , ,

n r Et d dEdr

Number of neutrons at time t in volume dV, energy between E and E+dE, moving toward solid angle between  and +d

(m-2·rad-1·s-1)

(9)

- linear integro-differential equation

- Boltzmann transport equation ignoring (n-n) collision term

Initial condition and Boundary condition on convex volume

 , , , 0E

r  rs, , , 0E  0 for  nˆ<0

no incoming neutron flux

non-convex volume can be treated by larger convex volume, always

Neutron balance equation

       

     

3 3

0

3

, , , , , , , ' , ' , , ', ', ' '

, , , , , , ,

s

V V V

t

V V

n E t dr dEd S E t dr dEd E E t E t dE d dr dEd

t

E t dr dEd E E t dr dEd

                                    

r r r r

r r r

Recall definition of flux  vn

Time dependent neutron transport equation

Chain reaction problem f ext eff

S S

k  

  

Eigenvalue problem

      0 4      

, , , t , , , , s , ' , ' , , ', ', ' ' f , , ,

eff

E t E E t E E t E t dE d E t

k

     

  r    r r     r     r     r

              , , , , , , , , , , v , ' , ' , , ', ', ' ' , , , t s E t

E t E E t

t

E E t E t d dE S E t

                          r

r r r

(10)

Solving transport equation

Difficulties

- Energy dependent cross section is widely varying

- resonance cross section is dependent on temperature

 Multigroup condensation - Angle dependency

- Peripheral is strong, Center is weak

 SN, PN, Diffusion, etc - Complex geometry

- lattice structure

 Homogenization

- Numerical difficulty in convergence and negative flux

 Diffusion approximation

sufficient to predict power distribution in LWR

 , , ,E t

r

Find the multiplication factor (eigenvalue) and the flux (eigenvector)

reaction rate :  power : f

eff

k

neutron streaming/ vessel fluence

homogenization

(11)

Slowing down

Neutron slowing down – mostly by elastic scattering

 

2

2 '2

2

'

c

A A

E v

E v A

 

 

Energy after elastic scattering Maximum energy transfer

Average logarithmic energy decrement

Average number of collisions

 2

1

1 ln

2

A A

A A

    

2 /

A  

 '  lnE E'/  N E E

 

(12)

Moderation

  lnE0

u E

E

practical highest energy : E0= 20 MeV Good moderator material

• large s

• large 

• small a

Moderation data for some element Lethargy

slowing down power s average logarithmic energy loss per unit path

/

s a

 

moderation quality

enriched uranium is needed natural uranium can be used thick reflector is needed ~ 1meter

(reactor is bulky)

(13)

Assumptions :

• above thermal energy (> eV), nuclides is considered as not moving before collision • ignore absorption (reasonable at moderator region due to 1/v behavior)

for single isotope

  s    F E   EE

let F E  C

E

    /  '   

' '

'

E s s

E

E

E E E dE

E

 

  

Slowing down density

    0  '   ' '

s EE s E EE dE

     

Infinite homogeneous medium

Slowing down density : number of neutrons that passes the Energy E per volume per time

 

/

' '' ' ' '' '' '

E E s E E E E

qE E dE dE C

 

 

    

slowing down density is independent of energy

(if no absorption)

   

/

s q E

E E

(14)

Epithermal spectrum

el

 is nearly constant (except near resonance)

0

u

EE e

   

0

u u

s s

qE e du q

u du E dE du

E e

 

 

 

    

 

flux is constant in lethary scale

  s

q E

E

 

(15)

 

 3/ 1/ /

2 E k TB

B

N E dE

E e dE

Nk T

  2 

3/

/ 2

v v

4 v v

2

B

mv k T B

N d m

e d

Nk T

        v Em

speed distribution

Thermal energy

Thermal equilibrium of atoms follows Maxwell Boltzman distribution

Neutron scattering with medium in thermal motion

    / ' ', , , , ' b d E

E E T e S T

d dE kT E

           b

 bound atom scattering cross secion

  2 , ,

S T e

        

Free gas model

'

E E

kT

  

0

' '

E E EE

A kT

   

energy transfer momentum transfer

A0 : Mass number of atom

E

'

E

0

EkT

A0

cos 

• neutron can gain energy from moving target

 Scattering matrix, S(,), is depending on molecular structure, and crystal structure (related to photon dispersion relation)

(16)

Scattering in graphite

Ref) INDC-NDS-0475 (IAEA 2005)

free gas model

Bragg’s cutoff

(17)

 

  1/2 / 3/

2

B

E k T

B

N E dE N E e dE

k T  

neutron flux  

 03/ /

2 E k TB n

B N

E dE Ee dE

m k T

 

most probable energy =kBT

At T= 293K kBT = 0.025 eV

= 2200 m/s At T= 590K kBT = 0.051 eV

= 3100 m/s

 neutron temperature is higher than medium temperature

low energy cross section is higher

abs ~ 1/v

Thermal neutron flux distribution

(18)

      , , ,

a M n

a th

M n

E E T dE E T dE

             / 3/

2 E k TB n

B N

E dE Ee dE

m k T     

   2 2 /

0

B

E k T

B B

Ee dE k T k T

      293 B a a k E  

  1/ , 0 293 293

a th a B B

a

k k T

T             / / 0 3/

3 /

2

B B

E k T E k T

B

Ee dE Ee dE

E k T           

Effective absorption cross section

consider 1/v behavior of absorption cross section

0

a

 cross section at 2200 m/s

Maxwell average cross section at temperature T

,

a th

Recall gamma function

(19)

Heavy nuclides

• resonance energy region : ~ 100keV • interval is small : ~ 10 eB

• energy width is narrow • amplitude is strong Light nuclides

• resonance appears at very high energy : ~MeV • energy width is wide

• amplitude is not strong

(20)

interference upper

bound

Breit-Wigner single level resonance formular

   

2

2

4 / 2

n a na

r

E E

 

  

  

reaction channel (,f, etc.)

2 n n

h h

p m E

  

de Broglie wave length of neutron

For low energy E~0

1

v

na

E

E E

   

2

4 potential scattering term

s a

   

n E

 

2

2

lJ

n J nn

l J

g U

k

   

2

/

i nr

nn

U e i

E E i

  

 

 

  

 elastic scattering

penetrability factor

collision matrix

ka  

For low energy

1/v law of neutron cross section

~ constant

a

Resonance cross section

(21)

238U

 

0

n

E g  

      

 

 at resonance peak

    0

2.608 10

4 b eV A E A              2 n E g E E          

near resonance peak        2 0 l l P E E P E E E                           

2 / 2 0 l E E E E E                       

(exact for s-wave)

  1/ 2 

0 1 E E E y           

for s-wave resonance

 0

2

yEE

Resonance tail (E ~ 0, s-wave)

1/

0 2

0

1

1 /

E

E E E

 

     

    

(22)

Average absorption in resonance energy range

• (broad) flux is 1/E outside narrow region of resonance (constant in lethargy unit)

      a resonance res resonance

E E dE E dE        , , a res a res res RI u   

Resonance Integral a res, a  a  resonance resonance

dE

RI E u du

E

 

   

Resonance Integral

  1/ 2 

0 2 1 E E E y              res E RI dE E    

integrate only y, high value near resonance and full integration is ∞

 

/

2 2 / 2

1 1

1 tan cos

1 y dy d

    

 

     

 

 0

2

yEE

2 dEdy

0

0

1

2res1

RI dy E y          0 RI E      

(23)

Target nucleus are moving due to temperature

relative velocity of neutron with moving nuclide vr  v V v

V  

p V dV : probability of a nucleus having velocitity between (V, V+dV)

effective cross section of neutron for target temperature T

     

,

1 v v

T E r Er P d

 

    V V

probability of reaction per sec vr    Er P V dV

relative energy ?  2  2 2

v v

2

r z x y

m m

E  V   VVV  (assume neutron is moving z direction)

 

2

r z

m

EvvV (neutron is much faster than target velocity)

Doppler broadening

  2 

3/ / 2 B

MV k T B

M

P d V e d

k T

 

  

 

V V V

assume Maxwell distribution of target nucleus

   

,T ,

E E x E       

 Doppler line shape function

    1/ 0 1 r r E E E y            s-wave SLBW We have

 ,x

(24)

When T is low, is large

 

1 , x x    

When T is high, is small

  2

, exp

2

xx

      

 

Line shape function for scattering cross section

     

2

2

exp /

,

1

y x y

x dy y            

Doppler line shape function

U-238 0K 300,000K     2 exp , x y x dy y                 

Line shape function for absorption cross section

 0

2

r

yEE

 0

2

xEE

4k TEB 4k TEB r

A A

  

  

(25)

Absorption in narrow energy range

homogeneous mixture with fuel, ignoring absorption in moderator

• scattering cross section is nearly constant

• (broad) flux is 1/E outside resonance (constant in lethargy unit)

Homogeneous mixture

    /    

' ' '

E

t E E E s E E E dE

   

   

    /   '  /   ' 

' '

' '

F M

F M

E E

s s

F F M

a s s

E E

F M

E E

E dE dE

E E

     

   

 

   

 

 

   

0

1

1 /

u a

E

E E

 

 

 

What is flux shape at resonance ?

pot

a

E

resonance

(U-238)

(26)

Scattering resonance at fuel(resonance) nuclide is small       /      ' ' ' R E s

R R R b

a s pot b E

E

E E E E dE

E E                     

• NR (Narrow Resonance) approximation

 assume resonance width is small  

   

/ /

' ' '

1 ' ' '

R R

R

E pot E pot

s u

u

E E

E

E dE dE

E E E E

     

 

   

 

 

   Rpot b

R t b E E E        

       aR 

R R

NR a pot b R

t b

res res

E

RI E E dE dE

E              total

b: background cross section (include all others)

Large background = infinite dilution   lim lim b b R a NR WR res E

RI RI dE

E

 

 

  

Resonance approximation

• NRIM (Narrow Resonance Infinite Mass absorber) or Wide Resonance approximation

 integral term is zero

Infinite dilution

   b

R t b E E E           R a WR b R

t b res E RI dE E       

(27)

Discrete Ordinate method (SN method)

Neutron transport equation (steady state)

Angular quadrature

   

0

2

' '

4

s s P

 

 

       

 

Scattering cross section (in Lab system)

 , ,Et ,E  , ,E  0 4 s ,E' E, '   ,E', 'dE d' ' S , ,E

     

  r   r r    r     r    r

 

4

1

N

n n n

fd w f

  

 n : ordinate

wn =n : angular weight scattering integral term becomes summation

transport collision scattering source

n

 

1

N

n n t n j s n j j n j

w S

    

      

Solve NxN system of equation for angular direction Spatial discretization : FDM, etc

ANISN, DORT, TORT (ORNL), DANTSYS (LANL), etc

(28)

Spherical harmonics (PN) method

Angular flux is approximated by a finite spherical harmonics expansion

      , N n m m n n n m n

r r Y

 

 

    Total (N+1)2terms

Simplified PN method

1D case using orthogonality of Legendre polynomial

1

0

1

2

n n

n n n

d d

n n

q

n dx n dx

      

   

  isotropic source term

1

1

1

2

n n n n

d n n

dx n n

                 

Elliminate odd order terms

1

1 2 0

1 1

2 n n n n n n n n n

d n d n n n d n n

q

dx ndx nnndx nn    

                                   

0, 2, 4,

n 

for

Total (N+1)/2 equations 3D case

1

1 2 0

1 1

2 n n n n n n n n n

n n n n n n

q

nnnnnn    

                                   

SP7 have equations

   

1

sn Pn s d

    

 

0 t s0 a

   

for

n sn n

(29)

Collision Probability Method (CPM)

Assume isotropic angular flux and source

 , ,Et ,E  , ,E  0 4 s ,E' E, '   ,E', 'dE d' ' S , ,E

     

  r   r r    r     r    r

       

4

1

ˆ

4  r d t rrq r    

'

3

1

ˆ ' '

4 '

t

e

q d

 

r r

r r r

r r

CPM

  ,      

1

,

k

n

t i i V s k k j k j ij i j j k

r V r S r P r r dV

   

  

discrete volume

Pij : probability for a neutron starting at zone i colliding at zone j

i j

Pij can be derived analytically (for simple geometry) Widely used for multigroup condensation

'

1

'

4 '

t

ij

e

P d

 

r r r

r r

(30)

Method of characteristics

 , ,Et ,E  , ,E  0 4 s ,E' E, '   ,E', 'dE d' ' S , ,E

     

  r   r r    r     r    r

 ,  t   ,  Q , 

  

 r   r r   r

d ds

 

 

along a characteristic direction

  '

0 0 '

ts ts s ts

s eeQeds

    

analytic solution exists

DeCART : developed by SNU, Korea OpenMOC

Ray-tracing method

(31)

Diffusion equation

SP1 form

1

1 0 0

1

3    q

    

Fick’s law

J   D

J  q

   

Diffusion equation

1

1

D

0 : absorption cross section

1 : transport cross section

 

1

tr s d

   



1 0 tr s

  

0 : average cosine angle of scattering

tr: transport mean free path

Finite difference method : need small intervals (1~2cm) CITATION, VENTURE, PDQ, …

Nodal methods : large intervals (10~20cm)

ANM (MIT) : Analytic Nodal Method – 1D analytic solution with quadratic poly interpolation in transverse direction leakage

QUABOX, CUBOX (KWU) : polynomial expansions MASTER (KAERI) : Nodal expansion method

(32)

Solution Methods for Neutron Diffusion Equation

• Finite Difference Method

– Divides system into fine meshes equivalent to thermal neutron mean free path (1~2 cm)

– Approximates flat flux in each homogeneous mesh • Nodal Method

– Nodes are relatively large (10 ~ 20 cm) homogeneous volumes so that FDM is not applicable.

– In the nodal equation, each node is only coupled with its direct neighbors. – The average flux per node and the net leakage should be uniquely

(33)

Nodal Method for Neutron Diffusion Equation

• Diffusion Equation Formulation

– Multi-group diffusion equation for steady state condition for flux and current

∙ Σ

Σ Σ →

(34)

Nodal methods

Assume intra flux distribution in homogeneous volume using various values

Partial current : net current = in coming – out going

xr xr xr

JJ J

xr Jxr Jxl Jxl J Surface flux xlxrx h         1

xr xr xl xl yr yr yl yl

x y

J J J J J J J J q

h h 

                       x L   x xs xs x s d x

J J D

dx

 

   sl r,

      2 x x x d x

D x q L x

dx        

xs Jxs Jxs

    

Partial current

2 x x x d J D dx          Transverse Leakage

  22  , x

y

D

L x x y dy

h y

  

(35)

Nodal Method for Neutron Diffusion Equation

   

x xn n

n

x a p x

  x  xn n 

n

L x b p x

 

0

1 for

1

0 for

x

h n x

n p x dx

n h

 

   

Nodal Expansion Method (NEM)

- polynomial expansion of transverse surface flux and leakage

coefficients a and b can determined from nodal balance equations Analytic Nodal Method (ANM)

- solve transversed integrated equation analytically

- assuming quadratic shape for the transverse leakage

(36)

Summary of transport analysis

• ENDF : Evaluated Nuclear Data Library • resonance parameters

• pointwise cross sections • Energy condensation

• resonance integral • scattering matrix

• CPM – multigroup condensation to multigroup (69~100) library

• MOC – assembly wise calculation to obtain few group (2~10) constant for core wide calculation

• Diffusion method – isotropic scattering/ angle independent flux

• Core wide analysis

 Monte Carlo method – usually for reference cases

 SN method – when non-isotropy is important, such as shielding analysis

ENDF

69 group library

few group constant

power distribution, reactivity coefficient,

etc Diffusion; Nodal method

Transport calculation;

MOC

Energy, Temperature effect:

CPM

Monte Carlo

reference

point library

Ngày đăng: 27/04/2021, 17:24

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w