Nghiên cứu tổng hợp vật liệu ceo2 có cấu trúc nano nhằm ứng dụng trong cảm biến ADN

119 20 0
Nghiên cứu tổng hợp vật liệu ceo2 có cấu trúc nano nhằm ứng dụng trong cảm biến ADN

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

1. Tính cấp thiết của đề tài Ngày nay, bệnh dịch do vi sinh vật gây ra đang là mối hiểm hoạ không thể lường trước được. Trong những năm qua đã có hàng chục nghìn người chết bởi các loài vi sinh vật gây bệnh như: vi rút H5N1, SARS, vi khuẩn gây bệnh tả, vi rút viêm não Nhật Bản... gây ra. Trong số đó, căn bệnh thương hàn do chủng vi khuẩn Salmonella gây ra đã khiến hàng chục triệu người mắc bệnh với số người chết lên tới hàng triệu người. Theo thống kê của Bộ y tế 1 ở Việt Nam tỷ lệ mắc thương hàn tính trên 100.000 dân trong năm: 2010 là 64,4; 2011 là 56,8, trong đó tỷ lệ tử vong là 0,02100.000 dân; tới năm 2016 là 0,58. Tính riêng cho đối tượng là trẻ em số ca mắc thương hàn do khuẩn Salmonella theo các năm 2012, 2013, 2014, 2015 và 2016 lần lượt là: 613, 706, 469, 492, 374 với số trẻ chết được ghi nhận vào năm 2014 là 3 trẻ. Do đó, việc nghiên cứu các phương pháp phát hiện vi sinh vật gây bệnh đang là yêu cầu cấp thiết đặt ra cho các nhà khoa học cũng như của các hãng công nghiệp. Hiện nay, các phương pháp phân tích nhanh vi sinh vật thường được sử dụng là PCR, ELISA, nuôi cấy tế bào... là các phương pháp phân tích truyền thống trong công nghệ sinh học. Trong đó, các xét nghiệm miễn dịch như ELISA chỉ có thể phát hiện được Salmonella ở giới hạn 104 đến 105 CFUmL, với thời gian làm giàu mẫu mất khoảng 16 h đến 24 h và giới hạn này được cải thiện bằng phương pháp phản ứng chuỗi PCR xuống tới 5 CFUmL 2. Việc lấy mẫu xét nghiệm đòi hỏi quy trình khắt khe, các thí nghiệm phải được thực hiện trong phòng thí nghiệm đạt tiêu chuẩn của tổ chức Y tế thế giới, trang thiết bị đắt tiền. Vì vậy, việc nghiên cứu phát triển phương pháp bổ sung cho các phương pháp này là việc hết sức cần thiết. Trong đó, sử dụng cảm biến sinh học được cho là phương pháp hiệu quả, bổ sung cho các phương pháp truyền thống do cảm biến sinh học có độ nhạy, độ chọn lọc cao, dễ dàng sử dụng, thời gian phân tích nhanh và cho kết quả tin cậy 2,3. Cảm biến sinh học là một thiết bị phân tích trên cơ sở kết hợp giữa phần tử sinh học và bộ phận chuyển đổi tín hiệu để chuyển đổi các tín hiệu sinh hoá thành tín hiệu dễ dàng cho người quan sát. Do các phân tử sinh học không thể tự gắn được

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THỊ NGUYỆT NGHIÊN CỨU TỔNG HỢP VẬT LIỆU CeO2 CÓ CẤU TRÚC NANO NHẰM ỨNG DỤNG TRONG CẢM BIẾN ADN LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU Hà Nội - 2020 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI NGUYỄN THỊ NGUYỆT NGHIÊN CỨU TỔNG HỢP VẬT LIỆU CeO2 CÓ CẤU TRÚC NANO NHẰM ỨNG DỤNG TRONG CẢM BIẾN ADN Ngành: Khoa học vật liệu Mã số: 9440122 LUẬN ÁN TIẾN SĨ KHOA HỌC VẬT LIỆU NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS.TS PHƯƠNG ĐÌNH TÂM GS.TS TRẦN TRUNG Hà Nội - 2020 LỜI CẢM ƠN Trải qua năm học tập nghiên cứu hết mình, tác giả hoàn thành luận án Tiến sĩ Khoa học Vật liệu Viện AIST, trường Đại học Bách Khoa Hà Nội Để hồn thành luận án này, tác giả nhận hướng dẫn tận tâm, động viên bảo hết lòng hai thầy hướng dẫn PGS TS Phương Đình Tâm GS TS Trần Trung Qua đây, tác giả xin bày tỏ lòng biết ơn sâu sắc tới hai thầy đặc biệt PGS TS Phương Đình Tâm – người ln bên cạnh, sát sao, bảo, góp ý bước thực luận án tác giả Bên cạnh đó, tác giả nhận tư vấn, giúp đỡ, động viên vô to lớn thầy PGS TS Phạm Hùng Vượng, TS Nguyễn Đức Dũng PGS TS Đặng Thị Thanh Lê tồn thể thầy cô, bạn nghiên cứu sinh học viên cao học theo học Viện AIST anh chị em, bạn bè đồng nghiệp Tác giả xin gửi lời cảm ơn sâu sắc tới tồn thể thầy anh chị em bạn! Trong thời gian theo học Viện AIST, trường Đại học Bách Khoa Hà Nội, tác giả nhận tận tình giúp đỡ tập thể lãnh đạo Viện AIST, phòng ban chức trường Đại học Bách Khoa Hà Nội Tác giả xin trân trọng cảm ơn tất giúp đỡ này! Ngoài ra, tác giả xin tỏ lòng biết ơn sâu sắc tới đại gia đình nội ngoại hai bên, cảm ơn chồng tác giả đồng hành, tiếp sức cho tác giả suốt thời gian thực luận án! Tác giả Nguyễn Thị Nguyệt i LỜI CAM ĐOAN Tơi xin cam đoan cơng trình nghiên cứu riêng Các kết nêu luận án trung thực chưa tác giả khác công bố Hà Nội, ngày TM Tập thể hướng dẫn tháng năm 2020 Tác giả PGS.TS Phương Đình Tâm Nguyễn Thị Nguyệt ii MỤC LỤC LỜI CẢM ƠN i LỜI CAM ĐOAN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT vi DANH MỤC BẢNG ix DANH MỤC HÌNH x MỞ ĐẦU Chương 1: CẢM BIẾN ADN ĐIỆN HÓA 1.1 Giới thiệu ADN 1.2 Cơ sở lý thuyết phương pháp điện hóa sử dụng nghiên cứu cảm biến ADN 1.2.1 Phương pháp quét vòng 1.2.2 Phương pháp quét xung vi phân (DPV) 11 1.2.3 Phương pháp qt sóng vng (SWV) 12 1.2.4 Phương pháp phổ tổng trở điện hoá (EIS) 13 1.3 Các phương pháp cố định chuỗi ssADN 15 1.3.1 Hấp phụ vật lý 15 1.3.2 Cố định liên kết cộng hóa trị 16 1.3.3 Cố định thông qua tương tác Avidin/Streptavidin -Biotin 18 1.3.4 Cố định phương pháp điện hóa 19 1.4 Phương pháp phát lai hóa ADN 21 1.4.1 Phương pháp đánh dấu 21 1.4.2 Phương pháp không đánh dấu 25 1.5 Ứng dụng cảm biến sinh học 29 Kết luận chương 29 Chương 2: NGHIÊN CỨU TỔNG HỢP VẬT LIỆU THANH NANO CeO2 & NANO COMPOSIT CeO2 NR@Ppy 31 2.1 Đặt vấn đề 31 2 Thực nghiệm 34 2.2.1 Hóa chất, thiết bị 34 2.2.2 Tổng hợp vật liệu nano CeO2 35 iii 2.2.3 Tổng hợp vật liệu nano composit CeO2 NR@Ppy 36 2.3 Kết thảo luận 37 2.3.1 Kết tổng hợp vật liệu nano CeO2 37 2.3.2 Kết tổng hợp vật liệu nano composit CeO2 NR@Ppy 47 Kết luận chương 53 Chương 3: PHÁT TRIỂN CẢM BIẾN ADN TRÊN CƠ SỞ CÁC THANH NANO CeO2 54 3.1 Đặt vấn đề 54 Thực nghiệm 57 3.2.1 Hóa chất 57 3.2.2 Cố định ssADN 58 3.2.3 Các phép đo điện hóa 60 3.3 Kết thảo luận 61 3.3.1 Kết cố định chuỗi ssADN 61 3.3.2 Đặc trưng cảm biến ADN 64 3.3.3 Tối ưu hóa điều kiện thực nghiệm 68 3.3.4 Độ lặp lại, độ ổn định, tính chọn lọc khả tái sử dụng 72 Kết luận chương 73 Chương 4: CẢM BIẾN SINH HỌC ADN TRÊN CƠ SỞ VẬT LIỆU NANO COMPOSIT CeO2 NR@Ppy 75 4.1 Đặt vấn đề 75 4.2 Thí nghiệm 76 4.2.1 Hóa chất 76 4.2.2 Cố định chuỗi ssADN dò lên bề mặt điện cực 77 4.2.3 Phân tích điện hóa 78 4.3 Kết thảo luận 78 4.3.1 Kết cố định ssADN 78 4.3.2 Đặc trưng điện hóa cảm biến sinh học ADN 80 4.3.3 Nghiên cứu ảnh hưởng số thơng số đến tín hiệu cảm biến 83 4.3.4 Độ chọn lọc, độ lặp lại độ ổn định cảm biến sinh học ADN 85 iv 4.3.5 Xác định vi khuẩn Salmonella phương pháp PCR so sánh với số liệu phát cảm biến ADN 87 Kết luận chương 88 KẾT LUẬN 89 KIẾN NGHỊ 90 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 91 TÀI LIỆU THAM KHẢO 92 v DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT Ký hiệu, TT chữ viết Tên Tiếng Anh Tên Tiếng Việt tắt ADN Acid deoxyribonucleic A xít deoxyribonucleic APTES 3-Aminopropyl-triethoxy- 3-Aminopropyl-triethoxy-silan silane ASV Adsortive Stripping Vơn-ampe hịa tan hấp phụ Voltammetry BSA Bovine Serum Albumin Bovine Serum Albumin CE Counter electrode Điện cực đối CPs Conducting Polyme(s) (Các) Polyme dẫn điện CTAB Cetyltrimethyl ammonium cetyltrimetyl amoni bromit bromide CV Cyclic Voltammetry Vơn - ampe vịng DAO Diamin Oxidase Enzym DAO 10 DIG Digoxigenin Digoxigenin 11 DPV Differential Pulse Quét xung vi sai Voltammetry 12 dsADN Double strand ADN Chuỗi ADN kép 13 EDC 1-Ethyl-3-3-Dimethyl- 1-Etyl-3-3-Dimetyl- aminopropyl Carbodiimide aminopropyl Cacbodiimit 14 EDS Energy dispersive X-ray Phổ tán sắc lượng tia X spectroscopy 15 EDTA Ethylene Diamine Tetracetic Etylen Diamin Tetracetic A xít Acid 16 EIS Electrochemical Impedance Phổ tổng trở điện hóa Spectrocopy 17 ELISA Enzym-linked Xét nghiệm miễn dịch liên kết Immunosorbent assay với enzym vi 18 FESEM Field Scaning Hiển vi điện tử quét phát xạ Emission trường Electron Microscopy 19 FTIR Fourier Transform Infrared Phổ Spectrocopy 20 hCG hồng ngoại biến đổi Fourier Human Chorionic hooc môn gonadotropin Gonadotropin 21 HRP Horseradish peroxide Horseradish Perô xít 22 IEP Isoelectric Point Điểm đẳng điện 23 ISFET Ion-Sensitive Field-Effect Trasistor hiệu ứng trường nhạy Transistor ion 24 ITO Indium Tin Oxide Ơ xít thiếc indi 25 LOD Limit of Detection Giới hạn phát 26 LOQ Limit of Quantification Giới hạn định lượng 27 MIA 1-Methylimidazole 1-Metyl imidazol 28 NRs Nanorods Các nano 29 PABA Acid Para-Aminobenzoic A xít 4-Aminobenzoic 30 PANAM Poly Amidoamine Poly amidoamin 31 PANi Polyaniline Polyanilin 32 PBS Phosphat Buffer Saline Đệm phốt phát 33 PCR Polymerase Chain Reaction Phản ứng chuỗi Polyme 34 Ppy Polypyrrole Poly pyrol 35 Py Pyrrole Pyrol 36 RE Reference electrode Điện cực so sánh 37 SCE Saturated Calomel Electrode Điện cực Calomen bão hòa 38 SMOs Solid Metal Oxides xít kim loại bán dẫn 39 ssADN Single strand AND Chuỗi ADN đơn 40 SWV Square Wave Voltammetry Qt sóng vng 41 TEM Transmission electron Hiển vi điện tử truyền qua microscopy 42 TGA Thermogravimetric Analysis vii Phân tích nhiệt 43 TMC N-trimetyl chitosan N-trimetyl chitosan 44 WE Working electrode Điện cực làm việc 45 XRD X-ray Diffraction Nhiễu xạ tia X viii DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN A Tạp chí quốc tế Nguyen Thi Nguyet, Le Thi Hai Yen, Pham Hung Vuong, Phuong Dinh Tam, Tran Trung (2018), “Highly sensitive DNA sensors based on cerium oxide nanorods”, Journal of Physics and Chemistry of Solids, vol 115, pp 18-25 IF: 2.207 Nguyen Thi Nguyet, Vu Y Doan, Nguyen Luong Hoang, Vu Van Thu, Tran Trung, Pham Hung Vuong, Phuong Dinh Tam (2019), “A label-free and highly sensitive DNA biosensor based on the core-shell structured CeO2-NR@ Ppy nanocomposite for Salmonella detection”, Materials Science and Engineering: C, vol 96, pp 790-797 IF: 5.08 Nguyen Thi Nguyet, Vu Van Thu, Hoang Lan, Tran Trung, Anh-Tuan Le, Vuong-Hung Pham, Phuong Dinh Tam (2019), “Simple Label-Free DNA Sensor Based on CeO2 Nanorods Decorated with Ppy Nanoparticles”, Journal of Electronic materials, vol 48, no 10, pp 6231-6239 IF: 1.676 B Tạp chí nước Nguyen Thi Nguyet, Tran Trung, Hoang Lan, Vu Van Thu, Pham Hung Vuong, Phuong Dinh Tam (2019), “Direct synthesis of CeO2 nanospindles on gold electrode by electrochemical method”, Vietnam Journal of Chemistry, vol 57, pp 57-63 C Kỷ yếu hội nghị Nguyễn Thị Nguyệt, Lê Thị Hải Yến, Phương Đình Tâm, Trần Trung (2017), “Nghiên cứu chế tạo hạt nano CeO2 phương pháp điện hóa”, Hội nghị Vật liệu Công nghệ Nano Tiên tiến-WANN 2017, pp 175-179 Le Thi Hai Yen, Nguyen Thi Nguyet, Vu Van Thu, Hoang Lan, Tran Trung, Pham Hung Vuong, Dinh Van Tuan, Nguyen Thi Thuy, Phuong Dinh Tam (2017), “A facile approanch for preparation of core-shell nanostructured Cerium dioxide nanorods@Polypyrrole via in situ Polymerization”, Hội nghị Vật liệu Công nghệ Nano Tiên tiến-WANN 2017, pp 180-186 Nguyen Thi Nguyet, Dang Thi Thuy Ngan, Nguyen Duc Dung, Pham Hung Vuong, Tran Trung, Tuan Duong Anh, Tu Le Manh, Phuong Dinh Tam (2019), “On the electrochemical synthesis of CeO2/Ppy nanocomposite: cyclic voltammetry technique”, Hội nghị Vật lý Chất rắn Khoa học Vật liệu Toàn quốc – SPMS 2019, no 2, pp 484-488 91 TÀI LIỆU THAM KHẢO [1] "https//moh.gov.vn/thong-ke-y-te" [2] E Sheikhzadeh, M Chamsaz, A.P.F Turner, E.W.H Jager, V Beni (2016), "Label-free impedimetric biosensor for Salmonella Typhimurium detection based on poly [pyrrole-co-3-carboxyl-pyrrole] copolymer supported aptamer", Biosensors and Bioelectronics, Vol.80, pp 194–200 [3] N Bhalla, P Jolly, N Formisano, P Estrela (2016), "Introduction to biosensors", Essays in Biochemistry, Vol.60, pp 1–8 [4] E Arkan, R Saber, Z Karimi, M Shamsipur (2015), "A novel antibody– antigen based impedimetric immunosensor for low level detection of HER2 in serum samples of breast cancer patients via modification of a gold nanoparticles decorated multiwall carbon nanotube-ionic liquid electrode", Analytica Chimica Acta, Vol.874, pp 66–74 [5] Y Zhou, Y Fang, R Ramasamy (2019), "Non-Covalent Functionalization of Carbon Nanotubes for Electrochemical Biosensor Development", Sensors, Vol.19, pp 392–420 [6] N Aydemir, J Malmström, J Travas-Sejdic (2016), "Conducting polymer based electrochemical biosensors", Physical Chemistry Chemical Physics, Vol.18, pp 8264–8277 [7] R Ahmad, N Tripathy, J.-H Park, Y.-B Hahn (2015), "A comprehensive biosensor integrated with a ZnO nanorod FET array for selective detection of glucose, cholesterol and urea", Chemical Communications, Vol.51, pp 11968–11971 [8] J.H Kim, B.H Chung (2011), "Naked eye detection of mutagenic DNA photodimers using gold nanoparticles", Biosensors and Bioelectronics, Vol.26, pp 2805–2809 [9] Z.A Ansari, S Khalid, A.A Khan, H Fouad, S.G Ansari (2014), "Cholesterol Biosensor Based on Neodymium Doped Manganese Titanate Nanoparticles", Sensor Letters, Vol.12, pp 1495–1501 [10] A El-Ansary, L.M Faddah (2010), "Nanoparticles as biochemical sensors", Nanotechnology, Science and Applications, Vol.3, pp 65–76 [11] O Inganäs, T Skotheim, I Lundström (1983), "Polypyrrole‐semiconductor Schottky barriers", Journal of Applied Physics, Vol.54, pp 3636–3639 [12] K Zhao, J Qi, H Yin, Z Wang, S Zhao, X Ma, J Wan, L Chang, Y Gao, R Yu, Z Tang (2015), "Efficient water oxidation under visible light by tuning surface defects on ceria nanorods", Journal of Materials Chemistry A, Vol.3, pp 20465–20470 [13] A Michelmore (2016), "Thin film growth on biomaterial surfaces", Thin Film Coatings for Biomaterials and Biomedical Applications, pp 29–47 92 [14] M Singh, N Nesakumar, S Sethuraman, U.M Krishnan, J.B.B Rayappan (2014), "Electrochemical biosensor with ceria–polyaniline core shell nanointerface for the detection of carbonic acid in blood", Journal of Colloid and Interface Science, Vol.425, pp 52–58 [15] P Mehrotra (2016), "Biosensors and their applications - A review", Journal of Oral Biology and Craniofacial Research, Vol.6, pp 153–159 [16] K.M Zinn, I.H Leopold (1973), "Molecular biology of the cell", International Ophthalmology Clinics, Vol.13, pp 53–81 [17] C.E Crespo-Hernández, D.M Close, L Gorb, J Leszczynski (2007), "Determination of redox potentials for the Watson-crick base pairs, DNA nucleosides, and relevant nucleoside analogues", Journal of Physical Chemistry B, Vol.111, pp 5386–5395 [18] L.G Dias, S.G Meirinho, A.C.A Veloso, L.R Rodrigues, A.M Peres (2017), "Electronic tongues and aptasensors", Bioinspired Materials for Medical Applications, pp 371–402 [19] S.B Nimse, K Song, M.D Sonawane, D.R Sayyed, T Kim (2014), "Immobilization techniques for microarray: Challenges and applications", Sensors (Switzerland), Vol.14, pp 22208–22229 [20] M Pedano (2004), "Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes", Electrochemistry Communications, Vol.6, pp 10–16 [21] F Azek, C Grossiord, M Joannes, B Limoges, P Brossier (2000), "Hybridization Assay at a Disposable Electrochemical Biosensor for the Attomole Detection of Amplified Human Cytomegalovirus DNA", Analytical Biochemistry, Vol.284, pp 107–113 [22] W Sun, Y Lu, Y Wu, Y Zhang, P Wang, Y Chen, G Li (2014), "Electrochemical sensor for transgenic maize MON810 sequence with electrostatic adsorption DNA on electrochemical reduced graphene modified electrode", Sensors and Actuators, B: Chemical, Vol.202, pp 160–166 [23] T.S Bronder, A Poghossian, S Scheja, C Wu, M Keusgen, D Mewes, M.J Schöning (2015), "DNA immobilization and hybridization detection by the intrinsic molecular charge using capacitive field-effect sensors modified with a charged weak polyelectrolyte layer", ACS Applied Materials and Interfaces, Vol.7, pp 20068–20075 [24] C Xu, H Cai, P He, Y Fang (2001), "Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA", Analyst, Vol.126, pp 62–65 [25] E.L.S Wong, P Erohkin, J.J Gooding (2004), "A comparison of cationic and anionic intercalators for the electrochemical transduction of DNA 93 hybridization via long range electron Communications, Vol.6, pp 648–654 transfer", Electrochemistry [26] M Ligaj, J Jasnowska, W.G Musiał, M Filipiak (2006), "Covalent attachment of single-stranded DNA to carbon paste electrode modified by activated carboxyl groups", Electrochimica Acta, Vol.51, pp 5193–5198 [27] M Silvestrini, L Fruk, L.M Moretto, P Ugo (2015), "Detection of DNA hybridization by methylene blue electrochemistry at activated nanoelectrode ensembles", Journal of Nanoscience and Nanotechnology, Vol.15, pp 3437– 3442 [28] M Amouzadeh Tabrizi, M Shamsipur (2015), "A label-free electrochemical DNA biosensor based on covalent immobilization of salmonella DNA sequences on the nanoporous glassy carbon electrode", Biosensors and Bioelectronics, Vol.69, pp 100–105 [29] Q Li, C Yu, R Gao, C Xia, G Yuan, Y Li, Y Zhao, Q Chen, J He (2016), "A novel DNA biosensor integrated with Polypyrrole/streptavidin and AuPAMAM-CP bionanocomposite probes to detect the rs4839469 locus of the vangl1 gene for dysontogenesis prediction", Biosensors and Bioelectronics, Vol.80, pp 674–681 [30] R Nurmalasari, Yohan, S Gaffar, Y.W Hartati (2015), "Label-Free Electrochemical DNA Biosensor for the Detection of Mycobacterium Tuberculosis Using Gold Electrode Modified by Self-Assembled Monolayer of Thiol", Procedia Chemistry, Vol.17, pp 111–117 [31] C Crucifix, M Uhring, P Schultz (2004), "Immobilization of biotinylated DNA on 2-D streptavidin crystals", Journal of Structural Biology, Vol.146, pp 441–451 [32] M Billon, T Livache, S Guillerez (2004), "Biotin / avidin system for the generation of fully renewable DNA sensor based on biotinylated polypyrrole film", Vol.515, pp 271–277 [33] D.J Chung, K.C Kim, S.H Choi (2011), "Electrochemical DNA biosensor based on avidin-biotin conjugation for influenza virus (type A) detection", Applied Surface Science, Vol.257, pp 9390–9396 [34] D Zauner, B Taskinen, D Eichinger, C Flattinger, B Ruttmann, C Knoglinger, L Traxler, A Ebner, H.J Gruber, V.P Hytönen (2016), "Regenerative biosensor chips based on switchable mutants of avidin—A systematic study", Sensors and Actuators B: Chemical, Vol.229, pp 646–654 [35] J Wang, X Cai, G Rivas, H Shiraishi (1996), "Stripping potentiometric transduction of DNA hybridization processes", Analytica Chimica Acta, Vol.326, pp 141–147 [36] C Hu, S Hu (2004), "Electrochemical characterization of cetyltrimethyl ammonium bromide modified carbon paste electrode and the application in 94 the immobilization of DNA", Electrochimica Acta, Vol.49, pp 405–412 [37] S Wu, H Zhao, H Ju, C Shi, J Zhao (2006), "Electrodeposition of silverDNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose", Electrochemistry Communications, Vol.8, pp 1197–1203 [38] S.B Nimse, K Song, M.D Sonawane, D.R Sayyed, T Kim (2014), "Immobilization techniques for microarray: Challenges and applications", Sensors (Switzerland), Vol.14, pp 22208–22229 [39] K.M Millan, S.R Mikkelsen (1993), "Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators", Analytical Chemistry, Vol.65, pp 2317–2323 [40] R Nurmalasari, Yohan, S Gaffar, Y.W Hartati (2015), "Label-Free Electrochemical DNA Biosensor for the Detection of Mycobacterium Tuberculosis Using Gold Electrode Modified by Self-Assembled Monolayer of Thiol", Procedia Chemistry, Vol.17, pp 111–117 [41] A Benvidi, A Dehghani Firouzabadi, M Dehghan Tezerjani, S.M Moshtaghiun, M Mazloum-Ardakani, A Ansarin (2015), "A highly sensitive and selective electrochemical DNA biosensor to diagnose breast cancer", Journal of Electroanalytical Chemistry, Vol.750, pp 57–64 [42] M.H Le, C Jimenez, E Chainet, V Stambouli (2015), "A label-free impedimetric DNA sensor based on a nanoporous SnO2 film: Fabrication and detection performance", Sensors (Switzerland), Vol.15, pp 10686– 10704 [43] K.M Millan, A Saraullo, S.R Mikkelsen (1994), "Voltammetric DNA Biosensor for Cystic Fibrosis Based on a Modified Carbon Paste Electrode", Analytical Chemistry, Vol.66, pp 2943–2948 [44] S.R Mikkelsen (1996), "Electrochemical Biosensors for DNA Sequence Detection", Electroanalysis, Vol.8, pp 15–19 [45] N Wu, W Gao, X He, Z Chang, M Xu (2013), "Biosensors and Bioelectronics Direct electrochemical sensor for label-free DNA detection based on zero current potentiometry", Biosensors and Bioelectronic, Vol.39, pp 210–214 [46] Y Guo, S Su, X Wei, Y Zhong, Y Su, Q Huang, C Fan, Y He (2013), "A silicon-based electrochemical sensor for highly sensitive, specific, label-free and real-time DNA detection", Nanotechnology, Vol.24, pp 444012–444019 [47] Z Mazzochette, A Mugweru (2014), "Electrochemical DNA Hybridization Sensor Using Poly[vinylpyridine Os(bipyridine)2Cl]-co-Ethylamine Redox Polymer", Chemistry and Materials Research, Vol.6, pp 55–64 [48] S Liu, J Liu, X Han, Y Cui, W Wang (2010), "Biosensors and Bioelectronics Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization 95 and hybridization", Biosensors and Bioelectronics, Vol.25, pp 1640–1645 [49] L Su, C.G Sankar, D Sen, H.Z Yu (2004), "Kinetics of ion-exchange binding of redox metal cations to thiolate - DNA monolayers on gold", Analytical Chemistry, Vol.76, pp 5953–5959 [50] S Liu, J Liu, L Wang, F Zhao (2010), "Bioelectrochemistry Development of electrochemical DNA biosensor based on gold nanoparticle modi fi ed electrode by electroless deposition", Bioelectrochemistry, Vol.79, pp 37–42 [51] M.U Ahmed, S Nahar, M Safavieh, M Zourob (2013), "Real-time electrochemical detection of pathogen DNA using electrostatic interaction of a redox probe", Analyst, Vol.138, pp 907915 [52] A.C Honorato Castro, E.G Franỗa, L.F De Paula, M.M.C.N Soares, L.R Goulart, J.M Madurro, A.G Brito-Madurro (2014), "Preparation of genosensor for detection of specific DNA sequence of the hepatitis B virus", Applied Surface Science, Vol.314, pp 273–279 [53] F.R.R Teles, D.M.F Dos Prazeres, J.L De Lima-Filho (2007), "Electrochemical detection of a dengue-related oligonucleotide sequence using ferrocenium as a hybridization indicator", Sensors, Vol.7, pp 2510– 2518 [54] J.I.A Rashid, N.A Yusof (2017), "The strategies of DNA immobilization and hybridization detection mechanism in the construction of electrochemical DNA sensor: A review", Sensing and Bio-Sensing Research, Vol.16, pp 19– 31 [55] A Lee, D Du, B Chen, C Heng, T Lim, Y Lin (2014), "Electrochemical detection of leukemia oncogenes using enzyme-loaded carbon nanotube labels", The Analyst, Vol.139, pp 4223–4230 [56] G Martínez-Paredes, M.B González-García, A Costa-García (2010), "Genosensor for detection of four pneumoniae bacteria using gold nanostructured screen-printed carbon electrodes as transducers", Sensors and Actuators, B: Chemical, Vol.149, pp 329–335 [57] B.Y Won, H.C Yoon, H.G Park (2008), "Enzyme-catalyzed signal amplification for electrochemical DNA detection with a PNA-modified electrode", Analyst, Vol.133, pp 100–104 [58] G Liu, Y Wan, V Gau, J Zhang, L Wang, S Song, C Fan (2008), "An enzyme-based E-DNA sensor for sequence-specific detection of femtomolar DNA targets", Journal of the American Chemical Society, Vol.130, pp 6820– 6825 [59] C Kokkinos (2019), "Electrochemical DNA biosensors based on labeling with nanoparticles", Nanomaterials, Vol.9, pp 1361–1380 [60] A.E C Kokkinos (2017), "Emerging trends in biosensing using stripping voltammetric detection of metalcontaining nanolabels – A review.pdf", 96 Analytica Chimica Acta, Vol.961, pp 12–32 [61] H Cai, Y Wang, P He, Y Fang (2002), "Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label", Analytica Chimica Acta, Vol.469, pp 165–172 [62] M Daneshpour, L.S moradi, P Izadi, K Omidfar (2016), "Femtomolar level detection of RASSF1A tumor suppressor gene methylation by electrochemical nano-genosensor based on Fe3O4/TMC/Au nanocomposite and PT-modified electrode", Biosensors and Bioelectronics, Vol.77, pp 1095–1103 [63] E Paleček (1996), "From Polarography of DNA to Microanalysis with Nucleic Acid-Modified Electrodes", Electroanalysis, Vol.8, pp 7–14 [64] K Ghanbari, S.Z Bathaie, M.F Mousavi (2008), "Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor", Biosensors and Bioelectronics, Vol.23, pp 1825–1831 [65] E Souza, G Nascimento, N Santana, D Ferreira, M Lima, E Natividade, D Martins, L.F José (2011), "Label-free electrochemical detection of the specific oligonucleotide sequence of dengue virus type I on pencil graphite electrodes", Sensors, Vol.11, pp 5616–5629 [66] L Mirmoghtadaie, A.A Ensafi, M Kadivar, P Norouzi (2013), "Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology", Materials Science and Engineering C, Vol.33, pp 1753–1758 [67] S.N Topkaya (2015), "Gelatin methacrylate (GelMA) mediated electrochemical DNA biosensor for DNA hybridization", Biosensors and Bioelectronics, Vol.64, pp 456–461 [68] N.D Popovich, A.E Eckhardt, J.C Mikulecky, M.E Napier, R.S Thomas (2002), "Electrochemical sensor for detection of unmodified nucleic acids", Talanta, Vol.56, pp 821–828 [69] B Xu, D Zheng, W Qiu, F Gao, S Jiang, Q Wang (2015), "An ultrasensitive DNA biosensor based on covalent immobilization of probe DNA on fern leaf-like α-Fe2O3 and chitosan Hybrid film using terephthalaldehyde as arm-linker", Biosensors and Bioelectronics, Vol.72, pp 175–181 [70] H.A.M Faria, V Zucolotto (2019), "Label-free electrochemical DNA biosensor for zika virus identification", Biosensors and Bioelectronics, Vol.131, pp 149–155 [71] K.M Millan, S.R Mikkelsen (1993), "Sequence-Selective Biosensor for DNA Based on Electroactive Hybridization Indicators", Analytical Chemistry, Vol.65, pp 2317–2323 [72] Z Izadi, M Sheikh-Zeinoddin, A.A Ensafi, S Soleimanian-Zad (2016), 97 "Fabrication of an electrochemical DNA-based biosensor for Bacillus cereus detection in milk and infant formula", Biosensors and Bioelectronics, Vol.80, pp 582–589 [73] P Kara, B Meric, A Zeytinoglu, M Ozsoz (2004), "Electrochemical DNA biosensor for the detection and discrimination of herpes simplex Type I and Type II viruses from PCR amplified real samples", Analytica Chimica Acta, Vol.518, pp 69–76 [74] Y Tian, T Liang, P Zhu, Y Chen, W Chen, L Du, C Wu, P Wang (2019), "Label-free detection of E Coli o157:H7 dna using light-addressable potentiometric sensors with highly oriented zno nanorod arrays", Sensors (Switzerland), Vol.19, pp 5473–5481 [75] J.R.S J B Sousa, J Ramos-Jesus, R.A.S Fonseca, C Delerue-Matos, M F Barroso (2018), "Biosensors as Advanced Device for the Transgenic Plants and Food and Detection", Genetically Engineered Foods, pp 221–245 [76] L Li, Y Wen, L Xu, Q Xu, S Song, X Zuo, J Yan, W Zhang, G Liu (2016), "Development of mercury (II) ion biosensors based on mercuryspecific oligonucleotide probes", Biosensors and Bioelectronics, Vol.75, pp 433–445 [77] Y Zhang, S Xiao, H Li, H Liu, P Pang, H Wang, Z Wu, W Yang (2016), "A Pb2+-ion electrochemical biosensor based on single-stranded DNAzyme catalytic beacon", Sensors and Actuators, B: Chemical, Vol.222, pp 1083– 1089 [78] M.A Lifson, M.O Ozen, F Inci, S.Q Wang, H Inan, M Baday, T.J Henrich, U Demirci (2016), "Advances in biosensing strategies for HIV-1 detection, diagnosis, and therapeutic monitoring", Advanced Drug Delivery Reviews, Vol.103, pp 90–104 [79] Y Chen, S Guo, M Zhao, P Zhang, Z Xin, J Tao, L Bai (2018), "Amperometric DNA biosensor for Mycobacterium tuberculosis detection using flower-like carbon nanotubes-polyaniline nanohybrid and enzymeassisted signal amplification strategy", Biosensors and Bioelectronics, Vol.119, pp 215–220 [80] D Zhang, Y Yan, Q Li, T Yu, W Cheng, L Wang, H Ju, S Ding (2012), "Label-free and high-sensitive detection of Salmonella using a surface plasmon resonance DNA-based biosensor", Journal of Biotechnology, Vol.160, pp 123–128 [81] Q Li, W Cheng, D Zhang, T Yu, Y Yin, H Ju, S Ding (2012), "Rapid and sensitive strategy for Salmonella detection using an InvA gene-based electrochemical DNA sensor", International Journal of Electrochemical Science, Vol.7, pp 844–856 [82] R.D.A.A Rajapaksha, U Hashim, M.N Afnan Uda, C.A.N Fernando, S.N.T De Silva (2017), "Target ssDNA detection of E.coli O157:H7 through 98 electrical based DNA biosensor", Microsystem Technologies, Vol.23, pp 5771–5780 [83] Z Zhang, J Zhou, X Du (2019), "Electrochemical biosensors for detection of foodborne pathogens", Micromachines, Vol.10, pp 222–237 [84] A Narmani, M Kamali, B Amini, H Kooshki, A Amini, L Hasani (2018), "Highly sensitive and accurate detection of Vibrio cholera O1 OmpW gene by fluorescence DNA biosensor based on gold and magnetic nanoparticles", Process Biochemistry, Vol.65, pp 46–54 [85] N.E Ogden, M Kurnik, C Parolo, K.W Plaxco (2019), "An electrochemical scaffold sensor for rapid syphilis diagnosis", Analyst, Vol.144, pp 5277– 5283 [86] H Ullah, A Qadeer, M Rashid, M.I Rashid, G Cheng (2020), "Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development", Parasitology, Vol.147, pp 383–392 [87] N Oliveira, E Souza, D Ferreira, D Zanforlin, W Bezerra, M.A Borba, M Arruda, K Lopes, G Nascimento, D Martins, M Cordeiro, J Lima-Filho (2015), "A sensitive and selective label-free electrochemical DNA biosensor for the detection of specific dengue virus serotype sequences", Sensors (Switzerland), Vol.15, pp 15562–15577 [88] R Singh, G Sumana, R Verma, S Sood, M.K Pandey, R.K Gupta, B.D Malhotra (2010), "DNA biosensor for detection of Neisseria gonorrhoeae causing sexually transmitted disease", Journal of Biotechnology, Vol.150, pp 357–365 [89] D Yin, F Zhao, L Zhang, X Zhang, Y Liu, T Zhang, C Wu, D Chen, Z Chen (2016), "Greatly enhanced photocatalytic activity of semiconductor CeO by integrating with upconversion nanocrystals and graphene", RSC Advances, Vol.6, pp 103795–103802 [90] R.L Patel, S.A Palaparty, X Liang (2017), "Ultrathin Conductive CeO2 Coating for Significant Improvement in Electrochemical Performance of LiMn1.5Ni0.5O4 Cathode Materials", Journal of The Electrochemical Society, Vol.164, pp A6236–A6243 [91] E Muccillo, R Rocha, S Tadokoro, J Rey, R Muccillo, M Steil (2004), "Electrical Conductivity of CeO2 Prepared from Nanosized Powders", Journal of Electroceramics, Vol.13, pp 609–612 http://www.springerlink.com/index/M3U53051L0044W06.pdf [92] N.N Dao, M.D Luu, Q.K Nguyen, B.S Kim (2011), "UV absorption by cerium oxide nanoparticles/epoxy composite thin films", Advances in Natural Sciences: Nanoscience and Nanotechnology, Vol.2, pp 045013 [93] E Laubender, N.B Tanvir, O Yurchenko, G Urban (2015), "Nanocrystalline 99 CeO2 as room temperature sensing material for CO2 in low power work function sensors", Procedia Engineering, Vol.120, pp 1058–1062 [94] P Tamizhdurai, S Sakthinathan, S Chen, K Shanthi, S Sivasanker, P Sangeetha (2017), "Environmentally friendly synthesis of CeO2 nanoparticles for the catalytic oxidation of benzyl alcohol to benzaldehyde and selective detection of nitrite", Nature Publishing Group, pp 1–13 [95] P Guan, Y Li, J Zhang, W Li (2016), "Non-Enzymatic Glucose Biosensor Based on CuO-Decorated CeO2 Nanoparticles", Nanomaterials, Vol.6, pp 159 [96] X Yang, X Yu, G Li (2016), "The effects of Nd doping on the morphology and optical properties of CeO2 nanorods", Journal of Materials Science: Materials in Electronics, Vol.27, pp 9704–9709 [97] D Zhang, H Fu, L Shi, C Pan, Q Li, Y Chu, W Yu (2007), "Synthesis of CeO2 nanorods via ultrasonication assisted by polyethylene glycol", Inorganic Chemistry, Vol.46, pp 2446–2451 [98] T.N Ravishankar, T Ramakrishnappa, G Nagaraju, H Rajanaika (2015), "Synthesis and Characterization of CeO2 Nanoparticles via Solution Combustion Method for Photocatalytic and Antibacterial Activity Studies", ChemistryOpen, Vol.4, pp 146–154 [99] Y.H Liu, J.C Zuo, X.F Ren, L Yong (2014), "Synthesis and character of cerium oxide (CeO2) nanoparticles by the precipitation method", Metalurgija, Vol.53, pp 463–465 [100] A.I.Y Tok, S.W Du, F.Y.C Boey, W.K Chong (2007), "Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles", Materials Science and Engineering A, Vol.466, pp 223–229 [101] V.D Araujo, W Avansi, H.B De Carvalho, M.L Moreira, E Longo, C Ribeiro, M.I.B Bernardi (2012), "CeO2 nanoparticles synthesized by a microwave-assisted hydrothermal method: evolution from nanospheres to nanorods", CrystEngComm, Vol.14, pp 1150 [102] N Sabari Arul, D Mangalaraj, T.W Kim, P.C Chen, N Ponpandian, P Meena, Y Masuda (2013), "Synthesis of CeO2 nanorods with improved photocatalytic activity: Comparison between precipitation and hydrothermal process", Journal of Materials Science: Materials in Electronics, Vol.24, pp 1644–1650 [103] A.D Liyanage, S.D Perera, K Tan, Y Chabal, K.J Balkus (2014), "Synthesis, Characterization, and Photocatalytic Activity of Y-Doped CeO2 Nanorods", ACS Catalysis, Vol.4, pp 577–584 [104] Mạc Đình Thiết, Nguyễn Đình Bảng, Nghiêm Xuân Thung (2010), Khảo sát ảnh hưởng nhiệt độ nung đến đặc trưng hoạt tính xúc tác quang hóa oxit hỗn hợp TiO2-CeO2, Tạp chí Khoa học Cơng nghệ, Vol.48, 100 pp.102-107 [105] Nguyễn Đình Bảng, Nghiêm Xuân Thung, Mạc Đình Thiết (2010), Tổng hợp oxit hỗn hợp TiO2- CeO2 có kích thước nano phương pháp tẩm khảo sát hoạt tính xúc tác quang hóa nó, Tạp chí phân tích Hóa, Lý Sinh học, Vol.15, pp.45-49 [106] N.T.H Chi, Đ.T Dũng, P.N Chức, D.T Lịm, Đ.N Nhiệm (2018), "Tổng hợp vật liệu CeO2 kích thước nanomet SiO2 nghiên cứu khả quang xúc tác chúng", Vietnam Journal of Chemistry, Vol.56, pp 117– 121 [107] F.Y Chuang, S.M Yang (2008), "Cerium dioxide/polyaniline core-shell nanocomposites", Journal of Colloid and Interface Science, Vol.320, pp 194– 201 [108] X Wang, T Wang, D Liu, J Guo, P Liu (2016), "Synthesis and Electrochemical Performance of CeO2/PPy Nanocomposites: Interfacial Effect", Industrial and Engineering Chemistry Research, Vol.55, pp 866–874 [109] E Kumar, P Selvarajan, D Muthuraj (2012), "Preparation and characterization of polyaniline/cerium dioxide (CeO2) nanocomposite via in situ polymerization", Journal of Materials Science, Vol.47, pp 7148–7156 [110] H Zhang, X Zhong, J.J Xu, H.Y Chen (2008), "Fe3O4/Polypyrrole/Au nanocomposites with core/shell/shell structure: synthesis, characterization, and their electrochemical properties", Langmuir, Vol.24, pp 13748–13752 [111] C Sun, H Li, H Zhang, Z Wang, L Chen (2005), "Controlled synthesis of CeO2 nanorods by a solvothermal method", Nanotechnology, Vol.16, pp 1454–1463 [112] P.X Huang, F Wu, B.L Zhu, X.P Gao, H.Y Zhu, T.Y Yan, W.P Huang, S.H Wu, D.Y Song (2005), "CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst", Journal of Physical Chemistry B, Vol.109, pp 19169–19174 [113] L Yan, R Yu, J Chen, X Xing (2008), "Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution", Crystal Growth and Design, Vol.8, pp 1474–1477 [114] D Brezoi (2010), "Polypyrrole film preparared by chemical oxidation of pyrrole in aqueous FeCl3 solution", Journal of Science and Arts, Vol.1, pp 53–58 [115] M Srivastava, A.K Das, P Khanra, M.E Uddin, N.H Kim, J.H Lee (2013), "Characterizations of in situ grown ceria nanoparticles on reduced graphene oxide as a catalyst for the electrooxidation of hydrazine", Journal of Materials Chemistry A, Vol.1, pp 9792–9801 [116] J Zhang, X.S Zhao (2012), "Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor 101 electrodes", Journal of Physical Chemistry C, Vol.116, pp 5420–5426 [117] Z Wei, L Zhang, M Yu, Y Yang, M Wan (2003), "Self-Assembling SubMicrometer-Sized Tube Junctions and Dendrites of Conducting Polymers", Advanced Materials, Vol.15, pp 1382–1385 [118] A Choi, K Kim, H Il Jung, S.Y Lee (2010), "ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode", Sensors and Actuators, B: Chemical, Vol.148, pp 577–582 [119] S Komathi, N Muthuchamy, K.P Lee, A.I Gopalan (2016), "Fabrication of a novel dual mode cholesterol biosensor using titanium dioxide nanowire bridged 3D graphene nanostacks", Biosensors and Bioelectronics, Vol.84, pp 64–71 [120] Q.Q Sun, M Xu, S.J Bao, C Ming Li (2015), "PH-controllable synthesis of unique nanostructured tungsten oxide aerogel and its sensitive glucose biosensor", Nanotechnology, Vol.26, pp 115602–115608 [121] A Roychoudhury, S Basu, S.K Jha (2016), "Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform", Biosensors and Bioelectronics, Vol.84, pp 72–81 [122] D Patil, N.Q Dung, H Jung, S.Y Ahn, D.M Jang, D Kim (2012), "Enzymatic glucose biosensor based on CeO2 nanorods synthesized by nonisothermal precipitation", Biosensors and Bioelectronics, Vol.31, pp 176– 181 [123] P.R Solanki, C Dhand, A Kaushik, A.A Ansari, K.N Sood, B.D Malhotra (2009), "Nanostructured cerium oxide film for triglyceride sensor", Sensors and Actuators, B: Chemical, Vol.141, pp 551–556 [124] S Saha, S.K Arya, S.P Singh, K Sreenivas, B.D Malhotra, V Gupta (2009), "Nanoporous cerium oxide thin film for glucose biosensor", Biosensors and Bioelectronics, Vol.24, pp 2040–2045 [125] D Patil, N.Q Dung, H Jung, S.Y Ahn, D.M Jang, D Kim (2012), "Enzymatic glucose biosensor based on CeO2 nanorods synthesized by nonisothermal precipitation", Biosensors and Bioelectronics, Vol.31, pp 176– 181 [126] N.F Starodub, J.O Ogorodnijchuk (2012), "Cerium oxide ISFET based immune biosensor for control of bacterial contamination", The 14th International Meeting on Chemical Sensors, pp 880–883 [127] P.R Solanki, M.A Ali, A Kaushik, B.D Malhotra (2014), "Label-Free Capacitive Immunosensor Based on Nanostructured Cerium Oxide", Advanced Electrochemistry, Vol.1, pp 92–97 [128] P.D Tam, C.X Thang (2016), "Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection", Materials Science and Engineering C, Vol.58, pp 953–959 102 [129] W Gao, X Wei, X Wang, G Cui, Z Liu, B Tang (2016), "A competitive coordination-based CeO2 nanowire-DNA nanosensor: Fast and selective detection of hydrogen peroxide in living cells and in vivo", Chemical Communications, Vol.52, pp 3643–3646 [130] S Vivek, P Arunkumar, K.S Babu (2016), "In situ generated nickel on cerium oxide nanoparticle for efficient catalytic reduction of 4-nitrophenol", RSC Advances, Vol.6, pp 45947–45956 [131] K.P.S.S Hembram, G.M Rao (2009), "Studies on CNTs/DNA composite", Materials Science and Engineering: C, Vol.29, pp 1093–1097 [132] S Nafisi, A.A Saboury, N Keramat, J.F Neault, H.A Tajmir-Riahi (2007), "Stability and structural features of DNA intercalation with ethidium bromide, acridine orange and methylene blue", Journal of Molecular Structure, Vol.827, pp 35–43 [133] T Das, S.K Kutty, R Tavallaie, A.I Ibugo, J Panchompoo, S Sehar, L Aldous, A.W.S Yeung, S.R Thomas, N Kumar, J.J Gooding, M Manefield (2015), "Phenazine virulence factor binding to extracellular DNA is important for Pseudomonas aeruginosa biofilm formation", Scientific Reports, Vol.5, pp 8398–8406 [134] D.K Jangir, S Charak, R Mehrotra, S Kundu (2011), "FTIR and circular dichroism spectroscopic study of interaction of 5-fluorouracil with DNA", Journal of Photochemistry and Photobiology B: Biology, Vol.105, pp 143– 148 [135] J.E.B Randles (1947), "Kinetics of rapid electrode reactions", Faraday Discussions, Vol.1, pp 11–19 [136] M Díaz-Serrano, A Rosado, J del Pilar, M Arias, A.R Guadalupe (2011), "A Polymer-Based Electrochemical DNA Biosensor for Salmonella: Preparation, Characterization and Calibration", Electroanalysis, Vol.23, pp 1830–1841 [137] A Ulianas, L.Y Heng, S.A Hanifah, T.L Ling (2012), "An electrochemical DNA microbiosensor based on succinimide-modified acrylic microspheres", Sensors (Switzerland), Vol.12, pp 5445–5460 [138] J Pan (2007), "Voltammetric detection of DNA hybridization using a noncompetitive enzyme linked assay", Biochemical Engineering Journal, Vol.35, pp 183–190 [139] J Zhang, H.P Lang, G Yoshikawa, C Gerber (2012), "Optimization of DNA hybridization efficiency by pH-driven nanomechanical bending", Langmuir, Vol.28, pp 6494–6501 [140] P.D Tam, N Van Hieu, N.D Chien, A.T Le, M Anh Tuan (2009), "DNA sensor development based on multi-wall carbon nanotubes for label-free influenza virus (type A) detection", Journal of Immunological Methods, 103 Vol.350, pp 118–124 [141] Y Okahata, M Kawase, K Niikura, F Ohtake, H Furusawa, Y Ebara (1998), "Kinetic Measurements of DNA Hybridization on an OligonucleotideImmobilized 27-MHz Quartz Crystal Microbalance", Analytical Chemistry, Vol.70, pp 1288–1291 [142] R Meunier-Prest (2003), "Direct measurement of the melting temperature of supported DNA by electrochemical method", Nucleic Acids Research, Vol.31, pp 150e – 150 [143] P.D Tam, M.A Tuan, N Van Hieu, N.D Chien (2009), "Impact parameters on hybridization process in detecting influenza virus (type A) using conductimetric-based DNA sensor", Physica E: Low-Dimensional Systems and Nanostructures, Vol.41, pp 1567–1571 [144] S Surzycki (2003), "Human Molecular Biology Laboratory", Wiley Blackwell, [145] A.W Peterson (2001), "The effect of surface probe density on DNA hybridization", Nucleic Acids Research, Vol.29, pp 5163–5168 [146] A Karimi, A Othman, S Andreescu (2016), "Portable Enzyme-Paper Biosensors Based on Redox-Active CeO2 Nanoparticles", Methods in Enzymology, Vol.571, pp 177–195 [147] Q Wu, Y Hou, M Zhang, X Hou, L Xu, N Wang, J Wang, W Huang (2016), "Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode", Analytical Methods, Vol.8, pp 1806–1812 [148] V.N Psychoyios, G.-P Nikoleli, N Tzamtzis, D.P Nikolelis, N Psaroudakis, B Danielsson, M.Q Israr, M Willander (2013), "Potentiometric Cholesterol Biosensor Based on ZnO Nanowalls and Stabilized Polymerized Lipid Film", Electroanalysis, Vol.25, pp 367–372 [149] D Schaffhauser, M Fine, M Tabata, T Goda, Y Miyahara (2016), "Measurement of Rapid Amiloride-Dependent pH Changes at the Cell Surface Using a Proton-Sensitive Field-Effect Transistor", Biosensors, Vol.6, pp 11–22 [150] A Poghossian, T.S Bronder, S Scheja, C Wu, T Weinand, C MetzgerBoddien, M Keusgen, M.J Schöning (2016), "Label-free Electrostatic Detection of DNA Amplification by PCR Using Capacitive Field-effect Devices", Procedia Engineering, Vol.168, pp 514–517 [151] M.B Gumpu, N Nesakumar, S Sethuraman, U.M Krishnan, J.B.B Rayappan (2014), "Development of electrochemical biosensor with ceriaPANI core-shell nano-interface for the detection of histamine", Sensors and Actuators B: Chemical, Vol.199, pp 330–338 [152] F Li, X Han, S Liu (2011), "Biosensors and Bioelectronics Development of 104 an electrochemical DNA biosensor with a high sensitivity of fM by dendritic gold nanostructure modified electrode", Biosensors and Bioelectronics, Vol.26, pp 2619–2625 [153] M.L Del Giallo, D.O Ariksoysal, G Marrazza, M Mascini, M Ozsoz (2005), "Disposable electrochemical enzyme-amplified genosensor for Salmonella bacteria detection", Analytical Letters, Vol.38, pp 2509–2523 [154] D Berdat, A.C Martin Rodríguez, F Herrera, M.A.M Gijs (2008), "Labelfree detection of DNA with interdigitated micro-electrodes in a fluidic cell", Lab on a Chip, Vol.8, pp 302–308 [155] R Luo, Y Li, X Lin, F Dong, W Zhang, L Yan, W Cheng, H Ju, S Ding (2014), "A colorimetric assay method for invA gene of Salmonella using DNAzyme probe self-assembled gold nanoparticles as single tag", Sensors and Actuators B: Chemical, Vol.198, pp 87–93 [156] A Vainrub, B.M Pettitt (2002), "Coulomb blockage of hybridization in twodimensional DNA arrays", Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, Vol.66, pp 041905(1–4) 105 ... ? ?Nghiên cứu tổng hợp vật liệu CeO2 có cấu trúc nano nhằm ứng dụng cảm biến ADN? ?? đề tài mà nghiên cứu sinh hướng tới Theo việc tập trung nghiên cứu tổng hợp vật liệu CeO2 có cấu trúc dạng nano có kích... ống cole 2.2.3 Tổng hợp vật liệu nano composit CeO2 NR@Ppy Các kỹ thuật sử dụng để tổng hợp vật liệu nano thường áp dụng để tổng hợp vật liệu có cấu trúc lõi vỏ Vật liệu lõi vỏ tổng hợp từ tiền... CeO2 vật liệu nano composit CeO2 NR@Ppy có cấu trúc lõi vỏ  Phát triển cảm biến ADN hiệu suất cao sở vật liệu nano chiều CeO2 chế tạo Nội dung nghiên cứu luận án - Nghiên cứu tổng hợp vật liệu nano

Ngày đăng: 18/04/2021, 10:46

Từ khóa liên quan

Mục lục

  • MỤC LỤC

  • MỞ ĐẦU

  • Chương 1:

  • Chương 2:

  • Chương 3:

  • Chương 4:

  • KIẾN NGHỊ

  • TÀI LIỆU THAM KHẢO

Tài liệu cùng người dùng

Tài liệu liên quan