QUABOX, CUBOX (KWU) : polynomial expansions MASTER (KAERI) : Nodal expansion method. Powerful when scattering, flux can be considered as isotropic : Large LWR problem.[r]
(1)2 Neutron interaction and transport
(2)Neutron interaction
(n,3n) elastic scattering
capture (n,)
fission (n,f)
(n,n’)
235U
(3)1 *
A A
Z Z
n X X
capture
fission
absorption Reaction : Compound nucleus
reaction channel
Elastic Scattering kineticsenergy conservation momentum conservation
recoil
scattered neutron
(n,n) – elastic scattering
scattering
(4)Cross section (microscopic) : probability of a reaction channel
unit : barn (area) = 10-24cm2=100fm
number of ptl scattered into solid angle per unit time incident intensity
d d
2 sin
d d
s
ds
d
number of interaction per unit time per unit area incident intensity (number per unit time per unit area)
a
N
for very thin film with areal atom density Na
(5)a
dI N I N Idx
N x
I x I e
nuclide density
Macroscopic cross section
N
unit : cm-1
x
I x I e
Mean free path
1
x
xe dx
Number density
A
N N
A
(gr/cm )3 1
barn 0.6022 cm
(u) A
Macroscopic cross section
(6)fission
moderation absorption
moderation leak
Speed of neutron :
v E m
neutron speed time to travel 1m 1MeV:13,800 km/s 72.3 ns
1eV:13.8 km/s 72.3 ms
25.3meV : 2200m/s 0.454 ms
v /E m
(7)Monte Carlo simulation method
- Tracking individual neutron flight and collision history - statistical average behaviour
scattering born
fission
capture
tot
/ tot p
/
n n tot
p /
f f tot
p
1
free
tot l
N
Monte Carlo simulation
Neutron transport
Monte Carlo method computer codes for neutron transport (and eigenvalue problem)
MCNP : developed by LANL, USA McCARD: developed by SNU, Korea SERPENT-2 : VTT, Finland
KENO (SCALE package) : developed by ORNL , USA • can describe physics accurately
• easy to handle complex geometry
• good to know a value at a detector volume - weight biasing to improve statistics • not good for sensitivity study
• requires long computer time for good statistical error - parallel computing using MPI
- vector computing using GPU - precomputed MC
(8)Reaction rate : Rr, ,E t r, , ,E t r, , ,E t (m-3·rad-1·s-1)
Number of neutrons in a control volume:
Neutron balance in volume V, energy interval dE, angle interval d
Neutron transport equation ‐ derivation
, , ,
Vn E t dr dEd
r
1 neutron source
, , ,
VS E t d rdEd
r
2 scattering of neutrons from other energies and directions
0 s , ' , ' , ', ', ' '
V E E E t dE d dr dEd
r r
3 net outflow of neutrons
ˆ
ˆ , , , , , ,
Sn E t dEd dS V E t dr dEd
r r
Gauss’s theorem neutrons interaction
, , , ,
t
V E E t dr dEd
r r
, , ,
n r E t d dEdr
Number of neutrons at time t in volume dV, energy between E and E+dE, moving toward solid angle between and +d
(m-2·rad-1·s-1)
(9)- linear integro-differential equation
- Boltzmann transport equation ignoring (n-n) collision term
Initial condition and Boundary condition on convex volume
, , , 0E
r rs, , , 0E 0 for nˆ<0
no incoming neutron flux
non-convex volume can be treated by larger convex volume, always
Neutron balance equation
3 3
0
3
, , , , , , , ' , ' , , ', ', ' '
, , , , , , ,
s
V V V
t
V V
n E t dr dEd S E t dr dEd E E t E t dE d dr dEd
t
E t dr dEd E E t dr dEd
r r r r
r r r
Recall definition of flux vn
Time dependent neutron transport equation
Chain reaction problem f ext eff
S S
k
Eigenvalue problem
0 4
, , , t , , , , s , ' , ' , , ', ', ' ' f , , ,
eff
E t E E t E E t E t dE d E t
k
r r r r r r
, , , , , , , , , , v , ' , ' , , ', ', ' ' , , , t s E t
E t E E t
t
E E t E t d dE S E t
r
r r r
(10)Solving transport equation
Difficulties
- Energy dependent cross section is widely varying
- resonance cross section is dependent on temperature
Multigroup condensation - Angle dependency
- Peripheral is strong, Center is weak
SN, PN, Diffusion, etc - Complex geometry
- lattice structure
Homogenization
- Numerical difficulty in convergence and negative flux
Diffusion approximation
sufficient to predict power distribution in LWR
, , ,E t
r
Find the multiplication factor (eigenvalue) and the flux (eigenvector)
reaction rate : power : f
eff
k
neutron streaming/ vessel fluence
homogenization
(11)Slowing down
Neutron slowing down – mostly by elastic scattering
2
2 '2
2
'
c
A A
E v
E v A
Energy after elastic scattering Maximum energy transfer
Average logarithmic energy decrement
Average number of collisions
2
1
1 ln
2
A A
A A
2 /
A
' lnE E'/ N E E
(12)Moderation
lnE0
u E
E
practical highest energy : E0= 20 MeV Good moderator material
• large s
• large
• small a
Moderation data for some element Lethargy
slowing down power s average logarithmic energy loss per unit path
/
s a
moderation quality
enriched uranium is needed natural uranium can be used thick reflector is needed ~ 1meter
(reactor is bulky)
(13)Assumptions :
• above thermal energy (> eV), nuclides is considered as not moving before collision • ignore absorption (reasonable at moderator region due to 1/v behavior)
for single isotope
s F E E E
let F E C
E
/ '
' '
'
E s s
E
E
E E E dE
E
Slowing down density
0 ' ' '
s E E s E E E dE
Infinite homogeneous medium
Slowing down density : number of neutrons that passes the Energy E per volume per time
/
' '' ' ' '' '' '
E E s E E E E
q E E dE dE C
slowing down density is independent of energy
(if no absorption)
/
s q E
E E
(14)Epithermal spectrum
el
is nearly constant (except near resonance)
0
u
EE e
0
u u
s s
qE e du q
u du E dE du
E e
flux is constant in lethary scale
s
q E
E
(15)
3/ 1/ /
2 E k TB
B
N E dE
E e dE
N k T
2
3/
/ 2
v v
4 v v
2
B
mv k T B
N d m
e d
N k T
v E m
speed distribution
Thermal energy
Thermal equilibrium of atoms follows Maxwell Boltzman distribution
Neutron scattering with medium in thermal motion
/ ' ', , , , ' b d E
E E T e S T
d dE kT E
b
bound atom scattering cross secion
2 , ,
S T e
Free gas model
'
E E
kT
0
' '
E E EE
A kT
energy transfer momentum transfer
A0 : Mass number of atom
E
'
E
0
E kT
A0
cos
• neutron can gain energy from moving target
Scattering matrix, S(,), is depending on molecular structure, and crystal structure (related to photon dispersion relation)
(16)Scattering in graphite
Ref) INDC-NDS-0475 (IAEA 2005)
free gas model
Bragg’s cutoff
(17)
1/2 / 3/
2
B
E k T
B
N E dE N E e dE
k T
neutron flux
03/ /
2 E k TB n
B N
E dE Ee dE
m k T
most probable energy =kBT
At T= 293K kBT = 0.025 eV
= 2200 m/s At T= 590K kBT = 0.051 eV
= 3100 m/s
neutron temperature is higher than medium temperature
low energy cross section is higher
abs ~ 1/v
Thermal neutron flux distribution
(18) , , ,
a M n
a th
M n
E E T dE E T dE
/ 3/
2 E k TB n
B N
E dE Ee dE
m k T
2 2 /
0
B
E k T
B B
Ee dE k T k T
293 B a a k E
1/ , 0 293 293
a th a B B
a
k k T
T / / 0 3/
3 /
2
B B
E k T E k T
B
Ee dE Ee dE
E k T
Effective absorption cross section
consider 1/v behavior of absorption cross section
0
a
cross section at 2200 m/s
Maxwell average cross section at temperature T
,
a th
Recall gamma function
(19)Heavy nuclides
• resonance energy region : ~ 100keV • interval is small : ~ 10 eB
• energy width is narrow • amplitude is strong Light nuclides
• resonance appears at very high energy : ~MeV • energy width is wide
• amplitude is not strong
(20)interference upper
bound
Breit-Wigner single level resonance formular
2
2
4 / 2
n a na
r
E E
reaction channel (,f, etc.)
2 n n
h h
p m E
de Broglie wave length of neutron
For low energy E~0
1
v
na
E
E E
2
4 potential scattering term
s a
n E
2
2
lJ
n J nn
l J
g U
k
2
/
i nr
nn
U e i
E E i
elastic scattering
penetrability factor
collision matrix
ka
For low energy
1/v law of neutron cross section
~ constant
a
Resonance cross section
(21)238U
0
n
E g
at resonance peak
0
2.608 10
4 b eV A E A 2 n E g E E
near resonance peak 2 0 l l P E E P E E E
2 / 2 0 l E E E E E
(exact for s-wave)
1/ 2
0 1 E E E y
for s-wave resonance
0
2
y EE
Resonance tail (E ~ 0, s-wave)
1/
0 2
0
1
1 /
E
E E E
(22)Average absorption in resonance energy range
• (broad) flux is 1/E outside narrow region of resonance (constant in lethargy unit)
a resonance res resonance
E E dE E dE , , a res a res res RI u
Resonance Integral a res, a a resonance resonance
dE
RI E u du
E
Resonance Integral
1/ 2
0 2 1 E E E y res E RI dE E
integrate only y, high value near resonance and full integration is ∞
/
2 2 / 2
1 1
1 tan cos
1 y dy d
0
2
y EE
2 dEdy
0
0
1
2res1
RI dy E y 0 RI E
(23)Target nucleus are moving due to temperature
relative velocity of neutron with moving nuclide vr v V v
V
p V dV : probability of a nucleus having velocitity between (V, V+dV)
effective cross section of neutron for target temperature T
,
1 v v
T E r Er P d
V V
probability of reaction per sec vr Er P V dV
relative energy ? 2 2 2
v v
2
r z x y
m m
E V V V V (assume neutron is moving z direction)
2
r z
m
E v vV (neutron is much faster than target velocity)
Doppler broadening
2
3/ / 2 B
MV k T B
M
P d V e d
k T
V V V
assume Maxwell distribution of target nucleus
,T ,
E E x E
Doppler line shape function
1/ 0 1 r r E E E y s-wave SLBW We have
,x
(24)When T is low, is large
1 , x x
When T is high, is small
2
, exp
2
x x
Line shape function for scattering cross section
2
2
exp /
,
1
y x y
x dy y
Doppler line shape function
U-238 0K 300,000K 2 exp , x y x dy y
Line shape function for absorption cross section
0
2
r
y E E
0
2
x EE
4k TEB 4k TEB r
A A
(25)Absorption in narrow energy range
homogeneous mixture with fuel, ignoring absorption in moderator
• scattering cross section is nearly constant
• (broad) flux is 1/E outside resonance (constant in lethargy unit)
Homogeneous mixture
/
' ' '
E
t E E E s E E E dE
/ ' / '
' '
' '
F M
F M
E E
s s
F F M
a s s
E E
F M
E E
E dE dE
E E
0
1
1 /
u a
E
E E
What is flux shape at resonance ?
pot
a
E
resonance
(U-238)
(26)Scattering resonance at fuel(resonance) nuclide is small / ' ' ' R E s
R R R b
a s pot b E
E
E E E E dE
E E
• NR (Narrow Resonance) approximation
assume resonance width is small
/ /
' ' '
1 ' ' '
R R
R
E pot E pot
s u
u
E E
E
E dE dE
E E E E
Rpot b
R t b E E E
aR
R R
NR a pot b R
t b
res res
E
RI E E dE dE
E total
b: background cross section (include all others)
Large background = infinite dilution lim lim b b R a NR WR res E
RI RI dE
E
Resonance approximation
• NRIM (Narrow Resonance Infinite Mass absorber) or Wide Resonance approximation
integral term is zero
Infinite dilution
b
R t b E E E R a WR b R
t b res E RI dE E
(27)Discrete Ordinate method (SN method)
Neutron transport equation (steady state)
Angular quadrature
0
2
' '
4
s s P
Scattering cross section (in Lab system)
, ,E t ,E , ,E 0 4 s ,E' E, ' ,E', 'dE d' ' S , ,E
r r r r r r
4
1
N
n n n
fd w f
n : ordinate
wn =n : angular weight scattering integral term becomes summation
transport collision scattering source
n
1
N
n n t n j s n j j n j
w S
Solve NxN system of equation for angular direction Spatial discretization : FDM, etc
ANISN, DORT, TORT (ORNL), DANTSYS (LANL), etc
(28)Spherical harmonics (PN) method
Angular flux is approximated by a finite spherical harmonics expansion
, N n m m n n n m n
r r Y
Total (N+1)2terms
Simplified PN method
1D case using orthogonality of Legendre polynomial
1
0
1
2
n n
n n n
d d
n n
q
n dx n dx
isotropic source term
1
1
1
2
n n n n
d n n
dx n n
Elliminate odd order terms
1
1 2 0
1 1
2 n n n n n n n n n
d n d n n n d n n
q
dx n dx n n n dx n n
0, 2, 4,
n
for
Total (N+1)/2 equations 3D case
1
1 2 0
1 1
2 n n n n n n n n n
n n n n n n
q
n n n n n n
SP7 have equations
1
sn Pn s d
0 t s0 a
for
n sn n
(29)Collision Probability Method (CPM)
Assume isotropic angular flux and source
, ,E t ,E , ,E 0 4 s ,E' E, ' ,E', 'dE d' ' S , ,E
r r r r r r
4
1
ˆ
4 r d t r r q r
'
3
1
ˆ ' '
4 '
t
e
q d
r r
r r r
r r
CPM
,
1
,
k
n
t i i V s k k j k j ij i j j k
r V r S r P r r dV
discrete volume
Pij : probability for a neutron starting at zone i colliding at zone j
i j
Pij can be derived analytically (for simple geometry) Widely used for multigroup condensation
'
1
'
4 '
t
ij
e
P d
r r r
r r
(30)Method of characteristics
, ,E t ,E , ,E 0 4 s ,E' E, ' ,E', 'dE d' ' S , ,E
r r r r r r
, t , Q ,
r r r r
d ds
along a characteristic direction
'
0 0 '
ts ts s ts
s e e Qe ds
analytic solution exists
DeCART : developed by SNU, Korea OpenMOC
Ray-tracing method
(31)Diffusion equation
SP1 form
1
1 0 0
1
3 q
Fick’s law
J D
J q
Diffusion equation
1
1
D
0 : absorption cross section
1 : transport cross section
1
tr s d
1 0 tr s
0 : average cosine angle of scattering
tr: transport mean free path
Finite difference method : need small intervals (1~2cm) CITATION, VENTURE, PDQ, …
Nodal methods : large intervals (10~20cm)
ANM (MIT) : Analytic Nodal Method – 1D analytic solution with quadratic poly interpolation in transverse direction leakage
QUABOX, CUBOX (KWU) : polynomial expansions MASTER (KAERI) : Nodal expansion method
(32)Solution Methods for Neutron Diffusion Equation
• Finite Difference Method
– Divides system into fine meshes equivalent to thermal neutron mean free path (1~2 cm)
– Approximates flat flux in each homogeneous mesh • Nodal Method
– Nodes are relatively large (10 ~ 20 cm) homogeneous volumes so that FDM is not applicable.
– In the nodal equation, each node is only coupled with its direct neighbors. – The average flux per node and the net leakage should be uniquely
(33)Nodal Method for Neutron Diffusion Equation
• Diffusion Equation Formulation
– Multi-group diffusion equation for steady state condition for flux and current
∙ Σ
Σ Σ →
(34)Nodal methods
Assume intra flux distribution in homogeneous volume using various values
Partial current : net current = in coming – out going
xr xr xr
J J J
xr J xr J xl J xl J Surface flux xl xr x h 1
xr xr xl xl yr yr yl yl
x y
J J J J J J J J q
h h
x L x xs xs x s d x
J J D
dx
sl r,
2 x x x d x
D x q L x
dx
xs Jxs Jxs
Partial current
2 x x x d J D dx Transverse Leakage
22 , x
y
D
L x x y dy
h y
(35)Nodal Method for Neutron Diffusion Equation
x xn n
n
x a p x
x xn n
n
L x b p x
0
1 for
1
0 for
x
h n x
n p x dx
n h
Nodal Expansion Method (NEM)
- polynomial expansion of transverse surface flux and leakage
coefficients a and b can determined from nodal balance equations Analytic Nodal Method (ANM)
- solve transversed integrated equation analytically
- assuming quadratic shape for the transverse leakage
(36)Summary of transport analysis
• ENDF : Evaluated Nuclear Data Library • resonance parameters
• pointwise cross sections • Energy condensation
• resonance integral • scattering matrix
• CPM – multigroup condensation to multigroup (69~100) library
• MOC – assembly wise calculation to obtain few group (2~10) constant for core wide calculation
• Diffusion method – isotropic scattering/ angle independent flux
• Core wide analysis
Monte Carlo method – usually for reference cases
SN method – when non-isotropy is important, such as shielding analysis
ENDF
69 group library
few group constant
power distribution, reactivity coefficient,
etc Diffusion; Nodal method
Transport calculation;
MOC
Energy, Temperature effect:
CPM
Monte Carlo
reference
point library